天体运动的典型问题

合集下载

更高更妙的物理:专题11 天体运动种种..

更高更妙的物理:专题11 天体运动种种..

专题1l 天体运动种种卫星、行星、恒星、星团、星系、星系团、超星系团,各种不同层次的天体世界由小到大组成了整个宇宙,宇宙是那么的广袤浩瀚,深邃奇妙,然而,它们又是有序的,一些基本的规律支配着天体星球的种种行为,开普勒三定律描述了星体的运动学规律,牛顿运动定律及万有引力定律更揭示出天体运动的动力学原因。

一、牛顿的草图牛顿在说明人造地球卫星原理时画的草图如图所示,在离地面一定高度水平抛出一物体,当初速度较小时,物体沿椭圆曲线a落地;当初速度较大时,物体沿椭圆曲线a '落地,落地点较远;当初速度达到第一宇宙速度时,物体沿圆轨道b 运行;当初速度大于此值时,物体沿椭圆曲线c 绕地运行;当初速度等于第二宇宙速度时,物体沿抛物线轨道d 离开地球不再回来;当初速度大于此速度时,物体沿双曲线e 离开地球。

物体在有心力场中的运动轨迹是圆锥曲线,地球的中心是曲线的焦点,图所示的几条轨道中,圆轨道b 是一个临界轨道,在b 以内的椭圆(如a ),抛出点是椭圆的远地点,在b 以外的椭圆轨道(如c ),抛出点是椭圆的近地点。

抛物线轨道d 又是一个临界轨道,在d 以内的轨道(如a 、b 、c )是封闭的椭圆,在d 以外的轨道(如e )是不封闭的双曲线。

牛顿的这张草图不仅对于任何一个绕地球运行的卫星是适用的,而且对于任何一个绕中心天体运行的星体都是适用的。

二、守恒定律支配天体运动最基本的规律当然是万有引力定律、牛顿运动定律和开普勒定律,除此之外,守恒定律也是十分重要的。

1、机械能守恒物体只在引力作用下绕中心天体运行,其机械能守恒.引力是保守力,引力场是势场,在平方反比引力场中,质点的引力势能取决于其在有心力场中的位置。

如图所示,在质量为M 的中心天体的引力场中,一质量为m 的物体由点1A (距中心1r )经点2A 、3A 、⋅⋅⋅⋅⋅⋅运动到点n A (距中心n r ),M 对它的引力做负功,其大小是11211111111lim ()lim lim ()11 ()nn n i i i i n n n i i i i i i i i nr r Mm W G r r GMm GMm r r r r r GMm r r ++→∞→∞→∞===++-=-==-⋅=-∑∑∑ 如果物体从点1A 运动到无限远,即n r →∞,引力做负功1Mm W G r =。

专题提升(五) 天体运动中的三类典型问题

专题提升(五) 天体运动中的三类典型问题

专题提升(五) 天体运动中的三类典型问题基础必备1.两个靠近的天体称为双星,它们以两者连线上某点O为圆心做匀速圆周运动,其质量分别为m1,m2,如图所示,以下说法正确的是( A )A.线速度与质量成反比B.线速度与质量成正比C.向心力与质量的乘积成反比D.轨道半径与质量成正比解析:设两星之间的距离为L,轨道半径分别为r1,r2,根据万有引力提供向心力得,G=m 1ω2r1,G=m2ω2r2,则m1r1=m2r2,即轨道半径和质量成反比,故D错误;根据v=ωr可知,线速度与轨道半径成正比,则线速度与质量成反比,故A正确,B错误;由万有引力公式F 向=G,向心力与质量的乘积成正比,故C错误.2.(多选)2017年4月20日19时41分,“天舟一号”货运飞船在文昌航天发射场成功发射,后与“天宫二号”空间实验室成功对接.假设对接前“天舟一号”与“天宫二号”都围绕地球做匀速圆周运动,下列说法正确的是( AC )A.“天舟一号”货运飞船发射加速上升时,里面的货物处于超重状态B.“天舟一号”货运飞船在整个发射过程中,里面的货物始终处于完全失重状态C.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向前喷气减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接解析:“天舟一号”货运飞船发射加速上升时,加速度向上,则里面的货物处于超重状态,选项A正确,B错误;为了实现飞船与空间实验室的对接,飞船先在比空间实验室半径小的轨道上向后喷气加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接,选项C正确,D错误.3.某同学学习了天体运动的知识后,假想宇宙中存在着由四颗星组成的孤立星系.如图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F,母星与任意一颗小星间的万有引力为9F.则( A )A.每颗小星受到的万有引力为(+9)FB.每颗小星受到的万有引力为(+9)FC.母星的质量是每颗小星质量的2倍D.母星的质量是每颗小星质量的3倍解析:每颗小星受到的万有引力的合力为9F+2F·cos 30°=(+9)F,选项A正确,B错误;由F=G和9F=得=3,选项C,D错误.4.如图所示,A是静止在赤道上随地球自转的物体;B,C是同在赤道平面内的两颗人造卫星,B位于离地高度等于地球半径的圆形轨道上,C 是地球同步卫星.则下列关系正确的是( B )A.物体A随地球自转的角速度大于卫星B的角速度B.卫星B的线速度大于卫星C的线速度C.物体A随地球自转的加速度大于卫星C的加速度D.物体A随地球自转的周期大于卫星C的周期解析:由于A是静止在赤道上随地球自转的物体,C是地球同步卫星,所以两者角速度大小相等,周期大小相等,故C,D错误;由ω=可知,ωB>ωC,则ωB>ωA,故A错误;由v=可知,v B>v C,故B正确.5.(多选)如图所示,A是地球的同步卫星,B是位于赤道平面内的近地卫星,C为地面赤道上的物体,已知地球半径为R,同步卫星离地面的高度为h,则( BD )A.A,B加速度的大小之比为()2B.A,C加速度的大小之比为1+C.A,B,C速度的大小关系为v A>v B>v CD.要将B卫星转移到A卫星的轨道上运行至少需要对B卫星进行两次加速解析:根据万有引力提供向心力可知G=ma,得a A=G,a B=G,故=()2,选项A错误;A,C角速度相同,根据a=ω2r得a A=ω2(R+h),a C=ω2R,故=1+,选项B正确;根据G=m得v=,可知轨道半径越大线速度越小,所以v B>v A,又A,C角速度相同,根据v=ωr可知v A>v C,故v B>v A>v C,选项C错误;要将B卫星转移到A卫星的轨道上,先要加速到椭圆轨道上,再由椭圆轨道加速到A卫星的轨道上,选项D正确. 6.(多选)宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为L的正方形的四个顶点上,其中L远大于R.已知万有引力常量为G,忽略星体的自转,则关于四星系统,下列说法正确的是( CD )A.四颗星做圆周运动的轨道半径为B.四颗星做圆周运动的线速度均为C.四颗星做圆周运动的周期均为2πD.四颗星表面的重力加速度均为G解析:如图所示,四颗星均围绕正方形对角线的交点做匀速圆周运动,轨道半径r=L.取任一顶点上的星体为研究对象,它受到其他三个星体的万有引力的合力为F 合=G+G.由F合=F向=m=m,解得v=,T=2π,故A,B项错误,C项正确;对于在星体表面质量为m0的物体,受到的重力等于万有引力,则有m 0g=G,故g=G,D项正确.7.(多选)我国计划将“嫦娥五号”送上38万千米远的月球,采回月壤,实现航天工程绕、落、回的收关阶段.到时着陆器将自动从月面取样后从月表起飞,并在近月轨道实现自动交会对接后和返回舱一起返回地面,供科学家分析.了解这则新闻后物理兴趣小组进行了热烈讨论,绘制出了“嫦娥五号”奔向月球和返回地球的示意图,图中对接为取样后的对接点,实线圆为绕行器在半径为r的圆轨道绕月等待着陆器返回的轨道,设着陆器取样并返回到绕行器的时间t内绕行器飞行N圈,全过程不考虑空气阻力的影响.已知引力常量为G,月球的半径为R,则兴趣小组提出了下列有关结论,其中表示正确的是( BC )A.从地表发射后的“嫦娥五号”需要进行多次变轨,当其速度达到第二宇宙速度时才能飞抵月球B.“嫦娥五号”沿椭圆轨道向38万千米远的月球飞行时,只有月球也运动到椭圆轨道的远地点附近时才能将“嫦娥五号”捕获,否则还要沿椭圆轨道返回C.结合题中信息可知月球的质量为,二者在对接过程中有一定的机械能损失D.绕行器携带样品沿椭圆轨道返回地球时,虽然引力做功,动能增大,但系统的机械能不变解析:从地表发射后的“嫦娥五号”需要进行多次变轨,以提高其绕行速度,但由于月球在地月系内,因此“嫦娥五号”不需要达到逃离地球的第二宇宙速度,A项错误;由于月球也在绕地运行,只有当“嫦娥五号”沿椭圆轨道运动到远地点时,刚好月球也运动到这一位置,才能减速被月球捕获,若月球尚未到达目的地,地球的引力还会使“嫦娥五号”沿椭圆轨道返回,等待月球的下次到来,因此发射时还要通过计算选择合适时间,以便“嫦娥五号”一去就被月球捕获,B项正确;着陆器取样返回后与绕行器对接过程是合二为一的过程,一定有机械能损失,绕行器由月球引力提供向心力,G=mr,又T=,故M=,C项正确;绕行器携带样品沿椭圆轨道返回时,需加速离开绕月轨道,外力做正功,系统的机械能增大,故D项错误.8.(2019·山西太原模拟)(多选)已知某卫星在赤道上空轨道半径为r1的圆形轨道上绕地球运行的周期为T,卫星运动方向与地球自转方向相同,赤道上某城市的人每两天恰好三次看到卫星掠过其正上方.假设某时刻,该卫星如图在A点变轨进入椭圆轨道,近地点B到地心距离为r2.设卫星由A到B运动的时间为t,地球自转周期为T0,不计空气阻力.则( ABC )A.T=T0B.T=C.卫星在图中椭圆轨道由A到B时,机械能不变D.卫星由图中A点变轨进入椭圆轨道,机械能增大解析:赤道上某城市的人每两天恰好三次看到卫星掠过其正上方,有·-·=2π,解得T=T0,故选项A正确;根据开普勒第三定律有=,解得T=,故选项B正确;卫星在图中椭圆轨道由A 到B时,只有万有引力做功,所以机械能不变,故选项C正确;卫星由图中A点变轨进入椭圆轨道,从高轨道变到低轨道,卫星在A点要减速,所以机械能减小,故选项D错误.能力培养9.(多选)如图,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙在半径为R的圆轨道上运行,若三颗星质量均为M,引力常量为G,则( AD )A.甲星所受合外力为B.乙星所受合外力为C.甲星和丙星的线速度相同D.甲星和丙星的角速度相同解析:由万有引力定律可知,甲、乙和乙、丙之间的万有引力为F1=G,甲、丙之间的万有引力为F2=G=,甲星所受两个引力的方向相同,故合力为F1+F2=,A项正确;乙星所受两个引力等大、反向,合力为零,B项错误;甲、丙两星线速度方向始终不同,C项错误;由题知甲、丙两星周期相同,由角速度定义可知,两星角速度相同,D项正确. 10.(多选)2017年4月,我国第一艘货运飞船天舟一号顺利升空,随后与天宫二号交会对接.假设天舟一号从B点发射经过椭圆轨道运动到天宫二号的圆轨道上完成交会,如图所示.已知天宫二号的轨道半径为r,天舟一号沿椭圆轨道运动的周期为T,A,B两点分别为椭圆轨道的远地点和近地点,地球半径为R,引力常量为G.则( AC )A.天宫二号的运行速度小于7.9 km/sB.天舟一号的发射速度大于11.2 km/sC.根据题中信息可以求出地球的质量D.天舟一号在A点的速度大于天宫二号的运行速度解析:由G=m可得线速度与半径的关系v=,轨道半径r越大,速率v越小.第一宇宙速度7.9 km/s是近地面卫星(轨道半径等于地球半径)的运行速度,而天宫二号轨道半径大于地球半径,所以天宫二号的运行速度小于7.9 km/s,选项A正确;11.2 km/s(第二宇宙速度)是发射脱离地球引力范围围绕太阳运动的人造行星的速度,而天舟一号是围绕地球运动的,所以天舟一号的发射速度小于11.2 km/s,选项B 错误;根据题中信息可知,天舟一号沿椭圆轨道运动的轨道半长轴为a=(R+r),利用开普勒第三定律=,可得天宫二号绕地球运动的周期T′,再由G=mr()2,可以求出地球的质量M,选项C正确;天舟一号在A点的速度小于天宫二号的运行速度,选项D错误.11.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( B )A.TB.TC.TD.T解析:设两恒星中一颗恒星的质量原来为m,围绕其连线上的某一点做匀速圆周运动的半径为r,两星总质量为M,两星之间的距离为R,圆周运动的周期为T,由G=mr,G=(M-m)(R-r),联立解得T= 2π.经过一段时间演化后,两星总质量变为原来的k倍,即为kM,两恒星中一颗恒星的质量变为m′,围绕其连线上的某一点做匀速圆周运动的半径为r′,两星之间的距离变为原来的n倍,即为nR.此时圆周运动的周期为T′.则有=m′r′,G=(k M- m′)(nR-r′),联立解得T′=2π=T,选项B正确.12.我国自1970年4月24日发射第一颗人造地球卫星——“东方红1号”以来,为了满足通讯、导航、气象预报和其他领域科学研究的不同需要,又发射了许多距离地面不同高度的人造地球卫星.卫星A 为近地卫星,卫星B为地球同步卫星,它们都绕地球做匀速圆周运动.已知地球半径为R,卫星A距地面高度可忽略不计,卫星B距地面高度为h,不计卫星间的相互作用力.求:(1)卫星A与卫星B运行速度大小之比;(2)卫星A与卫星B运行周期之比;(3)卫星A与卫星B运行的加速度大小之比.解析:(1)卫星绕地球做匀速圆周运动,设地球质量为M,卫星质量为m,轨道半径为r,运行速度大小为v由万有引力定律和牛顿运动定律得G=m解得v=卫星A与卫星B运行速度大小之比=.(2)由万有引力定律和牛顿运动定律得G=m r可知卫星运行周期T=卫星A与卫星B运行周期之比=.(3)由万有引力定律和牛顿运动定律得卫星运行的加速度大小a==卫星A与卫星B运行的加速度大小之比=.答案:见解析13.两个天体(包括人造天体)间存在万有引力,并具有由相对位置决定的引力势能.如果两个天体的质量分别为m1和m2,当它们相距无穷远时势能为零,则它们距离为r时,引力势能为E p=-G.发射地球同步卫星时一般是把它先送入较低的圆形轨道,如图中Ⅰ轨道,再经过两次“点火”,即先在图中a点处启动发动机,向后喷出高压气体,卫星得到加速,进入图中的椭圆轨道Ⅱ,在轨道Ⅱ的远地点b处第二次“点火”,卫星再次被加速,此后,沿图中的圆形轨道Ⅲ(即同步轨道)运动.设某同步卫星的质量为m,地球半径为R,轨道Ⅰ距地面非常近,轨道Ⅲ距地面的距离近似为6R,地面处的重力加速度为g,并且每次点火经历的时间都很短,点火过程中卫星质量的减少可以忽略.求:(1)从轨道Ⅰ转移到轨道Ⅲ的过程中,合力对卫星所做的总功是多大?(2)两次“点火”过程中高压气体对卫星所做的总功是多少?解析:(1)卫星沿轨道Ⅰ做圆周运动,满足G=m=mg,故E k1=m==mgR,卫星沿轨道Ⅲ做圆周运动,则G=m,E k2=m=,合力做的功W=E k2-E k1=mgR(-)=-.(2)卫星在轨道Ⅰ上的引力势能E p1=-=-mgR,卫星在轨道Ⅲ上的引力势能E p2=-=-,高压气体所做的总功W′=(E p2+E k2)-(E p1+E k1)=(-+)-(-mgR+mgR) =.答案:(1)-(2)。

第4章 专题强化4 天体运动中的三种典型问题

第4章 专题强化4 天体运动中的三种典型问题

否则无法在万有引力作用下绕地球做匀速圆周运动。而同步静止轨道卫 星相对地面静止,与地球自转周期相同,所以其轨道平面一定和赤道平 面重合,即同步静止轨道卫星需要在赤道上空做匀速圆周运动,不可能 经过北京上空,故C错误;由题意可知卫星b的周期为24 h,卫星c的周期 为8 h,某时刻两者相距最近,设经过时间t后二者再次相距最近,则 Ttc-Ttb=1,解得 t=12 h,故 D 正确。
[解析]设地球质量为 M,质量为 m 的卫星绕地球做半径为 r、线速度 大小为 v 的匀速圆周运动,根据牛顿第二定律有 GMr2m=mvr2,解得 v=
GrM,因为卫星 b 的轨道半径比卫星 c 的轨道半径大,根据上式可知 卫星 b 运行的线速度小于卫星 c 的线速度,故 A 错误;卫星 a 与卫星 b 轨道高度相同,周期相同,线速度大小相同,但二者质量不一定相同, 所以机械能不一定相同,故 B 错误;人造卫星的轨道平面一定过地心,
道上,Q 为同步卫星,故两者的周期相等,而 N 和 Q 同为卫星,由万有 引力充当向心力,故有 GMr2m=m4Tπ22r,解得 T= 4GπM2r3。由上式可知, 轨道半径越大,周期越大,故卫星 Q 的周期大于天和核心舱 N 的周期, 故有 TP=TQ>TN,C 错误;Q 是同步卫星,其轨道在赤道上方即纬度为 0°, 南充市不在赤道上,所以卫星 Q 一定不会经过南充上空,D 正确。
(3)在地球表面有 GMRm20 =mg,卫星一绕地球做圆周运动,有 GMRm21 =
m2Tπ1 2R1, 联立解得 g=32Tπ220R0。
[答案]
(1)2 2T0
42 (2)6 2-3T0
(3)32Tπ220R0
〔专题强化训练〕
1.(多选)(2022·四川南充三模)我国“神舟十三号”航天员翟志刚、 王亚平和叶光富在空间站驻留长达6个月之久,是我国入驻太空时间最 长的三人组,已知“天和”核心舱N绕地球运行的轨道距地面的高度约 为400 km,地球半径约6 400 km。关于地球赤道静止的物体P、同步卫 星Q和“天和”核心舱N的运动,下列说法正确的是( AD )

第五章 素养提升课五 天体运动中的三类典型问题-2025高三总复习 物理(新高考)

第五章 素养提升课五 天体运动中的三类典型问题-2025高三总复习 物理(新高考)

素养提升课五天体运动中的三类典型问题提升点一卫星变轨和飞船对接问题1.卫星发射过程的变轨原理高轨道人造卫星的发射要经过多次变轨方可到达预定轨道,如图所示。

(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ。

(2)在圆轨道Ⅰ上A 点点火加速,由于速度变大,万有引力不足以提供卫星做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在椭圆轨道Ⅱ上B 点(远地点)再次点火加速进入圆轨道Ⅲ。

(4)变轨过程中三个运行参量的分析速度设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B点时的速率分别为v A 、v B 。

在A 点加速,则v A >v 1,在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B 。

加速度因为在A 点,卫星只受到万有引力的作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同;同理,经过B 点加速度也相同。

周期设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行的周期分别为T 1、T 2、T 3,轨道半径(半长轴)分别为r 1、r 2、r 3,由开普勒第三定律r 3T2=k 可知T 1<T 2<T 3。

2.飞船对接问题宇宙飞船与空间站的“对接”实际上就是两个做匀速圆周运动的物体的追赶问题,本质仍然是卫星的变轨问题,要使宇宙飞船与空间站成功“对接”,必须让宇宙飞船在稍低轨道上加速,通过速度v 增大→所需向心力增大→做离心运动→轨道半径r 增大→升高轨道的系列变速,从而完成宇宙飞船与空间站的成功对接。

考向1卫星的变轨问题(多选)(2023·湖南长沙长郡中学模拟)2023年2月24日下午,“逐梦寰宇问苍穹——中国载人航天工程三十年成就展”开幕式在中国国家博物馆举行。

载人航天进行宇宙探索过程中,经常要对航天器进行变轨。

某次发射Z 卫星时,先将Z 卫星发射至近地圆轨道Ⅰ,Z 卫星到达轨道Ⅰ的A 点时实施变轨进入椭圆轨道Ⅱ,到达轨道Ⅱ的远地点B 时,再次实施变轨进入轨道半径为4R (R 为地球半径)的圆形轨道Ⅲ绕地球做圆周运动。

(完整版)“双星”问题及天体的追及相遇问题

(完整版)“双星”问题及天体的追及相遇问题
(2)根据两星追上或相距最近时满足两星运行的角度差等于2π的整数倍,相距最远时,两星运行的角度差等于π的奇数倍。
在与地球上物体追及时,要根据地球上物体与同步卫星角速度相同的特点进行判断。
题型一 双星规律的应用
【例题】2017年6月15日,我国在酒泉卫星发射中心用长征四号乙运载火箭成功发射硬X射线调制望远镜卫星“慧眼”。“慧眼”的成功发射将显著提升我国大型科学卫星研制水平,填补我国国X射线探测卫星的空白,实现我国在空间高能天体物理领域由地面观测向天地联合观测的超越。“慧眼”研究的对象主要是黑洞、中子星和射线暴等致密天体和爆发现象。在利用“慧眼”观测美丽的银河系时,若发现某双黑洞间的距离为L,只在彼此之间的万有引力作用下做匀速圆周运动,其运动周期为T,引力常量为G,则双黑洞总质量为()
【例题】太阳系中某行星运行的轨道半径为 ,周期为 .但科学家在长期观测中发现,其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔 时间发生一次最大的偏离.天文学家认为形成这种现象的原因可能是该行星外侧还存在着一颗未知行星,则这颗未知行星运动轨道半径为 ( )
A. B.
C. D.
【解析】:由题意可知轨道之所以会偏离那是因为受到某颗星体万有引力的作用相距最近时
②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。
二、多星模型
(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.
(2)三星模型: ①三颗ቤተ መጻሕፍቲ ባይዱ位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).
【解析】已知地球绕太阳的公转周期为 设火星的公转周期为 根据开普勒第三定律 得 又根据 化简得

物理竞赛精品课件(2023版ppt)

物理竞赛精品课件(2023版ppt)

地球绕太阳公转:分 析地球公转轨道、周 期、速度等参数
02
月球绕地球公转:分 析月球公转轨道、周 期、速度等参数
03
太阳系行星运动:分 析各行星公转轨道、 周期、速度等参数
04
双星系统:分析双星 系统的形成、运动规 律等
05
黑洞与恒星运动:分 析黑洞对恒星运动的 影响
06
星系运动:分析星系 的形成、运动规律等
地球环境与天体运动的关系:天体运动的研究将有 助于我们更好地了解地球环境变化和应对气候变化
5
天体运动的总 结与反思
总结天体运动的主要内容
天体运动的基本概念:
01 包括天体、轨道、周
期、速度等
天体运动的基本规律:
02 开普勒三定律、牛顿
万有引力定律等
天体运动的计算方法:
03 轨道方程、能量守恒、
角动量守恒等
引入更多天体运动 的实际案例,提高 学生的兴趣和认知
引入天体运动的前 沿研究,提高学生 的创新意识和能力
增加天体运动实验 环节,提高学生的
动手能力
增加天体运动的互 动环节,提高学生 的参与度和积极性
谢谢
阐述天体运动的基本原理
01
01
万有引力定律:天体运动的基础, 描述物体之间的引力关系
02
02
开普勒三定律:描述天体运动的规 律,包括轨道形状、周期和速度
03
03
牛顿第二定律:描述物体运动的规 律,包括加速度、质量和力
04
04
角动量守恒定律:描述天体运动的 稳定性,包括角动量、质量和速度
2
天体运动的计 算方法
物理竞赛精品课件: 天体运动
演讲人
目录
01. 天体运动的基础知识 02. 天体运动的计算方法 03. 天体运动的典型问题 04. 天体运动的拓展应用 05. 天体运动的总结与反思

万有引力定律12种典型题

万有引力定律12种典型题

万有引力定律12种典型题【案例1】下列哪一组数据能够估算出地球的质量()A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度解析:人造地球卫星环绕地球做匀速圆周运动。

月球也是地球的一颗卫星。

设地球的质量为M,卫星的质量为m,卫星的运行周期为T,轨道半径为r根据万有引力定律:【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。

总之,牛顿万有引力定律是解决天体运动问题的关键。

【案例2】普通卫星的运动问题我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。

“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h。

问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少解析:本题主要考察普通卫星的运动特点及其规律由开普勒第三定律T2∝r3知:“风云二号”卫星的轨道半径较大⑴所有运动学量量都是r的函数。

我们应该建立函数的思想。

⑵运动学量v、a、ω、f随着r的增加而减小,只有T随着r的增加而增加。

⑶任何卫星的环绕速度不大于s,运动周期不小于85min。

⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。

【案例3】同步卫星的运动下列关于地球同步卫星的说法中正确的是:A、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上B、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24hC、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上D、不同通讯卫星运行的线速度大小是相同的,加速度的大小也是相同的。

天体物理题型与解法归类

天体物理题型与解法归类

一、天体物理题型与解法归类(2009、5)一、单个绕行天体:问题1:讨论重力加速度g随离地面高度h的变化情况基本题1-1-1:地球半径为R,地球表面的重力加速度为,物体在距地面3R处,由于地球的引力作用而产生的重力加速度g,则()A、1B、1/9C、1/4D、1/16分析与解:因为g= G,g= G,所以g/g=1/16,即D选项正确。

变形题1-1-2:发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点,如图1所示。

则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A、卫星在轨道3上的速率大于在轨道1上的速率。

B、卫星在轨道3上的角速度小于在轨道1上的角速度。

C、卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度。

D、卫星在轨道2上经过P点时的加速度等于它在轨道3上经过P点时的加速度。

分析:因为,所以V=,,即B选项正确,A选项错误。

根据牛顿第二定律可得,即卫星的加速度a只与卫星到地心的距离r有关,所以C选项错误,D选项正确。

易错:认为卫星在轨道1上经过Q点时的速度等于它在轨道2上经过Q点时的速度,而在Q点轨道的曲率半径<r,所以>,即错选C。

说明:卫星的加速度等于该处的重力加速度,不等于卫星的向心加速度,只有当卫星作匀速圆周运动时,三者相等。

问题2:用万有引力定律求中心天体的质量1、通过观察绕行天体运动的周期T(或角速度、线速度)和轨道半径r;2、中心天体表面的重力加速度g和中心天体的半径R。

基本题1-2-1:已知地球绕太阳公转的轨道半径r=1.4910m,公转的周期T=3.1610s,求太阳的质量M。

分析:根据地球绕太阳做圆周运动的向心力来源于万有引力得:G=mr(2π/T)解得: M=4πr/GT=1.9610kg.变形题1-2-2:宇航员在一星球表面上的某高处,沿水平方向抛出一小球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、 3相切于P点,则当卫星分别在1、2、3轨道上正常运行
时,以下说法正确的是( ) D
A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的角速度大于在轨道1上的角速度
C.卫星在轨道1上经过Q点时的速度大于它在轨道2 上经过Q点时的速度 D.卫星在轨道2上经过P点时的速度小于它在轨道3 上经过P点时的速度
供。这个力的计算公式是
。 F G Mm r2
3、不同轨道上的卫星转动的快慢不同,轨道半体表面物体的重力近似的等于它所受到 的万有引力,这一规律列式表示为 mg ,G MR化m2 简 得 GM,这gR2一式子被称为黄金代换式。
学习目标
1、掌握解决天体运动问题的思路和方 法。
尝试练习一
地球半径为R0,地面重力加速度为g,若
卫( 星在) 距地面R20R处0g 做匀速圆周运动,则ABg
A.卫星速度为 2 Bg.卫星的角速度为 C.卫星的加速度为 2D.卫星周期为 2
2R0 g
8R0
二、人造卫星的变轨问题
Q
3
1、V1 >V3、ω1 >ω3 T1 < T3、 a1 > a3
2、会分析卫星的变轨问题。
一、分析天体运动问题的两个基本式
1. 匀速圆周运动---万有引力提供向心力:
G
Mm r2
m
v2 r
m 2r
2
m( T
)2 r
ma n
2. 万有引力等于重力(忽略天体的自转) :
Mm G R2 mg
即: GM gR2
mg h
G
mM (R h)2
得gh
G
M (R h)2
天体运动的典型问题
知识回顾
1、大做小圆可周以运用动公的式Fn物 m体a、n需F要n m向、vr2心Fn力、m,向2r 计心Fn 算力m 4。TF2n2 当的
时F,物Fn体做匀速圆周运动;当 时,物F体 F做n 离
心运动;当 时,物F体做Fn 近心运动。 2、行星、卫星做匀速圆周运动的向心力由万有引提力
课堂小结
一、分析天体运动问题的基本思路。
二、人造卫星的变轨问题。
作业
《40分钟课时作业》 115页1——6题
2、V2P > V2Q < > 3、V1P V2P 、 V3Q V2Q
12
P
= 4、a1P a2P 、 a3Q = a2Q 、 aP >aQ
尝试练习二
2013年5月2日凌晨0时06分,我国“中星11号”通信 卫星发射成功.“中星11号”是一颗地球同步卫星,它 主要用于为亚太地区等区域用户提供商业通信服务.图 2为发射过程的示意图,先将卫星发射至近地圆轨道1, 然后经点火,使其沿椭圆轨道2运行,最后再一次点火,
相关文档
最新文档