数学分析 第三章 习题课

合集下载

(数学分析教案)第三章

(数学分析教案)第三章

第三章 函数极限(14学时)引言在《数学分析》中,所讨论的极限基本上分两部分,第一部分是“数列的极限”,第二部分是“函数的极限”。

二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。

通过数列极限的学习。

应有一种基本的观念:“极限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。

例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a的变化趋势。

我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即:()n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =.研究数列{}n a 的极限,即是研究当自变量n →+∞时,函数()f n 变化趋势。

此处函数()f n 的自变量n 只能取正整数!因此自变量的可能变化趋势只有一种,即n →+∞。

但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢?为此,考虑下列函数:1,0;()0,0.x f x x ≠⎧=⎨=⎩类似于数列,可考虑自变量x →+∞时,()f x 的变化趋势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势,由此可见,函数的极限较之数列的极限要复杂得多,其根源在于自变量性质的变化。

但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。

而在各类极限的性质、运算、证明方法上都类似于数列的极限。

下面,我们就依次讨论这些极限。

§1 函数极限的概念教学目的:使学生建立起函数极限的准确概念;会用函数极限的定义证明函数极限等有关命题。

教学要求:使学生逐步建立起函数极限的δε-定义的清晰概念。

高数习题(第三章)第三章重难点总结复习

高数习题(第三章)第三章重难点总结复习

再来说说2展开,对比3我们发现它少了 1 x3 1= 1 x3的这样一个三阶项,所以就是展开的
3!
3!
少了。
那么3就是正确的.首先我们能够找到所有的三阶及比其低阶的量,其次由于sin x的泰勒展开
起步为x, 所以两式相乘时e x只需要展开到二阶即可得到三阶项.类似的,e x泰勒展开起步为1, 所以我们的sin x展开到三阶就可以得到最后的三阶项.这个就是开头说的所有的意思.
2.ex 1 x x2 o x2 2
sin x x o x
3.ex 1 x x2 o x2 2
sin x x 1 x3 o x3 3! 对于1展开,错误在于没有和第一种加的情况相区分,这样如果两式相乘,导致 x3 与sin x任意
3! 一项展开都不是我们所需要的,因为是比三阶高.即展开多了.
a
lim
n
n2 n2
n
a

注:第四种方法虽然结果正确,但是我们一般不采取这种方法。
7.若 lim x0
sin 6x xf x3
x
0, 则 lim x0
6 f x
x2
解析:恒等变形后使用洛必达法则
lim
x0
6x
xf x3
x
lim
x0
6
x
sin 6x x3
sin
6x xf x3
x
lim 6x sin 6x lim 6 6 cos 6x 36
分析:令F x f x g x F x在a,b上连续,在a,b内可导,在题设条
件下,要证存在 a,b,F '' =0.已知F a F b =0,只需再证c a,b, F c =0.
1由题设x1 a,b, M

高等数学第三章练习题及答案

高等数学第三章练习题及答案

第三章 练习题一、填空1、设常数,函数在内零点的个数为 22、3、曲线的拐点是(1,4).4、曲线的拐点是 (0, 0)5、.曲线的拐点是.6、217、38.9、函数xxe y =的极小值点是 ____1-=x ______10、函数x x e y xcos -+= 在 []π,0上的最小值是 011.=-→xe x x 1limsin 0 1 二、选择1、设,则有( B )实根.A.. 一个B. 两个C. 三个D. 无 2、的拐点是( C ) A. BC.D.3.( B )A 、B 、C 、D 、4.( B )A、B、C、D、5.( C ) A、 B、C、 D、6.( A )A、 B、 C、 D、7.AA、B、C、D、8.DA、 B、C、 D、9.( C )A、B、C、 D、10.函数( C )A、0B、132C、120D、6011.( B )A、B、C、D、12.(B)A、B、C 、D 、13.设在=2处 ( A )A. 连续B.不连续C. 可导D.不存在极限14.( B )A 、B 、C 、D 、15.设,则 ( C )A. 0B. 1C.-1.D. 2三、计算与证明:1、解:⎪⎭⎫ ⎝⎛--→x e x x 111lim 0()11lim 0-+-=→x x x e x e x 11lim 0-+-=→x x x x xe e e 2121lim lim 00-=+-=++-=→→x xe e e e x x x x x x2、()()()()2000ln 1ln 111lim lim lim ln 1ln 1x x x x x x x x x x x x →→→⎡⎤-+-+-==⎢⎥++⎣⎦解:()00111lim lim 221x x x x x x x →→-+==+ 12=3、2ln lnarctan 2lim arctan lim xx x x x x eππ⎛⎫+ ⎪⎝⎭→+∞→+∞⎛⎫= ⎪⎝⎭解:112ln ln arctan 2arctan 1112lim limx x x x x xx eeπ⋅++-→+∞→+∞==2eπ-=4、1)1(1lim 11)1(1lim cot )11ln(lim22=++=+-+-=++∞→+∞→+∞→x x x x x x x arc x x x x5、解:x x x e e x x x sin 2lim 0----→= xe e x x x cos 12lim 0--+-→ =x e e x x x sin lim 0-→-=x e e x x x cos lim 0-→+=26、解 x x x sin 0lim +→=xx x e ln sin 0lim +→而+→0lim x x x ln sin =+→0lim x x x ln =+→0lim x x x 1ln =+→0lim x 211xx-=+→0lim x )(x -= 0 故x x x sin 0lim +→=10=e 7、解:原式=30sin lim x x x x -→=203cos 1lim xx x -→=x x x 6sin lim 0→=618、 求函数的单调区间和极值.解:定义域为(,)-∞+∞, 212363(2),0,0,2,y x x x x y x x ''=-=-===令得 列表如下:x (,0)-∞0 (0,2)2 ∞(2,+)y' + 0 - 0 + y↑1↓-3↑(,0)-∞∞所以函数的单调增区间为及(2,+),单调减区间为(0,2),…01-x x =当时取极大值,当=2时取极小值3.9、确定函数的单调区间及极值和凹凸区间。

谢惠民上册答案

谢惠民上册答案

7.3 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8 微分学的应用
136
8.1 函数极限的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.6 由迭代生成的数列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 一致连续性与 Cantor 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 单调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 周期 3 蕴涵混沌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3 实数系的基础定理
37
3.1 确界的概念和确界的存在定理 . . . . . . . . . . . . . . . . . . . . . . . . . 37

数学分析习题精讲 (3)

数学分析习题精讲 (3)
显然, 只要 r ∈ B 且 x ∈ (a, r] ∩ Q, 则 x ∈ B.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
实数基本定理
记 B = {r ∈ (aห้องสมุดไป่ตู้ b] ∩ Q | [a, r] 可被 U 中的有限个开区间覆盖}.
实数基本定理
记 B = {r ∈ (a, b] ∩ Q | [a, r] 可被 U 中的有限个开区间覆盖}.
由于存在 j ∈ I 使得 a ∈ (aj, bj), 故 (a, bj) ∩ Q ⊆ B, 这说明 B ̸= ∅.
显然, 只要 r ∈ B 且 x ∈ (a, r] ∩ Q, 则 x ∈ B.
c
=
lim
n→∞
xn.
注意到
a < rn ⩽ xn ⩽ c ⩽ b
对任意 n ∈ N+ 成立.
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
实数基本定理
由于 B 可数, 我们将 B 中的有理数排成数列 {rn}, 并定义数 列 {xn} 为
. .. . . ..
实数基本定理
由于 c ∈ (a, b], 存在 i0 ∈ I 使得
于是存在 n ∈ N+ 使得
c ∈ (ai0 , bi0 ).
xn ∈ (ai0 , c].
由于 xn ∈ B, 我们可以找到 i1, . . . , in ∈ I 使得 ∪n
于是存在 n ∈ N+ 使得
c ∈ (ai0 , bi0 ).
xn ∈ (ai0 , c].

高等数学习题课(1)01-第三章单元测验答案

高等数学习题课(1)01-第三章单元测验答案

答案:第三章微分中值定理与导数应用(单元测验) 1.设f (x)在区间[a, b]上连续,在(a, b)内可导.证明:在(a, b)内至少存在一点ξ使bf (b) -af (a)=b -af (ξ) +ξf '(ξ).为了证明上述结论,需构造辅助函数1(A) (C)F (x) =x f (x) (B)F (x) =x3 f (x) (D)F (x) =x 2 f (x)F (x) =x2 f (x)答案:A证作辅助函数 F (x) =xf (x),则F (x)在[a, b]上满足拉格朗日中值定理的条件从而在(a, b)内至少存在一点ξ,使F (b) -F (a)=F '(ξ).b -a可见,bf (b) -af (a)=b -af (ξ) +ξf '(ξ).2.假设函数f (x)在[1, 2]上有二阶导数,并且f (1) =则在(1, 2)内至少存在一点ξ,使得f (2) = 0,又F (x) = (x -1)2 f (x).(A) (C)F ''(ξ)= 0 (B)F '''(ξ)= 0 (D)F ''(ξ) ≠ 0不能确定答案:A证明:F (1)=0,F (2)=0.则F (x)在[1,2]上满足罗尔定理条件,故在(1,2)内存在一点η, 使得又因为F '(η) = 0F '(x)=2(x -1) f (x) + (x -1)2 f '(x)所以F'(1)=0.又F'(x)在[1,2]上可导,则F'(x)在[1,2]上满足罗尔定理条件,故∃ξ(1 <ε<η< 2)使3.F '(ξ) = 0设当x → 0 时,e x -(ax2 +bx +1) 是比x2 高阶的无穷小,则.(A)a =1, b=1(B)a =1,b =1(C)a =-1, b=1(D)a =-1,b =1 2 2答案:Ax x221解:由e =1+x + +o(x2! ) 知,e x - (ax2 +bx +1) = (1-b)x + (2-a)x2 +o(x2 ) .所以必有a =1, b = 1 22(设f (x)在x = 0 存在二阶导数,limxf (x) - ln(1 +x)= 2,x→0 x3则 f ''(0) =(A)14(B)3(C)1(D)33 14 2 2答案:A解: f (x)在x = 0存在二阶导数,f (x)在x = 0点的二阶泰勒展开式为:f (x) =f (0) +f '(0)x +f ''(0)x2+ο(x2)x2 x3 3ln(1 +x)在x = 0点的三阶泰勒展开为:ln(1 +x) =x -++οx2 3limx→0xf (x) -ln(1+x)x3= limx→0xf (0) +f '(0)x2+f ''(0)2x3+ο(x3x3-x +x2-x33+ο(x3) x [f (0) - 1]+x2 ⎡f '(0) +1 ⎤+x3⎡f ''(0)-1 ⎤⎣⎢ 2 ⎥⎦ ⎢ 2 3⎥= lim⎣⎦=2x→0 x3∴f (0) - 1 = 0, f '(0) +1= 0,f ''(0)-1= 22 2 3f (0) = 1, f '(0) =-1, f '(0)=142 35.lim[a- (1-a2 ) ln(1 +ax)]=(a ≠ 0).x→0 x x2a2 2(A)(B)a2答案:A(C)ln a (D)a)2)设函数f (x) 在x =0的某邻域内具有一阶连续导数,且f (0) ≠0, f '(0) ≠0, 若af (h) +bf (2h) -f (0)在h → 0 时是比h 高阶的无穷小,则a,b 的值为.(A) a = 2, b =-1 (B)a = 2, b = 1 (C)a =-2, b = 1 (D)a =-2, b =-1答案:A7.设f (x) =x p + (1 -x) p ,若p > 1,则在[0,1]内f (x)(A) 最小值为12 p-1,最大值为1 (B) 最小值为1,最大值为12 p(C) 最大值为1,最小值为1 (D)2 p最大值为12 p-1,最小值为1答案:A8.函数y =|1+ sin x | 在区间(π, 2π)内的图形是(A)凹的答案:A(B)凸的(C)既是凹的又是凸的(D)为直线0 设 f (x )、g (x )是恒大于零的可导函数,且 f '(x )g (x ) - f (x )g '(x ) < 0,则当a < x < b 时,有(A) f (x )g (b ) > f (b )g (x ) (B) f (x )g (a ) > f (a )g (x ) (C) f (x )g (x ) > f (b )g (b ) (D) f (x )g (x ) > f (a )g (a )答案:A10.已知函数 y = f (x ) 对一切x 满足xf ''(x ) + 3x [ f '(x )]2 = 1- e - x ,若 f '(x ) = 0 (x 0 ≠ 0),则(A) f (x 0 )是 f (x )的极小值 (B) f (x 0 )是 f (x )的极大值(C) (x 0 , f (x 0 ))是曲线y = f (x ) 的拐点(D) f (x 0 )不是 f (x )的极值,(x 0 , f (x 0 ))也不是曲线y = f (x )的拐点 答案:A。

数值分析第三章答案

数值分析第三章答案【篇一:常州大学数值分析作业第三章】答:matlab 程序function [a,y]=lagrange(x,y,x0) %检验输入参数if nargin 2 || nargin 3error(incorrect number of inputs); endif length(x)~=length(y)error(the length of x must be equal to it of y); endm=length(x);n=m-1;l=zeros(m,m); %计算基本插值多项式的系数for i=1:n+1 c=1;for j=1:n+1if i~=jif abs(x(i)-x(j))eps abs(x(i)-x(j))epserror(there are two two same nodes);endc=conv(c,poly(x(j)))/(x(i)-x(j));end endl(i,:)=c; end%计算lagrange插值多项式的系数 a=y*l;%计算f(x0)的近似值 if nargin==3y=polyval(a,x0);工程(专)学号:14102932enda=fliplr(a); return[a,y] = lagrange(x,y,x0); p1 = vpa(poly2sym(a),3) y[a,y] = lagrange(x,y,x0); p2=vpa(poly2sym(a),3) yp2 = x2 - 0.109x - 0.336 y =0.5174[a,y]=lagrange(x,y,x0); p4=vpa(poly2sym(a),3) yp4 =x4 + 0.00282x3 - 0.514x2 + 0.0232x + 0.0287 y =0.5001次多项式在2.8处的值。

答:matlab 程序 function[t,y0]=aitken(x,y,x0,t0) if nargin==3 t0=[]; endn0=size(t0,1);m=max(size(x)); n=n0+m;t=zeros(n,n+1);t(1:n0,1:n0+1)=t0; t(n0+1:n,1)=x; t(n0+1:n,2)=y; if n0==0 i0=2; elsei0=n0+1; endfor i=i0:nfor j=3:i+1t(i,j)=fun(t(j-2,1),t(i,1),t(j-2,j-1),t(i,j-1),x0); end endy0=t(n,n+1); returnfunction [y]=fun(x1,x2,y1,y2,x) y=y1+(y2-y1)*(x-x1)/(x2-x1); return%选取0、1、3、4四个节点,求三次插值多项式 x=[0,1,3,4];y=[0.5,1.25,3.5,2.75]; x0=2.8;[t,y0]=aitken(x,y,x0) t =0 0.5000 00 0 1.01.25002.6000 0 0 3.03.50003.29993.23000 4.02.75002.07502.28503.4190 y0 =3.41900000000000016、选取适当的函数y=f(x)和插值节点,编写matlab程序,分别利用lagrange插值方法,newton插值方法确定的插值多项式,并将函数y=f(x)的插值多项式和插值余项的图形画在同一坐标系中,观测节点变化对插值余项的影响。

欧阳光中数学分析答案

欧阳光中数学分析答案【篇一:数学分析目录】合1.1集合1.2数集及其确界第二章数列极限2.1数列极限2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b]9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的性质15.4用分项式逼近连续函数第十六章euclid空间上的点集拓扑16.1euclid空间上点集拓扑的基本概念16.2euclid空间上点集拓扑的基本定理第十七章euclid空间上映射的极限和连续17.1多元函数的极限和连续17.2euclid空间上的映射17.3连续映射第十八章偏导数18.1偏导数和全微分18.2链式法则第十九章隐函数存在定理和隐函数求导法19.1隐函数的求导法19.2隐函数存在定理第二十章偏导数的使用20.1偏导数在几何上的使用20.2方向导数和梯度20.3taylor公式20.4极值20.5logrange乘子法20.6向量值函数的全导数第二十一章重积分21.1矩形上的二重积分21.2有界集上的二重积分21.3二重积分的变量代换及曲面的面积21.4三重积分、n重积分的例子第二十二章广义重积分22.1无界集上的广义重积分22.2无界函数的重积分第二十三章曲线积分23.1第一类曲线积分23.2第二类曲线积分23.3green 公式23.4green定理第二十四章曲面积分24.1第一类曲面积分24.2第二类曲面积分24.3gauss公式24.4stokes公式24.5场论初步第二十五章含参变量的积分25.1含参变量的常义积分25,2含参变量的广义积分25.3b函数和函数第二十六章lebesgue积分26.1可测函数26.2若干预备定理26.3lebesgue积分26.4(l)积分存在的充分必要条件26.5三大极限定理26.6可测集及其测度26.7fubini定理练习及习题解答? 序言复旦大学数学系的数学分析教材从20世纪60年代起出版了几种版本,随着改革开放和对外交流的发展,现代数学观点和方法融入数学分析教材是必然的趋势。

数学分析3课件:19-习题课

2、了解隐函数组的概念,理解隐函数组定理(存在性唯一性可 微性)并掌握其应用,了解反函数定理与坐标变换;
3、会几何应用(求平面曲线的切线与法线,空间曲线的切线与法 平面,曲面的切平面与法线);
4、会用拉格朗日乘数法解决条件极值问题(极值、最值、不等式)
重点例题: P160,例2; P164,例1; P170,例1,2,3; P178,例1,2,3. 重点习题:P162,1,2,5;P169,1,2;P175,2,3,5,7;P181,1,2,4.
2 [
a2
2
]
0.
于是,当| a | 1时, I (a) C(常数). 又I (0) 0,故I (a) 0.

|
a
|
1时,
令b
1 a
,则
|
b
|
1,
I
(b)
0,故
I
(a)
0
ln(b2
2b cos b2
x
1)dx
I
(b)
2
ln
|
b
|
2
ln
|
a
|
.
当| a | 1时,
I (1) 0 ln 2(1 cos x)dx 0 (ln 4 2 ln sin 2x)dx
第19章 含参量积分(参见目录)
1、了解含参量正常积分的概念,掌握分析性质(连续性、可微性、 可积性、换序定理),会有关定积分的计算;
2、了解含参量反常积分一致收敛的定义、柯西准则、充要条 件,掌握M判别法、狄利克雷判别法、阿贝尔判别法;
3、掌握含参量反常积分一致收敛的性质(连续性、可微性、可 积性、换序定理),会有关反常积分的计算;
熟练掌握极值的必要条件和充分条件,及其应用。

高等数学课后习题答案第三章

习题三1(1)解:所给函数在定义域(,)−∞+∞内连续、可导,且2612186(1)(3)y x x x x ′=−−=+−可得函数的两个驻点:121,3x x =−=,在(,1),(1,3),(3,)−∞−−+∞内,y ′分别取+,–,+号,故知函数在(,1],[3,)−∞−+∞内单调增加,在[1,3]−内单调减少.(2)解:函数有一个间断点0x =在定义域外,在定义域内处处可导,且282y x ′=−,则函数有驻点2x =,在部分区间(0,2]内,0y ′<;在[2,)+∞内y ′>0,故知函数在[2,)+∞内单调增加,而在(0,2]内单调减少.(3)解:函数定义域为(,)−∞+∞,0y ′=>,故函数在(,)−∞+∞上单调增加.(4)解:函数定义域为(,)−∞+∞,22(1)(21)y x x ′=+−,则函数有驻点:11,2x x =−=,在1(,]2−∞内,0y ′<,函数单调减少;在1[,)2+∞内,0y ′>,函数单调增加.(5)解:函数定义域为[0,)+∞,11e e e ()n x n x x n y nx x x n x −−−−−′=−=−函数的驻点为0,x x n ==,在[0,]n 上0y ′>,函数单调增加;在[,]n +∞上0y ′<,函数单调减少.(6)解:函数定义域为(,)−∞+∞,πsin 2, [π,π], ,2πsin 2, [π,π], .2x x x n n n y x x x n n n ⎧+∈+∈⎪⎪=⎨⎪−∈−∈⎪⎩Z Z 1)当π[π,π]2x n n ∈+时,12cos 2y x ′=+,则1π0cos 2[π,π23y x x n n ′≥⇔≥−⇔∈+;πππ0cos 2[π,π]232y x x n n ′≤⇔≤−⇔∈++.2)当π[π,π]2x n n ∈−时,12cos 2y x ′=−,则1ππ0cos 2[π,π]226y x x n n ′≥⇔≤⇔∈−−1π0cos 2[π,π]26y x x n n ′≤⇔≥⇔∈−.综上所述,函数单调增加区间为πππ[,)223k k k z +∈,函数单调减少区间为ππππ[,)2322k k k z ++∈.(7)解:函数定义域为(,)−∞+∞.4453345(2)(21)4(2)(21)2(21)(1811)(2)y x x x x x x x ′=−++−+⋅=+−−函数驻点为123111,,2218x x x =−==,在1(,]2+∞−内,0y ′>,函数单调增加,在111[,]218−上,0y ′<,函数单调减少,在11[,2]18上,0y ′>,函数单调增加,在[2,)+∞内,0y ′>,函数单调增加.故函数的单调区间为:1(,]2−∞−,111[,218−,11[,)18+∞.2.(1)证明:令()sin tan 2,f x x x x =−−则22(1cos )(cos cos 1)()cos x x x f x x −++′=,当π02x <<时,()0,()f x f x ′>为严格单调增加的函数,故()(0)0f x f >=,即sin 2tan 2.x x x −>(2)证明:令2()=e sin 12xx f x x −+−−,则()=e cos xf x x x −′−+−,()=e sin 1e (sin 1)0x x f x x x −−′′−−=−+<,则()f x ′为严格单调减少的函数,故()(0)0f x f ′′<=,即()f x 为严格单调减少的函数,从而()(0)0f x f <=,即2e sin 1.2xx x −+<+3.证明:设()sin f x x x =−,则()cos 10,f x x =−≤()f x 为严格单调减少的函数,因此()f x 至多只有一个实根.而(0)0f =,即0x =为()f x 的一个实根,故()f x 只有一个实根0x =,也就是sin x x =只有一个实根.4.(1)解:22y x ′=−,令0y ′=,得驻点1x =.又因20y ′′=>,故1x =为极小值点,且极小值为(1)2y =.(2)解:266y x x ′=−,令0y ′=,得驻点120,1x x ==,126y x ′′=−,010,0x x y y ==′′′′<>,故极大值为(0)0y =,极小值为(1)1y =−.(3)解:2612186(3)(1)y x x x x ′=−−=−+,令0y ′=,得驻点121,3x x =−=.1212y x ′′=−,130,0x x y y =−=′′′′<>,故极大值为(1)17y −=,极小值为(3)47y =−.(4)解:1101y x ′=−=+,令0y ′=,得驻点0x =.201,0(1)x y y x =′′′′=>+,故(0)0y =为极大值.(5)解:32444(1)y x x x x ′=−+=−,令0y ′=,得驻点1231,0,1x x x =−==.210124, 0,0,x x y x y y =±=′′′′′′=−+<>故(1)1y ±=为极大值,(0)0y =为极小值.(6)解:1y ′=,令0y ′=,得驻点13,4x =且在定义域(,1]−∞内有一不可导点21x =,当34x >时,0y ′<;当34x <时,0y ′>,故134x =为极大值点,且极大值为35()44y =.因为函数定义域为1x ≤,故1x =不是极值点.(7)解:y ′=,令0y ′=,得驻点125x =.当125x >时,0y ′<;当125x <,0y ′>,故极大值为12()5y =.(8)解:2131x y x x +=+++,22(2)(1)x x y x x −+′=++,令0y ′=,得驻点122,0x x =−=.2223(22)(1)2(21)(2)(1)x x x x x x y x x −−+++++′′=++200,0x x y y =−=′′′′><,故极大值为(0)4y =,极小值为8(2)3y −=.(9)解:e (cos sin )x y x x ′=−,令0y ′=,得驻点ππ (0,1,2,)4k x k k =+=±±⋯.2e sin x y x ′′=−,ππ2π(21)π440,0x k x k y y =+=++′′′′<>,故2π2π 4k x k =+为极大值点,其对应的极大值为π2π42()k k y x +=;21π(21)π 4k x k +=++为极小值点,对应的极小值为π(21)π421()k k y x +++=.(10)解:11211ln (ln )xxxy x x x x x −′′==,令0y ′=,得驻点e x =.当e x >时,0y ′<,当e x <时,0y ′>,故极大值为1e(e)e y =.(11)解:2e e x xy −′=−,令0y ′=,得驻点ln 22x =−.ln 222e e ,0x x x y y −=−′′′′=+>,故极小值为ln 2()2y −=.(12)解:y ′=,无驻点.y 的定义域为(,)−∞+∞,且y 在x =1处不可导,当x >1时0y ′<,当x <1时,0y ′>,故有极大值为(1)2y =.(13)解:y ′=无驻点.y 在1x =−处不可导,但y ′恒小于0,故y 无极值.(14)解:21sec 0y x ′=+>,y 为严格单调增加函数,无极值点.5.证明:232y ax bx c ′=++,令0y ′=,得方程2320ax bx c ++=,由于22(2)4(3)4(3)0b a c b ac ∆=−=−<,那么0y ′=无实数根,不满足必要条件,从而y 无极值.6.解:f (x )为可导函数,故在π3x =处取得极值,必有π3π0()(cos cos3)3x f a x x =′==+,得a =2.又π3π0((2sin 3sin 3)3x f x x =′′=<=−−,所以π3x =是极大值点,极大值为π()3f =7.(1)解:y 的定义域为(,0)−∞,322(27)0x y x +′==,得唯一驻点x =-3且当(,3]x ∈−∞−时,0y ′<,y 单调递减;当[3,0)x ∈−时,0y ′>,y 单调递增,因此x =-3为y 的最小值点,最小值为f (-3)=27.又lim ()x f x →−∞=+∞,故f (x )无最大值.(2)解:10y ′==,在(5,1)−上得唯一驻点34x =,又53,(1)1,(5)544y y y ⎛⎞==−=−⎜⎟⎝⎠ ,故函数()f x 在[-5,1]上的最大值为545−.(3).解:函数在(-1,3)中仅有两个驻点x =0及x =2,而y (-1)=-5,y (0)=2,y (2)=-14,y (3)=11,故在[-1,3]上,函数的最大值是11,最小值为-14.8.解:20y ax b ′=+=得2b x a =−不可能属于以0和ba 为端点的闭区间上,而22(0)0,b b y y a a ⎛⎞==⎜⎟⎝⎠,故当a >0时,函数的最大值为22b b y a a ⎛⎞=⎜⎟⎝⎠,最小值为(0)0y =;当a <0时,函数的最大值为(0)0y =,最小值为22b b y a a ⎛⎞=⎜⎟⎝⎠.9.解:令y =,y ′===令0y ′=得x =1000.因为在(0,1000)上0y ′>,在(1000,)+∞上0y ′<,所以x =1000为函数y的极大值点,也是最大值点,max (1000)y y ==.故数列的最大项为1000a =.10.证明:11,01111(),01111,11x x x a f x x ax x a x a x x a ⎧+<⎪−−+⎪⎪=+≤≤⎨+−+⎪⎪+>⎪++−⎩当x <0时,()()2211()011f x x x a ′=+>−−+;当0<x <a 时,()()2211()11f x x x a ′=−++−+;此时令()0f x ′=,得驻点2a x =,且422a f a ⎛⎞=⎜⎟+⎝⎠,当x >a 时,()()2211()011f x x x a ′=−−<++−,又lim ()0x f x →∞=,且2(0)()1a f f a a +==+.而()f x 的最大值只可能在驻点,分界点,及无穷远点处取得故{}max 242(),,0121a af x a a a++==+++.11.解:设圆柱体的高为h ,,223πππ4V h r h h =⋅=−令0V ′=,得.h =即圆柱体的高为3r 时,其体积为最大.12.解:由题设知21π22x xy a⎛⎞+⋅=⎜⎟⎝⎠得21π18π8a x a y x x x −==−截面的周长212112π()2πππ,2424π2()1,4a a l x x y x x x x x x x x al x x=++⋅=+−+=++′=+−令()0l x ′=得唯一驻点x =,即为最小值点.即当x =.13.解:所需电线为()(03)()L x x L x =<<′=在0<x <3得唯一驻点x =1.2(km),即变压器设在输电干线离A 处1.2km 时,所需电线最短.14.解:设小正方形边长为x 时方盒的容积最大.232222(2)44128V a x x x ax a xV x ax a =−⋅=−+′=−+令0V ′=得驻点2a x =(不合题意,舍去),6a x =.即小正方形边长为6a时方盒容积最大.15.(1)解:42,20y x y ′′′=−=−<,故知曲线在(,)−∞+∞内的图形是凸的.(2)解:cosh ,sinh .y x y x ′′′==由sinh x 的图形知,当(0,)x ∈+∞时,0y ′′>,当(,0)x ∈−∞时,0y ′′<,故y =sinh x 的曲线图形在(,0]−∞内是凸的,在[0,)+∞内是凹的.(3)解:23121,0y y x x ′′′=−=>,故曲线图形在(0,)+∞是凹的.(4)解:2arctan 1x y x x ′=++,2220(1)y x ′′=>+故曲线图形在(,)−∞+∞内是凹的.16.(1);解:23103y x x ′=−+610y x ′′=−,令0y ′′=可得53x =.当53x <时,0y ′′<,故曲线在5(,)3−∞内是凸弧;当53x >时,0y ′′>,故曲线在5[,)3+∞内是凹弧.因此520,327⎛⎞⎜⎟⎝⎠是曲线的唯一拐点.(2)解:(1)e , e (2)x xy x y x −−′′′=−=−令0y ′′=,得x =2当x >2时,0y ′′>,即曲线在[2,)+∞内是凹的;当x <2时,0y ′′<,即曲线在(,2]−∞内是凸的.因此(2,2e -2)为唯一的拐点.(3);解:324(1)e , e 12(1)0x x y x y x ′′′=++=++>故函数的图形在(,)−∞+∞内是凹的,没有拐点.(4)解:222222(1), 1(1)x x y y x x −′′′==++令0y ′′=得x =-1或x =1.当-1<x <1时,0y ′′>,即曲线在[-1,1]内是凹的.当x >1或x <-1时,0y ′′<,即在(,1],[1,)−∞−+∞内曲线是凸的.因此拐点为(-1,ln2),(1,ln2).(5);解:arctan arctan 222112e ,e1(1)x xx y y x x −′′′==++ 令0y ′′=得12x =.当12x >时,0y ′′<,即曲线在1[,)2+∞内是凸的;当12x <时,0y ′′>,即曲线在1(,]2−∞内是凹的,故有唯一拐点1arctan 21(,e )2.(6)解:函数y 的定义域为(0,+∞)且在定义域内二阶可导.324(12ln 4),144ln .y x x y x x ′′′=−= 令0y ′′=,在(0,+∞),得x =1.当x >1时,0y ′′>,即曲线在[1,)+∞内是凹的;当0<x <1时,0y ′′<,即曲线在(0,1]内是凸的,故有唯一拐点(1,-7).17.(1);证明:令()nf x x =12(),()(1)0n n f x nx f x n n x −−′′′==−> ,则曲线y =f (x )是凹的,因此,x y R +∀∈,()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠,即1()22nn n x y x y +⎛⎞<+⎜⎟⎝⎠.(2);证明:令f (x )=e x()e ,()e 0x x f x f x ′′′==> .则曲线y =f (x )是凹的,,,x y R x y∀∈≠ 则()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即2e e e2x yx y ++<.(3)证明:令f (x )=x ln x (x >0)1()ln 1,()0(0)f x x f x x x′′′=+=>> 则曲线()y f x =是凹的,,x y R +∀∈,x ≠y ,有()()22f x f y x y f ++⎛⎞<⎜⎟⎝⎠即1ln (ln ln )222x y x y x x y y ++<+,即ln ln ()ln2x y x x y y x y ++>+.18.(1)解:22223d 33d 3(1),d 2d 4y t y t xt x t +−==令22d 0d yx =,得t =1或t =-1则x =1,y =4或x =1,y =-4当t >1或t <-1时,22d 0d yx >,曲线是凹的,当0<t <1或-1<t <0时,22d 0d yx <,曲线是凸的,故曲线有两个拐点(1,4),(1,-4).(2)解:32d 22sin cos 2sin cos d 2(csc )y a xa θθθθθ⋅⋅==−⋅−222442222d 11(6sin cos 2sin )sin cos (3tan )d 2(csc )y x a a θθθθθθ=−+⋅=⋅−−令22d 0d y x =,得π3θ=或π3θ=−,不妨设a >0tan θ>>时,即ππ33θ−<<时,22d 0d y x >,当tan θ>或tan θ<π3θ<−或π3θ>时,22d 0d y x <,故当参数π3θ=或π3θ=−时,都是y的拐点,且拐点为3,2a ⎞⎟⎠及3,2a ⎛⎞⎜⎟⎝⎠.19.证明:22221(1)x x y x −++′=+,y ′′=令0y ′′=,得1,22x x x =−=+=−当(,1)x ∈−∞−时,0y ′′<;当(1,2x ∈−时0y ′′>;当(22x ∈−+时0y ′′<;当(2)x ∈++∞时0y ′′>,因此,曲线有三个拐点(-1,-1),(2−+.因为111212−−+因此三个拐点在一条直线上.20.解:y′=3ax 2+2bx ,y″=6ax +2b 依题意有3620a b a b +=⎧⎨+=⎩解得39,22a b =−=.21.解:令f (x )=ax 3+bx 2+cx +d联立f (-2)=44,f ′(-2)=0,f (1)=-10,f ″(1)=0可解得a =1,b =-3,c =-24,d =16.22.解:224(3),12(1)y kx x y k x ′′′=−=− 令0y ′′=,解得x =±1,代入原曲线方程得y =4k ,只要k ≠0,可验证(1,4k ),(-1,4k )是曲线的拐点.18x k y =±′=±,那么拐点处的法线斜率等于18k ∓,法线方程为18y x k =∓.由于(1,4k ),(-1,4k )在此法线上,因此148k k =±,得22321, 321k k ==−(舍去)故8k ==±.23.答:因00()()0f x f x ′′′==,且0()0f x ′′′≠,则x =x 0不是极值点.又在0(,)U x δ�中,000()()()()()()f x f x x x f x x f ηη′′′′′′′′′′=+−=−,故()f x ′′在0x 左侧与0()f x ′′′异号,在0x 右侧与0()f x ′′′同号,故()f x 在x =x 0左、右两侧凹凸性不同,即00(,())x f x 是拐点.24.(1);解:函数的定义域为(-∞,+∞),且为奇函数,2222222223121(1)(1)2(3)(1)x x x y x x x x y x +−−′==++−′′=+令0y ′=,可得1x =±,令0y ′′=,得x =0,,当x→∞时,y→0,故y=0是一条水平渐近线.函数有极大值1(1)2f=,极小值1(1)2f−=−,有3个拐点,分别为,⎛⎜⎝(0,0),,作图如上所示.(2)解:函数定义域为(-∞,+∞),且为奇函数,2222114(1)yxxyx′=−+′′=+令y′=0,可得x=±1,令y″=0,可得x=0.列表讨论如下:x0(0,1)1(1,∞)y′-0+y″0++y0极小又()2lim lim(1arctan)1x xf xxx x→∞→∞=−=且lim[()]lim(2arctan)πx xf x x x→+∞→+∞−=−=−故πy x=−是斜渐近线,由对称性知πy x=+亦是渐近线.函数有极小值π(1)12y=−,极大值π(1)12y−=−.(0,0)为拐点.作图如上所示.(3);解:函数的定义域为,1x R x∈≠−.22232(1)(2)(1)(1)(1)2(1)x x x x xy xx xyx+−+′==≠−++′′=+令y′=得x=0,x=-2当(,2]x∈−∞−时,0,()y f x′>单调增加;当[2,1)x∈−−时,0,()y f x′<单调减少;当(1,0]x∈−时,0,()y f x′<单调减少;当[0,)x∈+∞时,0,()y f x′>单调增加,故函数有极大值f(-2)=-4,有极小值f(0)=0又211lim()lim1x xxf xx→−→−==∞+,故x=-1为无穷型间断点且为铅直渐近线.又因()lim1xf xx→∞=,且2lim(())lim11x xxf x x xx→∞→∞⎡⎤−==−−⎢⎥+⎣⎦,故曲线另有一斜渐近线y=x-1.综上所述,曲线图形为:(4)解:函数定义域为(-∞,+∞).22(1)(1)22(1)e e 2(241)x x y x y x x −−−−′=−−′′=⋅−+令0y ′=,得x =1.令0y ′′=,得1x =±.当(,1]x ∈−∞时,0,y ′>函数单调增加;当[1,)x ∈+∞时,0,y ′<函数单调减少;当(,1[1)x ∈−∞−++∞∪时,0y ′′>,曲线是凹的;当[1,122x ∈−+时,0y ′′<,曲线是凸的,故函数有极大值f (1)=1,两个拐点:1122(1,e ),(1,e )22A B −−−+,又lim ()0x f x →∞=,故曲线有水平渐近线y =0.图形如下:25.(1)解:2e ()0(1e )cxcx Ac g x −−′=>+,g (x )在(-∞,+∞)内单调增加,222244e e 2(1e )e e (1e )()(1e )(1e )cx cx cx cx cx cx cx cx Ac Ac Ac g x −−−−−−−−−+⋅+⋅−−′′==++当x >0时,()0,()g x g x ′′<在(0,+∞)内是凸的.当x <0时,()0,()g x g x ′′>在(-∞,0)内是凹的.当x =0时,()2A g x =.且lim ()0,lim ()x x g x g x A→−∞→+∞==.故曲线有两条渐近线y =0,y =A .且A 为该种动物数量(在特定环境中)最大值,即承载容量.如图:(2)解:()()1e 1e cx cxA Ag x g x A −−+=+=++.(3)证明:∵()1e 1e e c x T cx cT A Ay B B −+−−==++取e1cTB −=,得ln B T c =即曲线1e cx A y B −=+是对g (x )的图像沿水平方向作了ln B T c =个单位的平移.26.解:324d π,π,.3d r V r A r v t === 2d d d 4πd d d d d d 8πd d d V V rr v t r t A A r r v t r t=⋅=⋅=⋅=⋅27.解:d d de e .d d d a a r r a a t t ϕϕϕωωϕ=⋅=⋅⋅=28.解:22cos 2cos sin sin 2x a y a a ϕϕϕϕ⎧=⎨==⎩d d d 22cos (sin )2sin 2,d d d d d d 2cos 22cos .d d d x x a a t t y y a a t t ϕϕϕωωϕϕϕϕωωϕϕ=⋅=⋅⋅−⋅=−=⋅=⋅=29.解:方程22169400x y +=两边同时对t 求导,得d d 32180d d x yx y t t⋅+⋅=由d d d d x y tt −=.得161832,9y x y x == 代入椭圆方程得:29x =,163,.3x y =±=±即所求点为1616,3,3,33⎛⎞⎛⎞−−⎜⎟⎜⎟⎝⎠⎝⎠.30.解:当水深为h时,横截面为212s h ==体积为22212V sh h ′====d d 2d d V hh t t=⋅当h =0.5m 时,31d 3m min d Vt −=⋅.故有d 320.5d ht =⋅,得d d h t =(m 3·min -1).31.解:设t 小时后,人与船相距s公里,则d d s s t ===且120d 8.16d t st ==≈(km ·h-1)32.解:d d d 236.d d d y y xx x t x t=⋅=⋅=当x =2时,d 6212d yt =×=(cm ·s -1).33.证明:如图,设在t 时刻,人影的长度为y m.则53456y y t=+化简得d 7280,40,40d yy t y t t ===(m ·min -1).即人影的长度的增长率为常值.34.解:y =-(x -2)2+4,故抛物线顶点为(2,4)当x =2时,0,2y y ′′′==− ,故23/22.(1)y k y ′′==′+35.解:sinh ,cosh .y x y x ′′′== 当x =0时,0,1y y ′′′== ,故23/21.(1)y k y ′′==′+36.解:cos ,sin y x y x ′′′==−.当π2x =时,0,1y y ′′′==− ,故23/21.(1)y k y ′′==′+37.解:2tan ,sec y x y x ′′′== 故223/223/2sec cos (1)(1tan )y x k x y x ′′===′++1sec R x k ==.38.解:22d d 3sin cos d tan d d 3cos sin d y y a t t t t x x a t tt ===−−,22224d d d(tan )1sec 1(tan )d d d d 3cos sin 3sin cos d y t t t x x x ta t t a t t t −−=−=⋅==−,故423/2123sin cos [1(tan )]3sin 2a t t k t a t==+−且当t =t 0时,23sin 2k a t =.39.解:cos ,sin y x y x ′′′==− .23/223/2(1cos )1sin ,sin (1cos )x x R k x R x +===+ 显然R 最小就是k 最大,225/22cos (1sin )(1cos )x x k x +′=+令0k ′=,得π2x =为唯一驻点.在π0,2⎛⎞⎜⎟⎝⎠内,0k ′>,在π,π2⎛⎞⎜⎟⎝⎠内,0k ′<.所以π2x =为k 的极大值点,从而也是最大值点,此时最小曲率半径为23/2π2(1cos )1sin x x R x=+==.40.解:由ln 0y x y =⎧⎨=⎩解得交点为(1,0).1112111,11.x x x x y x y x ====′==′′=−=−故曲率中心212(1,0)(1)312x y y x y y y y αβ=⎧′′⎡⎤+==−⎪⎢′′⎣⎦⎪⎨′⎡⎤+⎪==−+⎢⎥⎪′′⎣⎦⎩曲率半径为R =.故曲率圆方程为:22(3)(2)8x y −++=.41.解:0010,5000x x y y ==′′′==,23/2(1)5000y R y ′+==′′飞行员在飞机俯冲时受到的向心力22702005605000mv F R ⋅===(牛顿)故座椅对飞行员的反力560709.81246F =+×=(牛顿).42.解:(1)边际成本为:()(300 1.1) 1.1.C q q ′′=+=(2)利润函数为2()()() 3.90.003300() 3.90.006L q R q C q q q L q q=−=−−′=−令()0L q ′=,得650q =即为获得最大利润时的产量.(3)盈亏平衡时:R (q )=C (q )即 3.9q -0.003q 2-300=0q 2-1300q +100000=0解得q =1218(舍去),q =82.43.解:(1)利润函数为32322()70.010.6130.010.66()0.03 1.26L q q q q q q q qL q q q =−+−=−+−′=−+−令()0L q ′=,得231206000q q −+=即2402000q q −+=得20q =−(舍去)2034.q =+≈此时,32(34)0.01340.63463496.56L =−×+×−×=(元)(2)设价格提高x 元,此时利润函数为2()(7)(342)(34)220379.44L x x x C x x =+−−=−++令()0L x′=,得5x=(5)121.5696.56L=>故应该提高价格,且应提高5元.44.(1)解:y′=a即为边际函数.弹性为:1Ey axa xEx ax b ax b =⋅⋅=++,增长率为:yaax b γ=+.(2)解:边际函数为:y′=ab e bx弹性为:1eebxbxEyab x bx Ex a=⋅⋅=,增长率为:eebxy bxabbaγ==.(3)解:边际函数为:y′=ax a-1.弹性为:11aaEyax x a Ex x−=⋅⋅=,增长率为:1.ay aax ax x γ−==45.解:因弹性的经济意义为:当自变量x变动1%,则其函数值将变动% EyEx⎛⎞⎜⎟⎝⎠.故当价格分别提高10%,20%时,需求量将分别提高0.8×10%=8%,0.8×20%=16%.46.解:人均收入年增长率=国民收入的年增长率-人口增长率=7.1%-1.2%=5.9%.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档