第七章 还原反应
合集下载
药物合成反应_第七章_还原反应

肼NH2-NH2或二酰亚胺NH=NH,可选择性还原非极性重键(如C=C、碳碳叁键、N=N), 而不影响极性重键(如C=N、腈基、硝基等)。
Ph
C
C
Ph
NH2 NH2 Cu2 + 空气
Ph CH2CH2 Ph
(80%)
烯 ︑ 炔 烃 的 还 原
C7H7SO2NHNH2 CH2 CH CH2 S S CH2 CH CH2 △ C3H7SSC3H7
硝基可被还原为氨基,常用的条件为铁粉+酸、锌或锡+酸、硫化物(如Na2S,Na2S2等)。
O2N
C C C H H O COOEt Fe/HOAc EtOH+H2O NO2
NH2 COOEt
Fe/NH4Cl
H2N
C C C H H O NH2 Na2S
NH2
NO2
硝 基 的 还 原
NO2 NH2
NO2
NaBH4-AlCl3不影响硝基;
HOOO (CH2)4 COOEt
B2H6 / THF -18 C, 10h
0
HOCH2 (CH2)4 COOEt
(88%)
硼烷或乙硼烷与羧基反应最快,如果控制低温和用量,可选择性优先还原羧基而不影响硝
基、卤素、酰卤、氰基、酯基、醛、酮等,选择性非常优秀。
4
硝基的还原 肟和亚甲胺的还原 偶氮、叠氮的还原
OH
NO2
饱 和 醛 酮 的 活 性 大 于 α,β-不 饱 和 醛 酮
2
醇铝为还原剂(Meerwein-Ponndorf-Verley反应)
在异丙醇铝中,醛、酮被还原为醇,取而代之的是异丙醇被氧化为丙酮;此反应可看做是 Oppenauer氧化的逆反应。
无机化学第7章氧化还原反应

实验结果与讨论
实验结果
通过实验观察和测量,可以记录到电 流计和电压计的变化情况,从而得出 氧化还原反应过程中电子转移的结论 。
结果讨论
根据实验结果,分析氧化还原反应的 特点和规律,探讨影响氧化还原反应 的因素,以及在实际生产中的应用。
THANKS FOR WATCHING
感谢您的观看
子被氧化。
电子从还原剂转移到氧化剂
02
电子从还原剂转移到氧化剂是氧化还原反应的本质,也是判断
氧化剂和还原剂的依据。
反应趋向于降低电位
03
在自发反应中,反应总是趋向于降低电位,即趋向于更稳定的
电子状态。
氧化还原反应的速率
1 2
反应速率与反应物浓度成正比
在一定条件下,反应速率与反应物浓度呈正比关 系,即反应物浓度越大,反应速率越快。
特点
氧化还原反应是电子转移的过程 ,通常伴随着元素氧化数的变化 ,并伴随着能量的变化。
氧化数与氧化态
氧化数
表示元素在化合物中的氧化态,通常用罗马数字表示。例如,在H₂O中,H的 氧化数为+1,O的氧化数为-2。
氧化态
表示元素在某个特定反应中的氧化状态,通常用希腊字母表示。例如,在反应 H₂O + O₂ → H₂O₂中,H的氧化态为+1,O的氧化态为-1。
在达到平衡后,如果增加某一反应物的浓度,平衡会向减少该物质浓度的方向移动。
压力变化对平衡的影响取决于反应前后气体分子数的变化
如果反应前后气体分子数发生变化,压力变化会对平衡产生影响;反之则不会。
04 氧化还原反应的应用
在化学工业中的应用
氧化还原反应在化学工业中有着广泛的应用,如合成 有机物、制备无机物和金属冶炼等。
第七章 氢化和还原反应

H3C HC CH3 OH
NH2
H2/Pd/C 50~60℃
C O
+ HCl
H2/Pd/C C2H5OH
COOH + CH3
优点:反应易于控制,产品纯度较高,收率 较高,三废少,在工业上应用广泛。 缺点:需要使用带压设备,安全措施要求高, 催化剂的选择要求严格。
7.2.2 非均相催化氢化反应历程
C C
C C
O C OH
O O
芳杂环
O C H
O C
N
C N
催化氢解
在催化剂存在下,含有碳杂键的有机物 分子与氢气反应,发生碳杂键断裂,分解成 两部分氢化产物的反应叫做催化氢解。
催 化 剂 H2
C Z
C H + HZ
Z=X, O, S
H3C HC CH2
O
NO2 C O Cl
COO CH2
催 化 剂 H2
在碱性介质中对硝基化合物的双分子还原
X H2N X NH2
X= H, CH3, Cl, OCH3
OHH+
2ArNO2 + 5Zn + H2O Ar-NH-NH-Ar
Ar-NH-NH-Ar + 5ZnO
H2N-Ar-Ar-NH2
第一阶段:100~105℃,碱浓度12~13% ArNO2 → ArNO → ArNHOH Ar-N=N-Ar O 第二阶段:90~95℃,碱浓度% Ar-N=N-Ar → Ar-NH-NH-Ar O 第三阶段:酸性条件 Ar-NH-NH-Ar → H2N-Ar-Ar-NH2
催化剂 Cu/SiO2、Cu/浮石、Cu/Al2O3 工艺 200~300℃ 固定床、流化床 实例
大学无机化学-第七章-氧化还原反应-电化学基础-课件

② 分别写出氧化剂被还原和还原剂被氧化的半反应 ③ 分别配平两个半反应方程式,等号两边的各
种元素的原子总数各自相等且电荷数相等 ④ 确定两半反应方程式得、失电子数目的最小公倍
数。将两个半反应方程式中各项分别乘以相应的 系数,使得、失电子数目相同。然后,将两者合 并,就得到了配平的氧化还原反应的离子方程式。 有时根据需要可将其改为分子方程式。
3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O 3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
无机化学
§7.1 氧化还原反应的基本概念
例 4 配平方程式
Cr(OH)3 (s) + Br2 (l) + KOH
K2CrO4 + KBr
Cr(OH)3 (s) + Br2 (l)
电极组成:Pt , Cl2(p) | Cl- (a)
电极反应: Cl2 + 2e
2Cl-
无机化学
§7.2 电化学电池
3. 金属-金属难溶盐-阴离子电极
将金属表面涂有其金属难溶盐的固体,然后浸 入与该盐具有相同阴离子的溶液中构成的电极
电极组成:Ag ,AgCl(s)| Cl- (a) 电极反应:AgCl + e Ag + Cl电极组成:Hg ,Hg2Cl2(s)| Cl- (a) 电极反应:Hg2Cl2+2e 2Hg +2Cl-
无机化学
§7.1 氧化还原反应的基本概念
2-2 半反应法(离子—电子法) 配平原则 (1)反应过程中氧化剂得到的电子数等于还
原剂失去的电子数 (2)反应前后各元素的原子总数相等
种元素的原子总数各自相等且电荷数相等 ④ 确定两半反应方程式得、失电子数目的最小公倍
数。将两个半反应方程式中各项分别乘以相应的 系数,使得、失电子数目相同。然后,将两者合 并,就得到了配平的氧化还原反应的离子方程式。 有时根据需要可将其改为分子方程式。
3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O 3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
无机化学
§7.1 氧化还原反应的基本概念
例 4 配平方程式
Cr(OH)3 (s) + Br2 (l) + KOH
K2CrO4 + KBr
Cr(OH)3 (s) + Br2 (l)
电极组成:Pt , Cl2(p) | Cl- (a)
电极反应: Cl2 + 2e
2Cl-
无机化学
§7.2 电化学电池
3. 金属-金属难溶盐-阴离子电极
将金属表面涂有其金属难溶盐的固体,然后浸 入与该盐具有相同阴离子的溶液中构成的电极
电极组成:Ag ,AgCl(s)| Cl- (a) 电极反应:AgCl + e Ag + Cl电极组成:Hg ,Hg2Cl2(s)| Cl- (a) 电极反应:Hg2Cl2+2e 2Hg +2Cl-
无机化学
§7.1 氧化还原反应的基本概念
2-2 半反应法(离子—电子法) 配平原则 (1)反应过程中氧化剂得到的电子数等于还
原剂失去的电子数 (2)反应前后各元素的原子总数相等
第七章还原 一节

第七章 还原反应
(reduction reaction)
一、还原反应定义:
在化学反应中,使有机分子中碳原子总的氧化态降低的反应 称为还原反应;即在还原剂的作用下,能使有机分子得到电子 或使参加反应的碳原子上的电子云密度增加的反应。(可看作 为有机分子中加氢或减少氧的反应)。
二、分类:
按 还 原 方 法
三、硼氢化钠还原羧酸机理
氢负离子还原机理
O R C OH + NaBH4 O 4 R C O B Na
3
O
4R
C
O
B3 Na + H2
+ 2NaBH4
4
RCH2O 2H2O
B3 Na + 2NaBO2
4RCH2OH + NaBO 2
O 机理:R C R
OBH3 Na
O ℃
NaBH4 -I2 95
℅
THF ,0-25
℃
CH3(CH2)8COOH
CH3(CH2 )8CH2OH
℅
4. 采用卡特缩合剂(BOP reagent)NaBH4体系可以很容易的实现羧酸的选择性还原, 而-NO2、-CN、-COOR等不被还原。
COOH
OH
BOP reagent NaBH4,THF
OH
陈宁等对ZrCl-NaBH4 体系还原羧酸作了系统 的研究,研究内容包括苯甲酸、月桂酸、水杨酸、 硬脂酸、已二酸等的还原,均获得了较高的收率。
3. 以NaBH4-I2体系还原羧酸时,室温条 件下反应,可以获得较高的收率。
需要注意的是,当苯环上为相邻的羧基 和脂基时,只有羧酸被还原。
COOH CO2Et NaBH4 -I2 THF ,0-25 OH CO2Et 82
(reduction reaction)
一、还原反应定义:
在化学反应中,使有机分子中碳原子总的氧化态降低的反应 称为还原反应;即在还原剂的作用下,能使有机分子得到电子 或使参加反应的碳原子上的电子云密度增加的反应。(可看作 为有机分子中加氢或减少氧的反应)。
二、分类:
按 还 原 方 法
三、硼氢化钠还原羧酸机理
氢负离子还原机理
O R C OH + NaBH4 O 4 R C O B Na
3
O
4R
C
O
B3 Na + H2
+ 2NaBH4
4
RCH2O 2H2O
B3 Na + 2NaBO2
4RCH2OH + NaBO 2
O 机理:R C R
OBH3 Na
O ℃
NaBH4 -I2 95
℅
THF ,0-25
℃
CH3(CH2)8COOH
CH3(CH2 )8CH2OH
℅
4. 采用卡特缩合剂(BOP reagent)NaBH4体系可以很容易的实现羧酸的选择性还原, 而-NO2、-CN、-COOR等不被还原。
COOH
OH
BOP reagent NaBH4,THF
OH
陈宁等对ZrCl-NaBH4 体系还原羧酸作了系统 的研究,研究内容包括苯甲酸、月桂酸、水杨酸、 硬脂酸、已二酸等的还原,均获得了较高的收率。
3. 以NaBH4-I2体系还原羧酸时,室温条 件下反应,可以获得较高的收率。
需要注意的是,当苯环上为相邻的羧基 和脂基时,只有羧酸被还原。
COOH CO2Et NaBH4 -I2 THF ,0-25 OH CO2Et 82
第七章 氢化与还原

无机还原剂: 活泼金属及其合金 Fe/HCl Zn/HOAc Na/ROH Zn-Hg/HCl Na-Hg/EtOH 低价元素的化合物 Na2S Na2Sx FeCl2 SnCl2 Na2S2O4 金属氢化物 NaBH4 KBH4 LiAlH4 LiBH4
有机还原剂: 烷基铝(异丙醇铝、叔丁醇铝),HCHO,葡萄糖
(2)温度和压力 T↑—→选择性↓ P↑—→[H2] ↑—→ ↑—→选择性↓
催化反应温度和压力与催化剂及反应物的关系 催化剂 Pt-C PtO2 Raney 镍 CuCr2O4 反应温度与压力 0-40℃,常压,反应时间短 25-90℃,常压(实验室方法) 约 200℃,加压(工业方法) 高温高压(工业方法) 被氢化基团 烯键、羰基 烯键、羰基、氰基 烯键、羰基、氰基 羰基,酯(氢解)
OHˉ+ H+ H2O Fe2+ H+ + e H
ቤተ መጻሕፍቲ ባይዱ
Fe2+
(-)Fe
杂质(正极)
Fe(-)
e
e
原理:
ArNO2 RNO2 ArNO -NHOH
Fe + HCl(H2SO4 , HAc) 或Fe + FeCl 2 (NH 4 Cl ) 水 溶 液
ArNH2 RNH2 ArNH2 -NH2
选择性还原,对-X,C=C,C=O等基团无影响。
(3)电解还原法
有机化合物从电解槽的阴极上获得电子而 完成的还原反应。
电解
2 H2C
CH
CN
NC(CH2)4CN
7.2催化氢化的反应类型
1. 氢化和氢解 氢化:键断裂与氢加成形成饱和键。 氢解:反应物分子中键断裂与氢结合,产物分 解成两部分氢化物 例:氢化
chapter还原反应
PhCH=CHCO2Na
Na-Hg H2O
PhCH2CH2CO2Na H+ PhCH2CH2CO2H
1.以甲苯和C3以下的有机物合成PhCH2CH(Li、Na 、K)与液氨、醇组成的混合物进行的还原 谓Birch还原。碱金属在液氨中的溶解度次序为:Li>K>Na。 醇作为质子供给剂。进行还原时,务必除去存在于未经蒸馏的液 氨中的铁盐及其它杂质,少量的这些杂质将促进金属氢化物的 形成,从而抑制碱金属的还原。由于有机反应物在液氨中溶解 度较小,往往于反应体系中加入除去过氧化物和水的干醚和THF 等溶剂溶解。
镁汞齐能还原酮为相应的仲醇,并发生双分子还原反应 生成片呐醇。
1.Mg-Hg/PhH
2 (CH3)2C=O 2.H2O
(CH3)2C C(CH 3)2 OH OH
2PhC=O 1.Al-Hg /THF Ph2C CPh2
2.H2O
OH OH
O + (CH3)2C=O Mg-Hg
Ti C l4
CH3 C CH3 OH OH
NaHB4, LiAlH4, Al(OCH(CH3)2)3: 羰基还原成羟基, 不还原双键 Mg(-Hg) /苯; 双分子还原,得到邻二醇
Zn-Hg/HCl: 羰基---亚甲基 与羰基 共轭的双键也被还原
NH2NH2 + NaOH/O(CH2CH2OH)2 Fe+HCl, 如果芳环上有易被还原的羰基(如醛基),用SnCl2+HCl 较好
O CH3 Na,NH3 EtO H
O CH3
Li ,EtNH2
EtO H Na,NH3
1,4-二氢萘
EtO H
1,4,5,8 四氢萘
COOH Na,NH3 EtO H
精细有机合成7
影响镍催化剂催化活性的因素有: A.反应体系的PH值
反应体系的PH值对催化反应有明显的影响。由于强酸能与 催化剂反应,因而不能使用强酸作反应介质。应用弱酸或铵盐 使PH>3,催化活性降低,在碱性介质中则能提高催化剂的催 化活性。
B.添加剂的影响
镍铝合金中含有310%的铬、钴、钼、钯和铑都能提高镍催 化剂的活性,其中铂更为有效。若在Raney Ni催化氢化反应之 前加入少量氯化铂,或再加入一些碱,如三乙胺、氢氧化钠、 氢氧化锂等,就成为很强的催化氢化反应体系。
OH-
CH2 + N2
水合肼作为还原剂的特点是还原过程中自身氧化成 氮气而逸出反应体系,不会给反应产物带来杂质。 17
黄鸣龙的贡献——原工艺:醛、酮与肼生成 腙,在KOH或乙醇钠作用下放出N2 ,需要 高温高压,不方便。后改用高沸点醇,如 三缩乙二醇为溶剂,要回流100h。黄1946 年改进:将醛、酮、NaOH、肼的水溶液和 高沸点醇一起加热使之生成腙后,先将水 和过量的肼蒸出,待温度达到腙的分解温 度(195~200℃)时再回流3~4h即可。优 点:常压进行,时间短。
——制醇,产率高,选择性好 • 硼氢化钠NaBH4: 只还原醛、酮中的羰基,不影 响其他不饱和键:
还原性比NaBH4强,对C=C、C≡C没有 还原作用,但对醛酮,以及羧酸和酯的羰基、NO2、 — C≡N 等都能还原。
• 氢化锂铝LiAlH4:
注意产物 : 与羧酸、酰 氯 、 酯 和 LiAlH4 还 原 不一样!
第七章 还原反应
1
从广义上来讲,凡使反应物分子得到电子或 使参加反应的碳原子上的电子云密度增高的反应 均称为还原反应 。 从狭义上讲,凡使反应物分子的氢原子数增 加或氧原子数减少的反应即为还原反应 。
无机化学课件第7章 氧化还原反应
3Fe2(SO4)3 + Cr2(SO4)3 + 7H2O + K2SO4
第一节
第一章
2、离子-电子法
现以 KMnO Na SO +H SO MnSO +K SO +H O反
4
2
3
2
4
4
2
4
2
应为例,用离子- 电子法配平其方程。
⑴ 以离子反应式表示氧化还原反应:
rGm ≤ W′
如果反应是热力学可逆,上式取等号;如果反应是自 发进行的,取小于号。即系统对环境所做的最大功的 绝对值不会超过| rGm | , 只能小于等于| rGm | 。
第二节
第一章
在298.15 K和标准状态下进行的化学反应:
Zn(s)+Cu2+ ===Zn2+ +Cu(s)
K2Cr2O7 + FeSO4 + H2SO4 → Fe2(SO4)3 + Cr2(SO4)3 找出氧化剂和还原剂反应前后氧化数的变化:
2×(3-6)= -6
+6
+2
+3
+3
K2Cr2O7 + FeSO4 + H2SO4 → Fe2(SO4)3 + Cr2(SO4)3
3-2=1
第二节
第一章
锌-铜原电池
原电池是由两个半电池组成,每个半电池又称作一个电极, 电极包括传导电子的金属及组成半电池的溶液。
第二节
第一章
2、电极反应 负极: Zn Zn2+ (aq)+2e (氧化反应) 正极: Cu2+ (aq)+2e Cu (还原反应)
第一节
第一章
2、离子-电子法
现以 KMnO Na SO +H SO MnSO +K SO +H O反
4
2
3
2
4
4
2
4
2
应为例,用离子- 电子法配平其方程。
⑴ 以离子反应式表示氧化还原反应:
rGm ≤ W′
如果反应是热力学可逆,上式取等号;如果反应是自 发进行的,取小于号。即系统对环境所做的最大功的 绝对值不会超过| rGm | , 只能小于等于| rGm | 。
第二节
第一章
在298.15 K和标准状态下进行的化学反应:
Zn(s)+Cu2+ ===Zn2+ +Cu(s)
K2Cr2O7 + FeSO4 + H2SO4 → Fe2(SO4)3 + Cr2(SO4)3 找出氧化剂和还原剂反应前后氧化数的变化:
2×(3-6)= -6
+6
+2
+3
+3
K2Cr2O7 + FeSO4 + H2SO4 → Fe2(SO4)3 + Cr2(SO4)3
3-2=1
第二节
第一章
锌-铜原电池
原电池是由两个半电池组成,每个半电池又称作一个电极, 电极包括传导电子的金属及组成半电池的溶液。
第二节
第一章
2、电极反应 负极: Zn Zn2+ (aq)+2e (氧化反应) 正极: Cu2+ (aq)+2e Cu (还原反应)
第七章 还原反应
第七章 还原反应
7.1 催化氢化
7.2 碳—碳不饱和键的还原
7.3 芳环、杂环的还原 7.4 羰基化合物的还原 7.5 羧酸及其衍生物的还原 7.6 含氮化合物的还原
还原反应:为有机化合物中的不饱和键进行加
氢,以及对分子中与碳原子相连的原子和
基团用氢去置换的反应。
还原反应类型:催化氢化;化学还原;电解
碳-碳叁键属最容易氢化基团,反应条件较温和, 从工业制备价值看,炔烃氢化主要是选择性氢化,
使反应终止在烯烃阶段
RCHC CCH2R' B2H6 RCH2CH R'CH2C 3 B CH3COOH H H H2C C C H CH2 R'
若用钠在液氨中则得到反式烯烃。
RCHC CCH 2R' 2Na NH 3 RCH 2 Na C C Na CH2R' 2NH3 RCH 2 H C C H CH 2 R'
+ 2CH 3CH 2ONa
2CH 3CH2OH H
H
苯甲醚用金属钠在液氨中还原得到3,6-二氢苯甲醚,
在酸性溶液中水解,经酸催化异构化可得环己烯-3-酮。 典型还原反应可用于(±)硫辛酸的合成。
OCH3 (1)BuLi (2) CH2 CH2 O OCH3 CH2CH2OH Na , NH3 EtOH OCH3 CH2CH2OH
COOH Na , NH3 EtOH
OC2H5 Na-EtOH
β-乙氧基萘
COOH
OC2H 5 H 2O,H +
92%
O
四氢酮-2
OCH 3 (1)Na-EtOH H3CO (2)H O
OCH3
7.3.2 杂环催化氢化还原
CH3 H 2 ,Pa/C, CH 2COOH,CH3COONa 55-70 ℃,0.2MPa Cl CH3
7.1 催化氢化
7.2 碳—碳不饱和键的还原
7.3 芳环、杂环的还原 7.4 羰基化合物的还原 7.5 羧酸及其衍生物的还原 7.6 含氮化合物的还原
还原反应:为有机化合物中的不饱和键进行加
氢,以及对分子中与碳原子相连的原子和
基团用氢去置换的反应。
还原反应类型:催化氢化;化学还原;电解
碳-碳叁键属最容易氢化基团,反应条件较温和, 从工业制备价值看,炔烃氢化主要是选择性氢化,
使反应终止在烯烃阶段
RCHC CCH2R' B2H6 RCH2CH R'CH2C 3 B CH3COOH H H H2C C C H CH2 R'
若用钠在液氨中则得到反式烯烃。
RCHC CCH 2R' 2Na NH 3 RCH 2 Na C C Na CH2R' 2NH3 RCH 2 H C C H CH 2 R'
+ 2CH 3CH 2ONa
2CH 3CH2OH H
H
苯甲醚用金属钠在液氨中还原得到3,6-二氢苯甲醚,
在酸性溶液中水解,经酸催化异构化可得环己烯-3-酮。 典型还原反应可用于(±)硫辛酸的合成。
OCH3 (1)BuLi (2) CH2 CH2 O OCH3 CH2CH2OH Na , NH3 EtOH OCH3 CH2CH2OH
COOH Na , NH3 EtOH
OC2H5 Na-EtOH
β-乙氧基萘
COOH
OC2H 5 H 2O,H +
92%
O
四氢酮-2
OCH 3 (1)Na-EtOH H3CO (2)H O
OCH3
7.3.2 杂环催化氢化还原
CH3 H 2 ,Pa/C, CH 2COOH,CH3COONa 55-70 ℃,0.2MPa Cl CH3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、硼氢化反应(硼烷还原反应)
硼烷与碳-碳不饱和键加成而形成烃基硼烷的反应称为硼氢化反应。所形成的烃基硼烷加酸水解使碳-碳键断裂而得饱和烃,从而使不饱和键还原。
硼烷与不对称烯烃加成时,硼原子主要加成到取代基较少的碳原子上。例如:
如烯烃碳原子上取代基数目相等,则取代基的位阻对反应结果影响较大位阻大的位置生成的硼加成物较少。
反应机理:首先异丙醇铝的铝原子与羰基的氧原子结合,异丙基的氢原子与羰基的碳结合形成六元环过渡态,接着异丙基的氢原子以氢负离子的形式转移到羰基的碳原子上,接着铝氧键断裂生成丙酮和新的烷氧基铝化合物,最后醇解得到相应的羟基化合物。
4、化学还原剂分类
金属氢化物还原剂,主要是以钠、钾、锂离子和硼、铝等复氢离子形成的复盐,如氢化锂铝、硼氢化钠等;硼烷类还原剂,如硼烷、乙硼烷等;烷氧基铝还原剂,如异丙醇铝等;金属还原剂,包括铁还原剂、锌和锌汞齐还原剂等;含硫化合物还原剂,包括硫化物、次硫酸钠等;水合肼还原剂。
Raney Ni:Raney镍又称活性镍,为最常用的氢化催化剂,系具有多孔海绵状结构的金属镍微粒。在中性和弱碱性条件下,可用于炔键、烯键、硝基、氰基、羰基、芳杂环和芳稠环的氢化及碳-卤键、碳-硫键的氢解。在酸性条件下活性较低,如pH<3时则活性消失。对苯环及羧酸基的催化活性较弱,对酯及酰胺几乎没有催化作用。
氢化硼钠的还原能力比氢化锂铝弱,选择性较好,可还原醛酮为相应的醇。对环氧基、酯、酰胺、羧酸及其盐、氰基、硝基、卤素、α,β-不饱和双键等基是惰பைடு நூலகம்本的。
不溶于乙醚或四氢呋喃,能溶于水、甲醇和乙醇而不分解,常选择醇类作为溶剂;反应时加入少量的碱能促进反应;不能在酸性条件下使用。反应结束后,可加入稀酸分解还原物并使剩余的氢化硼钠生成硼酸,以便于分离;若需要在高温下进行反应时,可用异丙醇或二甲氧基乙醚做溶剂。
6举例说明下列人名反应
Clemmensen还原;Wolff-黄鸣龙还原;Rosenmund反应
7举例说明用硼烷为还原剂对烯烃进行硼氢化反应时的反应方向与结构的关系?
8完成下列反应
(3)
1解释下列名词
Lindlar催化剂:将钯黑和铂黑吸附在载体上称载体钯或载体铂。如果选用硫酸钡为载体,因为硫酸钡是一种催化剂毒剂,具有抑制催化氢化反应活性的作用,这种部分中毒的催化剂称Lindlar催化剂。
6、举例说明下列人名反应
Clemmensen反应:在酸性条件下,用锌汞齐或锌粉还原醛基、酮基为甲基和亚甲基的反应称Clemmensen反应。
Wolff-黄鸣龙反应:醛、酮在强碱性条件下,与水合肼缩合成腙,进而放氮分解转变为甲基或亚甲基的反应称Wolff-黄鸣龙反应。
Rosenmund反应:酰卤在适当的反应条件下,用催化氢化或金属氢化物选择性地还原为醛的反应称Rosenmund反应。
8完成下列反应
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
第七章还原反应
1解释下列名词
Lindlar催化剂;活性中心;毒剂;抑制剂;钯黑;Raney Ni;
2非均相催化氢化反应的基本过程有哪几个?影响多相催化氢化的主要因素有哪些?
3结合反应实例说明烷氧基铝还原反应的特点、机理和应用范围?
4化学还原剂分哪几类?各类1-2个例子。
5比较LiAlH4与NaBH4在应用范围反应条件及产物后处理方面的异同?
5、比较LiAlH4与NaBH4在应用范围反应条件及产物后处理方面的异同?
四氢锂铝在金属氢化物还原剂中活性最大,应用范围广,但选择性差,主要用于羧酸及其衍生物的还原。使用氢化锂铝应注意以下问题:1)氢化锂铝遇水、酸、含羟基或巯基化合物可分解放出氢气而生成相应的铝盐,所有反应必须在无水条件下操作,常用溶剂为无水乙醚或四氢呋喃等。2)反应结束后,可加入乙醇、含水乙醚、10%氯化铵或乙酸乙酯来分解未反应完的氢化锂铝和还原物。用含水溶剂水解时,其含水量应接近于计算量,使生成颗粒沉淀的偏铝酸锂盐易于分离;如果加入水过多,偏铝酸锂会生成胶状的氢氧化铝,使产品分离困难,并造成产品损失。
毒剂:在催化剂的制备或氢化反应过程中,由于引入少量杂质,使催化剂的活性大大降低或完全丧失,并难以恢复到原有活性,这种现象称为催化剂中毒;如仅使其活性在某一方面受到抑制,经过适当活化处理可以再生,这种现象称为阻化。使催化剂中毒的物质称为毒剂,使催化剂阻化的物质称抑制剂。
钯黑:是一种氢化还原催化剂。钯和铂的水溶性盐类经还原而得的极细金属粉末,呈黑色,称为钯黑或铂黑。
2、非均相催化氢化反应过程一般包括以下五个连续的步骤:底物分子向催化剂界面扩散;底物分子在催化剂表面吸附(包括物理吸附和化学吸附);底物分子在催化剂表面进行化学反应;产物分子由催化剂表面解吸;产物分子由催化剂界面向介质扩散。
3、烷氧基铝化合物如异丙醇铝可以选择性地还原脂肪族醛、酮和芳香族醛、酮,它是仲醇氧化反应(Oppenauer反应)的逆反应。当底物分子中含有烯键、炔键、硝基、缩醛、腈基、卤素等基团时反应不受影响。
活性中心:反应物在催化剂表面的吸附不是均匀的,而是吸附在某些特定的部位即所谓活性中心上。活性中心是指在催化剂表面晶格上一些具有很高活性的特定部位,可为原子、离子,也可为由若干个原子有规则排列而组成的一个小区域。只有当作用物分子的结构与活性中心的结构之间有一定的几何对应关系时,才可能发生化学吸附。表现出催化剂活性。
硼烷与碳-碳不饱和键加成而形成烃基硼烷的反应称为硼氢化反应。所形成的烃基硼烷加酸水解使碳-碳键断裂而得饱和烃,从而使不饱和键还原。
硼烷与不对称烯烃加成时,硼原子主要加成到取代基较少的碳原子上。例如:
如烯烃碳原子上取代基数目相等,则取代基的位阻对反应结果影响较大位阻大的位置生成的硼加成物较少。
反应机理:首先异丙醇铝的铝原子与羰基的氧原子结合,异丙基的氢原子与羰基的碳结合形成六元环过渡态,接着异丙基的氢原子以氢负离子的形式转移到羰基的碳原子上,接着铝氧键断裂生成丙酮和新的烷氧基铝化合物,最后醇解得到相应的羟基化合物。
4、化学还原剂分类
金属氢化物还原剂,主要是以钠、钾、锂离子和硼、铝等复氢离子形成的复盐,如氢化锂铝、硼氢化钠等;硼烷类还原剂,如硼烷、乙硼烷等;烷氧基铝还原剂,如异丙醇铝等;金属还原剂,包括铁还原剂、锌和锌汞齐还原剂等;含硫化合物还原剂,包括硫化物、次硫酸钠等;水合肼还原剂。
Raney Ni:Raney镍又称活性镍,为最常用的氢化催化剂,系具有多孔海绵状结构的金属镍微粒。在中性和弱碱性条件下,可用于炔键、烯键、硝基、氰基、羰基、芳杂环和芳稠环的氢化及碳-卤键、碳-硫键的氢解。在酸性条件下活性较低,如pH<3时则活性消失。对苯环及羧酸基的催化活性较弱,对酯及酰胺几乎没有催化作用。
氢化硼钠的还原能力比氢化锂铝弱,选择性较好,可还原醛酮为相应的醇。对环氧基、酯、酰胺、羧酸及其盐、氰基、硝基、卤素、α,β-不饱和双键等基是惰பைடு நூலகம்本的。
不溶于乙醚或四氢呋喃,能溶于水、甲醇和乙醇而不分解,常选择醇类作为溶剂;反应时加入少量的碱能促进反应;不能在酸性条件下使用。反应结束后,可加入稀酸分解还原物并使剩余的氢化硼钠生成硼酸,以便于分离;若需要在高温下进行反应时,可用异丙醇或二甲氧基乙醚做溶剂。
6举例说明下列人名反应
Clemmensen还原;Wolff-黄鸣龙还原;Rosenmund反应
7举例说明用硼烷为还原剂对烯烃进行硼氢化反应时的反应方向与结构的关系?
8完成下列反应
(3)
1解释下列名词
Lindlar催化剂:将钯黑和铂黑吸附在载体上称载体钯或载体铂。如果选用硫酸钡为载体,因为硫酸钡是一种催化剂毒剂,具有抑制催化氢化反应活性的作用,这种部分中毒的催化剂称Lindlar催化剂。
6、举例说明下列人名反应
Clemmensen反应:在酸性条件下,用锌汞齐或锌粉还原醛基、酮基为甲基和亚甲基的反应称Clemmensen反应。
Wolff-黄鸣龙反应:醛、酮在强碱性条件下,与水合肼缩合成腙,进而放氮分解转变为甲基或亚甲基的反应称Wolff-黄鸣龙反应。
Rosenmund反应:酰卤在适当的反应条件下,用催化氢化或金属氢化物选择性地还原为醛的反应称Rosenmund反应。
8完成下列反应
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
第七章还原反应
1解释下列名词
Lindlar催化剂;活性中心;毒剂;抑制剂;钯黑;Raney Ni;
2非均相催化氢化反应的基本过程有哪几个?影响多相催化氢化的主要因素有哪些?
3结合反应实例说明烷氧基铝还原反应的特点、机理和应用范围?
4化学还原剂分哪几类?各类1-2个例子。
5比较LiAlH4与NaBH4在应用范围反应条件及产物后处理方面的异同?
5、比较LiAlH4与NaBH4在应用范围反应条件及产物后处理方面的异同?
四氢锂铝在金属氢化物还原剂中活性最大,应用范围广,但选择性差,主要用于羧酸及其衍生物的还原。使用氢化锂铝应注意以下问题:1)氢化锂铝遇水、酸、含羟基或巯基化合物可分解放出氢气而生成相应的铝盐,所有反应必须在无水条件下操作,常用溶剂为无水乙醚或四氢呋喃等。2)反应结束后,可加入乙醇、含水乙醚、10%氯化铵或乙酸乙酯来分解未反应完的氢化锂铝和还原物。用含水溶剂水解时,其含水量应接近于计算量,使生成颗粒沉淀的偏铝酸锂盐易于分离;如果加入水过多,偏铝酸锂会生成胶状的氢氧化铝,使产品分离困难,并造成产品损失。
毒剂:在催化剂的制备或氢化反应过程中,由于引入少量杂质,使催化剂的活性大大降低或完全丧失,并难以恢复到原有活性,这种现象称为催化剂中毒;如仅使其活性在某一方面受到抑制,经过适当活化处理可以再生,这种现象称为阻化。使催化剂中毒的物质称为毒剂,使催化剂阻化的物质称抑制剂。
钯黑:是一种氢化还原催化剂。钯和铂的水溶性盐类经还原而得的极细金属粉末,呈黑色,称为钯黑或铂黑。
2、非均相催化氢化反应过程一般包括以下五个连续的步骤:底物分子向催化剂界面扩散;底物分子在催化剂表面吸附(包括物理吸附和化学吸附);底物分子在催化剂表面进行化学反应;产物分子由催化剂表面解吸;产物分子由催化剂界面向介质扩散。
3、烷氧基铝化合物如异丙醇铝可以选择性地还原脂肪族醛、酮和芳香族醛、酮,它是仲醇氧化反应(Oppenauer反应)的逆反应。当底物分子中含有烯键、炔键、硝基、缩醛、腈基、卤素等基团时反应不受影响。
活性中心:反应物在催化剂表面的吸附不是均匀的,而是吸附在某些特定的部位即所谓活性中心上。活性中心是指在催化剂表面晶格上一些具有很高活性的特定部位,可为原子、离子,也可为由若干个原子有规则排列而组成的一个小区域。只有当作用物分子的结构与活性中心的结构之间有一定的几何对应关系时,才可能发生化学吸附。表现出催化剂活性。