专题 相似与特殊图形(五)圆
初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
【精编版】数学中考专题训练——相似三角形与圆的综合

中考专题训练——相似三角形与圆的综合1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.参考答案与试题解析1.如图,AB是⊙O的直径,C是⊙O上一点,D是的中点,E为OD延长线上一点,且∠CAE=2∠C,AC与BD交于点H,与OE交于点F.(1)求证:AE是⊙O的切线;(2)若⊙O的半径10,,求线段DH的长.【分析】(1)由垂径定理得出OD⊥AC,进而得出∠F AO+∠AOF=90°,由圆周角定理结合已知条件得出∠AOF=∠CAE,得出∠F AO+∠CAE=90°,即∠OAE=90°,即可证明AE是⊙O的切线;(2)连接AD,利用解直角三角形得出tan B==,设AD=3x,则BD=4x,AB=5x,由⊙O的半径10,得出AB=5x=20,求出x=4,求出AD=12,BD=16,继而证明△ADH∽△BDA,利用相似三角形的性质即可求出DH的长.【解答】(1)证明:如图1,∵D是的中点,∴OD⊥AC,∴∠AFO=90°,∴∠F AO+∠AOF=90°,∵∠AOF=2∠C,∠CAE=2∠C,∴∠AOF=∠CAE,∴∠F AO+∠CAE=90°,即∠OAE=90°,∵OA是半径,∴AE是⊙O的切线;(2)解:如图2,连接AD,∵∠C=∠B,,tan B=,∵AB是直径,∴∠ADB=90°,∴tan B==,设AD=3x,则BD=4x,AB=5x,∵⊙O的半径10,∴AB=5x=20,∴x=4,∴AD=3×4=12,BD=4×4=16,∵D是的中点,∴AD=CD=12,∴∠DAC=∠C,∵∠B=∠C,∴∠DAC=∠B,∵∠ADH=∠BDA∴△ADH∽△BDA,∴,即,∴DH=9.2.如图,AD是⊙O的弦,PO交⊙O于点B,∠ABP=∠ABD,且AB2=PB•BD,连接P A.(1)求证:P A是⊙O的切线;(2)若P A=2PB=4,求BD的长.【分析】(1)延长BO交⊙O于点E,连接AE,先证明△PBA∽△ABD,得出∠P AB=∠ADB,由圆周角定理得出∠P AB=∠E,由等腰三角形的性质得出∠OAE=∠E,进而得出∠P AB=∠OAE,由圆周角定理得出∠BAE=∠BAO+∠OAE=90°,进而得出∠BAO+∠P AB=∠P AO=90°,即可证明P A是⊙O的切线;(2)延长BO交⊙O于点E,连接AE,DE,利用勾股定理列方程求出⊙O的半径为3,进而得出OA=3,OP=5,BE=6,再证明△P AO∽△EDB,利用相似三角形的性质即可求出BD的长度.【解答】(1)证明:如图1,延长BO交⊙O于点E,连接AE,∵AB2=PB•BD,∴,∵∠ABP=∠ABD,∴△PBA∽△ABD,∴∠P AB=∠ADB,∵∠ADB=∠E,∴∠P AB=∠E,∵OA=OE,∴∠OAE=∠E,∴∠P AB=∠OAE,∵BE为直径,∴∠BAE=∠BAO+∠OAE=90°,∴∠BAO+∠P AB=∠P AO=90°,∵OA是半径,∴P A是⊙O的切线;(2)解:如图2,延长BO交⊙O于点E,连接AE,DE,∵P A=2PB=4,∴PB=2,设OA=OB=x,则OP=x+2,∵∠P AO=90°,∴P A2+AO2=OP2,即42+x2=(x+2)2,解得:x=3,∴OA=3,OP=2+3=5,BE=3+3=6,∵△PBA∽△ABD,∴∠P=∠BAD,∵∠BAD=∠BED,∴∠P=∠BED,∵BE为直径,∴∠BDE=90°,∴∠P AO=∠EDB=90°,∴△P AO∽△EDB,∴,即,∴BD=.3.如图,在⊙O中,直径AB与弦CD相交于点H,点B是弧CD的中点,过点A作AE∥CD,交射线DO于点E,DE与⊙O交于点F,BF与CD交于点G.(1)求证:AE是⊙O的切线.(2)已知AO=5,AE=,求BG的长.【分析】(1)利用垂径定理的推论得到AB⊥CD,利用平行线的性质和圆的切线的判定定理解答即可;(2)过点F作FM⊥AB于点M,利用勾股定理和相似三角形的判定与性质求出线段OE,OM,MF的长,利用全等三角形的判定与性质求得线段BH的长,利用勾股定理和相似三角形的判定与性质得出比例式即可求得结论.【解答】(1)证明:∵点B是弧CD的中点,AB为⊙O的直径,∴AB⊥CD,∵AE∥CD,∴AE⊥OA.∵OA为⊙O的半径,∴AE是⊙O的切线;(2)解:过点F作FM⊥AB于点M,如图,∵AO=5,AE=,AE⊥OA,∴OE==.∵AE⊥AB,FM⊥AB,∴FM∥AE,∴△OMF∽△OAE,∴,∴,∴OM=3,MF=4.∴BM=OB+OM=5+3=8,∴BF==4.在△OFM和△ODH中,,∴△OFM≌△ODH(AAS),∴OM=OH=3,∴BH=OB﹣OH=2.∵FM⊥AB,AB⊥CD,∴CD∥FM,∴△BGH∽△BFM,∴,∴,∴BG=.4.如图,AB是⊙O的直径,C、D是⊙O上两点,且,过点D的直线DE⊥AC交AC的延长线于点E,交AB的延长线于点F,连接AD、OE交于点G.(1)求证:DE是⊙O的切线;(2)若,⊙O的半径为2,求阴影部分的面积.【分析】(1)连接OD,证明DE是⊙O的切线,关键是证明OD⊥DE;(2)连接BD,根据(1)中OD∥AE得△OGD∽△AEG,从而求出AE的长,再根据△AED∽△ADB求出AD的长,再利用三角函数求出DF的长,利用S阴影=S△DOF﹣S扇形DOB求出阴影部分的面积.【解答】(1)证明:如图所示,连接OD,∵,∴∠CAD=∠DAB,∵OA=OD,∴∠DAB=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图所示,连接BD,∵OD//AE,∴△OGD∽△EGA,∴,∵,⊙O的半径为2,∴,∴AE=3.∵AB是⊙O的直径,DE⊥AE,∴∠AED=∠ADB=90°,∵∠CAD=∠DAB,∴△AED∽△ADB,∴,即,∴,在Rt△ADB中,,∴∠DAB=30°,∴∠EAF=60°,∠DOB=60°,∴∠F=30°,∵OD=2,∴,∴.5.某数学小组在研究三角形的内切圆时,遇到了如下问题:如图①,已知等腰△ABC的底边AB为12,底边上的高CD为8,如何在这个等腰三角形中画出其内切圆?小红同学经过计算,在高CD上截取DO=3,以点O为圆心,以3为半径作的圆即为所求.(1)小红的方法是否正确?如果正确,给出理由;如果不正确,请给出你的方法.(2)如图②,在图①的基础上,以AB为边作一个正方形ABEF,连接FC并延长与BE 交于点G,则BG:GE的值为.【分析】(1)过点O作OH⊥AC于点H,由等腰三角形的性质得出AD=BD=6,OC=5,由勾股定理得出AC=10,证明△CHO∽△CDA,,由相似三角形的性质得出OH=3,继而得出AC是⊙O的切线,同理,BC是⊙O的切线,AB是⊙O的切线,即可得出⊙O是等腰△ABC的内切圆;(2)延长DC交FE于点M,由正方形的性质得出BE=AB=12,EF∥AB,由CA=CB,CD⊥AB,得出AD=BD=6,DM⊥EF,继而得出FM=ME=6,DM=BE=12,由三角形中位线的性质得出GE=8,进而得出BG=4,即可求出BG:GE的值.【解答】解:(1)小红的方法正确,理由如下:如图①,过点O作OH⊥AC于点H,∵等腰△ABC的底边AB为12,底边上的高CD为8,OD=3,∴AD=BD=6,OC=CD﹣OD=8﹣3=5,∴AC===10,∵∠CHO=∠CDA=90°,∠HCO=∠DCA,∴△CHO∽△CDA,∴,即,∴OH=3,∵OH⊥AC,∴AC是⊙O的切线,同理,BC是⊙O的切线,∵OD⊥AB,OD=3,∴AB是⊙O的切线,∴⊙O是等腰△ABC的内切圆;(2)如图②,延长DC交FE于点M,∵四边形ABEF是正方形,AB=12,∴BE=AB=12,EF∥AB,∵CA=CB,CD⊥AB,∴AD=BD=6,DM⊥EF,∴FM=ME=6,DM=BE=12,∴MC是△EFG的中位线,MC=DM﹣CD=12﹣8=4,∴GE=2CM=2×4=8,∴BG=BE﹣GE=12﹣8=4,∴,故答案为:.6.如图,AB是⊙O的直径,CD是一条弦.过点A作DC延长线的垂线,垂足为点E.连接AC,AD.(1)证明:△ABD∽△ACE.(2)若,BD=5,CD=9.①求EC的长.②延长CD,AB交于点F,点G是弦CD上一点,且∠CAG=∠F,求CG的长.【分析】(1)利用圆内接四边形的性质求得∠ACD+∠ABD=180°,推出∠ABD=∠ACE,即可证明;(2)①由△ABD∽△ACE,推出AE=3CE,在Rt△ADE中,利用勾股定理求解即可;②证明△EAG∽△EDA,利用三角形的性质求解即可.【解答】(1)证明:∵AB是⊙O的直径,AE⊥CE,∴∠AEC=∠ADB=90°,∵四边形ABDC是圆内接四边形,∴∠ACD+∠ABD=180°,又∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD∽△ACE;(2)解:①在Rt△BDA中,AB=5,BD=5,∴AD==15,∵△ABD∽△ACE,∴,即,∴AE=3CE,在Rt△ADE中,AD2=AE2+DE2,∴152=(3CE)2+(9+CE)2,解得:CE=﹣(舍去)或CE=3;∴EC的长为3;②∵△ABD∽△ACE,∴∠BAD=∠CAE,∵∠CAG=∠F,∠EAG=∠CAE+∠CAG,∠EDA=∠BAD+∠F,∴∠EAG=∠EDA,∴△EAG∽△EDA,∴,∴AE2=GE•ED,即AE2=(EC+CG)•ED,∵CE=3,∴AE=3CE=9,∴92=(3+CG)×12,∴CG=.7.如图,△ABC内接于⊙O,BC是直径,AD平分∠BAC交于点D,EF切⊙O于D,BF ⊥AB交EF于F.(1)求证:四边形BCEF为平行四边形.(2)若BF=,AB=4,求AE的长.【分析】(1)连接OD,证明BF∥AE,BC∥EF,可得结论;(2)根据平行四边形的性质可得CE=BF=,如图,连接OD,过点C作CG⊥EF于G,证明四边形CODG是正方形,△ABC∽△GCE,列比例式可得AE的长.【解答】(1)证明:连接OD,∵BF⊥AB,∴∠ABF=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAC+∠ABF=180°,∴BF∥AE,∵AD平分∠BAC,∴∠BAD=∠CAD,∴=,∴BC⊥OD,∵EF切⊙O于D,∴EF⊥OD,∴BC∥EF,∴四边形BCEF为平行四边形;(2)解:由(1)知:四边形BCEF为平行四边形,∴CE=BF=,如图,连接OD,过点C作CG⊥EF于G,∴∠COD=∠ODG=∠CGD=90°,∵OC=OD,∴四边形CODG是正方形,∴CG=OC,∠BCG=90°,∴∠ACB+∠ECG=90°,∵∠ACB+∠ABC=90°,∴∠ECG=∠ABC,∵∠CGE=∠BAC=90°,∴△ABC∽△GCE,∴=,设⊙O的半径是r,则BC=2r,∴=,∴r=(负值舍),∴BC=2,∴AC===2,∴AE=AC+CE=2+=.8.如图,AB为⊙O的直径,四边形ABCD内接于⊙O.点D为的中点,对角线AC,BD 交于点E,⊙O的切线AF交BD的延长线于点F,切点为A.(1)求证:AE=AF;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)由点D为的中点,可得∠CBD=∠ABD,根据AB为⊙O的直径,有∠AEF=∠BEC=90°﹣∠CBD,又AF是⊙O的切线,AB为⊙O的直径,有∠F=90°﹣∠ABD,即得∠AEF=∠F,AE=AF;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC 便可.【解答】(1)证明:∵点D为的中点,∴=,∴∠CBD=∠ABD,∵AB为⊙O的直径,∴∠ACB=90°,∴∠AEF=∠BEC=90°﹣∠CBD,∵AF是⊙O的切线,AB为⊙O的直径,∴∠BAF=90°,∴∠F=90°﹣∠ABD,∴∠AEF=∠F,∴AE=AF;(2)∵AF是⊙O的切线,∴∠F AB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠F AD=90°,∴∠ABD=∠F AD,∵∠ABD=∠CAD,∴∠F AD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,AB=4,BF=5,∴AF==3,∴AE=AF=3,∵S△ABF=AB•AF=BF•AD,∴AD===,∴DE===,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴=,∴BC==,∴sin∠BAC==,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴sin∠BDC=.9.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在上取点F,使=,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.【分析】(1)连接OF,证明△DAO≌△DFO(SAS),可得∠DAO=90°=∠DFO,即可得DF与半圆O相切;(2)连接AF,证明△AOD∽△FBA,可得=,DO=,在Rt△AOD中,AD==,即可得矩形ABCD的面积是.【解答】(1)证明:连接OF,如图:∵=,∴∠DOA=∠FOD,∵OA=OF,OD=OD,∴△DAO≌△DFO(SAS),∴∠DAO=∠DFO,∵四边形ABCD是矩形,∴∠DAO=90°=∠DFO,∴OF⊥DF,又OF是半圆O的半径,∴DF与半圆O相切;(2)解:连接AF,如图:∵AO=FO,∠DOA=∠DOF,∴DO⊥AF,∵AB为半圆直径,∴∠AFB=90°,∴BF⊥AF,∴DO∥BF,∴∠AOD=∠ABF,∵∠OAD=∠AFB=90°,∴△AOD∽△FBA,∴=,即=,∴DO=,在Rt△AOD中,AD===,∴矩形ABCD的面积为AD•AB=×10=,答:矩形ABCD的面积是.10.如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P在OE延长线上,且满足∠PCA=∠ABC,连接P A,PC,AF.(1)求证:PC是⊙O的切线;(2)证明:PE•OD=DE•OE.【分析】(1)连接OC,根据等腰三角形性质及圆周角定理可得∠PCO=90°,然后由切线的判定定理可得结论;(2)连接EC,FC,OC,证明Rt△ECD∽Rt△CFD,得出CD2=DE•DF,继而得出CD2=DE•OD+DE•OE,同理得出CD2=OD•DE+OD•PE,进而得出DE•OD+DE•OE=OD•DE+OD•PE,即可证明PE•OD=DE•OE.【解答】证明:(1)如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵∠PCA=∠ABC,∴∠PCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠ACO+∠PCA=90°,即∠PCO=90°,∵OC是圆O的半径,∴PC是圆O的切线;(2)如图2,连接EC,FC,OC,∵EF是直径,∴∠ECF=90°,∴∠CEF+∠CFE=90°,∵D是AC的中点,EF是直径,∴AC⊥EF,∴∠CEF+∠ECD=90°,∠EDC=∠CDF=90°,∴∠ECD=∠CFD,∴Rt△ECD∽Rt△CFD,∴,∴CD2=DE•DF,∴CD2=DE(OD+OF)=DE(OD+OE)=DE•OD+DE•OE,同理Rt△PCD∽Rt△COD,∴,∴CD2=OD•PD=OD(PE+DE)=OD•DE+OD•PE,∴DE•OD+DE•OE=OD•DE+OD•PE,∴PE•OD=DE•OE.11.如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点B的切线交AC延长线于点D,点E为上一点,且BC=EC,连接BE交AC于点F.(1)求证:BC平分∠DBE;(2)若AB=2,tan E=,求EF的长.【分析】(1)因为BD是⊙O的切线,所以∠∠CBD=∠A,因为BC=EC,所以∠E=∠EBC,由同弧所对的圆周角相等可得,∠A=∠E,所以∠EBC=∠CBD,即BC平分∠DBE.(2)由(1)可知,tan E=tan A=tan∠EBC=,因为AB为⊙O的直径,所以∠ACB=90°,所以tan A==,即AC=2BC,由AB=2结合勾股定理可得,BC2+AC2=AB2,即BC2+4BC2=AB2,解得BC=2,AC=4,又因为tan∠EBC==,所以CF=1,AF=3,BF=,易证△ABF∽△ECF,所以AF:EF=BF:CF,即3:EF=:1,解之即可.【解答】(1)证明:∵BD是⊙O的切线,∴∠∠CBD=∠A,∵BC=EC,∴∠E=∠EBC,∵∠A=∠E,∴∠EBC=∠CBD,即BC平分∠DBE.(2)解:由(1)知,∠A=∠E=∠EBC,∴tan E=tan A=tan∠EBC=,∵AB为⊙O的直径,∴∠ACB=90°,∴tan A==,即AC=2BC,∵AB=2,∴BC2+AC2=AB2,即BC2+4BC2=AB2,∴BC=2,AC=4,∵tan∠EBC==,∴CF=1,AF=3,BF=,∵∠A=∠E,∠ABF=∠ECF,∴△ABF∽△ECF,∴AF:EF=BF:CF,即3:EF=:1,解得EF=.12.如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O经过点C且与AB边相切于点E,∠F AC=∠BDC.(1)求证:AF是⊙O的切线;(2)若BC=6,sin B=,求⊙O的半径及OD的长.【分析】(1)作OH⊥F A,垂足为H,连接OE,利用直角三角形斜边上中线的性质得AD =CD,再通过导角得出AC是∠F AB的平分线,再利用角平分线的性质可得OH=OE,从而证明结论;(2)根据BC=6,sin B=,可得AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,利用Rt△AOE∽Rt△ABC,可得r的值,再利用勾股定理求出OD的长.【解答】(1)证明:如图,作OH⊥F A,垂足为H,连接OE,∵∠ACB=90°,D是AB的中点,∴CD=AD=,∴∠CAD=∠ACD,∵∠BDC=∠CAD+∠ACD=2∠CAD,又∵∠F AC=,∴∠F AC=∠CAB,即AC是∠F AB的平分线,∵点O在AC上,⊙O与AB相切于点E,∴OE⊥AB,且OE是⊙O的半径,∴OH=OE,OH是⊙O的半径,∴AF是⊙O的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,sin B=,∴可设AC=4x,AB=5x,∴(5x)2﹣(4x)2=62,∴x=2,则AC=8,AB=10,设⊙O的半径为r,则OC=OE=r,∵Rt△AOE∽Rt△ABC,∴,即,∴r=3,∴AE=4,又∵AD=5,∴DE=1,在Rt△ODE中,由勾股定理得:OD=.13.如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【分析】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.【解答】(1)证明:∵AD与⊙O相切于点A,∴∠DAO=90°,∴∠D+∠ABD=90°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BEC=180°﹣∠AEB=90°,∴∠ACB+∠EBC=90°,∵AB=AC,∴∠ACB=∠ABC,∴∠D=∠EBC;(2)解:∵CD=2BC,∴BD=3BC,∵∠DAB=∠CEB=90°,∠D=∠EBC,∴△DAB∽△BEC,∴==3,∴AB=3EC,∵AB=AC,AE=3,∴AE+EC=AB,∴3+EC=3EC,∴EC=1.5,∴AB=3EC=4.5,∴⊙O的半径为2.25.14.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC的角平分线AF交BC于点D,交⊙O于点E,连接BE和BF,∠F=∠ABE.(1)求证:BF是⊙O的切线;(2)若AC=5,AB=13,求CD的长.【分析】(1)由圆周角定理得出∠ACB=∠AEB=90°,进而得出∠F+∠FBE=90°,由∠F=∠ABE,得出∠ABE+∠FBE=90°,即∠ABF=90°,即可证明BF是⊙O的切线;(2)连接OE交BC于点G,由∠ACB=∠AEB=90°,AC=5,AB=13,得出BC=12,,由圆周角定理得出,进而得出OE垂直平分BC,即可求出,OG是△ABC的中位线,得出,求出EG=4,由∠CAE=∠CBE,得出tan∠CAD=tan∠EBG,得出,即可求出.【解答】(1)证明:如图1,∵AB是直径,∴∠ACB=∠AEB=90°,∴∠F+∠FBE=90°,∵∠F=∠ABE,∴∠ABE+∠FBE=90°,即∠ABF=90°,∴AB⊥BF,∵AB是⊙O的直径,∴BF是⊙O的切线;(2)解:如图2,连接OE交BC于点G,∵∠ACB=∠AEB=90°,AC=5,AB=13,∴BC===12,,∵AF平分∠BAC,∴∠CAE=∠BAE,∴,∴OE垂直平分BC,∴,OG是△ABC的中位线,∴,∴EG=OE﹣OG=﹣=4,∵∠CAE=∠CBE,∴tan∠CAD=tan∠EBG,∴,即,∴.15.如图,在△ABC中,AD平分∠BAC交BC于点D,以AD为直径作⊙O交AC于点F,点B恰好落在⊙O上,过D点作⊙O的切线DE交AC于点E,连接DF.(1)求证:∠FDE=∠CDE;(2)若AB=12,tan∠C=,求线段DE的长.【分析】(1)由切线的性质及圆周角定理得出∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,证明△F AD≌△BAD,得出∠ADF=∠ADB,即可证明∠FDE=∠CDE;(2)由解直角三角形得出BC=16,由勾股定理得出AC=20,由全等三角形的性质得出AF=AB=12,进而得出CF=8,由解直角三角形得出DF=6,进而得出BD=DF=6,由勾股定理得出AD=6,证明△EAD∽△DAB,由相似三角形的性质得出AE=15,再利用勾股定理即可求出DE=3.【解答】(1)证明:∵DE是⊙O的切线,AD为直径,∴AD⊥DE,∴∠ADF+∠FDE=90°,∠ADB+∠CDE=90°,∵AD是直径,∴∠AFD=∠ABD=90°∵AD平分∠BAC,∴∠F AD=∠BAD,在△F AD和△BAD中,,∴△F AD≌△BAD(AAS),∴∠ADF=∠ADB,∴∠FDE=∠CDE;(2)解:在Rt△ABC中,AB=12,tan∠C=,∴BC===16,∴AC===20,∵△F AD≌△BAD,∴AF=AB=12,∴CF=AC﹣AF=20﹣12=8,在Rt△CDF中,DF=CF•tan∠C=8×=6,∴BD=DF=6,∴AD===6,∵∠ABD=∠ADE=90°,∠EAD=∠DAB,∴△EAD∽△DAB,∴,即,∴AE=15,∴DE===3.16.如图,以△ABC的一边AB为直径作⊙O,交BC于点D,交AC于点E,点D为BE的中点.(1)试判断△ABC的形状,并说明理由;(2)若直线l切⨀O于点D,与AC及AB的延长线分别交于点F、点G.∠BAC=45°,求的值.【分析】(1)连接AD,由AB为⊙O的直径可得出AD⊥BC,由点D为弧BE的中点利用圆周角定理可得出∠BAD=∠DAC,利用等角的余角相等可得出∠ABD=∠ACD,进而可证出△ABC为等腰三角形;(2)连接OD,则OD⊥GF,由OA=OD可得出∠ODA=∠BAD=∠DAC,利用“内错角相等,两直线平行”可得出OD∥AC,根据平行线的性质可得出=、∠GOD =∠BAC=45°,根据等腰直角三角形的性质可得出GO=DO=BO,进而可得出===.【解答】解:(1)△ABC是等腰三角形,理由如下:连接AD,如图1所示.∵AB为⊙O的直径,∴AD⊥BC.∵点D为弧BE的中点,∴=,∴∠BAD=∠DAC,∴∠ABD=∠ACD,∴△ABC为等腰三角形.(2)连接OD,如图2所示.∵直线l是⊙O的切线,点D是切点,∴OD⊥GF.∵OA=OD,∴∠ODA=∠BAD=∠DAC,∴OD∥AC,∴=,∠GOD=∠BAC=45°,∴△GOD为等腰直角三角形,∴GO=DO=BO,∴===.∴=.17.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.求证:(1)BC是⊙O的切线;(2)CD2=CE•CA.【分析】(1)连接OD,证DO∥AB,得出∠ODB=90°即可得出结论;(2)连接DE,证△CDE∽△CAD,根据线段比例关系即可得出结论.【解答】证明:(1)连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∵OD是⊙O的半径,∴BC是⊙O的切线;(2)连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴,∴CD2=CE•CA.18.如图,AB是⊙O的直径,点C,D在⊙O上,且弧CD=弧CB,过点C作CE∥BD,交AB的延长线于点E,连接AC交BD于F.(1)求证:CE是⊙O的切线;(2)过点C作CH⊥AE于H点,CH交BD于M,若CA=CE=6,求CH和BF的长.【分析】(1)连接OC,由垂径定理的推论得出OC⊥BD,由CE∥BD,得出OC⊥CE,即可证明CE是⊙O的切线;(2)连接OC,BC,由等腰三角形的性质得出∠CAB=∠E,由圆周角定理得出∠BOC =2∠E,由OC⊥CE,得出∠BOC+∠E=90°,求出∠E=30°,进而求出CH=3,EH =3,由等腰三角形的性质得出∠CAB=30°,AE=6,由圆周角定理得出∠ACB =90°,由解直角三角形求出AB=4,由CE∥BD,得出,代入计算即可求出BF=4,得出答案.【解答】(1)证明:如图1,连接OC,∵弧CD=弧CB,OC是半径,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∵OC是半径,∴CE是⊙O的切线;(2)解:如图2,连接OC,BC,∵CA=CE=6,∴∠CAB=∠E,∵∠BOC=2∠BAC,∴∠BOC=2∠E,∵OC⊥CE,∴∠BOC+∠E=90°,∴2∠E+∠E=90°,∴∠E=30°,∵CH⊥AE,∴CH=CE=×6=3,EH===3,∵CA=CE=6,CH⊥AE,∴∠CAB=∠E=30°,AE=2EH=6,∵AB为直径,∴∠ACB=90°,∴cos∠CAB=,∴AB====4,∵CE∥BD,∴,即,∴BF=4,∴CH的长为3,BF的长为4.19.如图,⊙O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上且FC=FE.(1)若∠A=40°,求∠DCB的度数;(2)求证:CF是⊙O的切线;(3)若,BE=6,求⊙O的半径长.【分析】(1)由圆周角定理得出∠ABC=90°,由∠A=40°,得出∠ACB=50°,由点D是的中点,即可求出∠DCB=∠ACB=25°;(2)由圆周角定理得出∠BCD+∠CEF=90°,由点D是的中点,得出∠DCB=∠DCA,由等腰三角形的性质得出∠FCE=∠FEC,进而得出∠ACF=90°,即可证明CF 是⊙O的切线;(3)由解直角三角形得出=,设BC=4x,则CF=5x,BF=5x﹣6,由勾股定理得出方程(4x)2+(5x﹣6)2=(5x)2,解方程求出x=3,得出BC=12,CF=15,BF=9,再证明△CFB∽△AFC,利用相似三角形的性质求出AC=20,即可求出⊙O的半径长为10.【解答】(1)解:∵AC是直径,∴∠ABC=90°,∵∠A=40°,∴∠ACB=90°﹣∠A=90°﹣40°=50°,∵点D是的中点,∴∠DCB=∠DCA=∠ACB=×50°=25°;(2)证明:∵AC是直径,∴∠ABC=90°,∴∠BCD+∠CEF=90°,∵点D是的中点,∴∠DCB=∠DCA,∵FC=FE,∴∠FCE=∠FEC,∴∠DCA+∠FCE=90°,即∠ACF=90°,∴AC⊥CF,∵AC是直径,∴CF是⊙O的切线;(3)解:在Rt△CBF中,sin∠F=,∵,BE=6,∴=,∴设BC=4x,则CF=5x,BF=5x﹣6,∵BC2+BF2=CF2,∴(4x)2+(5x﹣6)2=(5x)2,解得:x=3或(不符合题意,舍去),∴BC=12,CF=15,BF=9,∵∠CBF=∠ACF=90°,∠CFB=∠AFC,∴△CFB∽△AFC,∴,即,∴AC=20,∴OA=AC=×20=10,∴⊙O的半径长为10.20.已知:如图,AB、AC是⊙O的两条弦,AB=AC,点M、N分别在弦AB、AC上,且AM=CN,AM<AN,联结OM、ON.(1)求证:OM=ON;(2)当∠BAC为锐角时,如果AO2=AM•AC,求证:四边形AMON为等腰梯形.【分析】(1)过点O作OE⊥AB于点E,OF⊥AC于点F,利用圆心角,弦,弧,弦心距之间的关系定理可得OE=OF,AE=CF=AB,利用等式的性质可得EM=FN,再利用全等三角形的判定与性质解答即可;(2)连接OB,利用相似三角形的判定与性质得到∠AOM=∠B,利用同圆的半径线段,等腰三角形的性质和角平分线性质定理的逆定理得到∠AOM=∠OAC,则得OM∥ON,利用等腰梯形的定义即可得出结论.【解答】证明:(1)过点O作OE⊥AB于点E,OF⊥AC于点F,如图,∵AB=AC,OE⊥AB,OF⊥AC,∴OE=OF,AE=CF=AB.∵AM=CN,∴AE﹣AM=FC﹣CN,即:EM=FN.在△OEM和△OFN中,,∴△OEM≌△OFN(SAS).∴OM=ON;(2)连接OB,如图,∵AO2=AM•AC,AC=AB,∴AO2=AM•AB,∴.∵∠MAO=∠OAB,∴△OAM∽△BAO,∴∠AOM=∠B.∵OA=OB,∴∠OAB=∠B,∴∠OAB=∠AOM,∴OM=AM.∵OM=ON,∴AM=ON.∵OE=OF,OE⊥AB,OF⊥AC,∴∠OAB=∠OAC,∴∠AOM=∠OAC,∴OM∥AN.∵AM<AN,∴OM<AN,∴四边形AMON为梯形,∵AM=ON,∴四边形AMON为等腰梯形.21.如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.【分析】(1)连接OE,利用圆的切线的性质定理,平行线的判定与性质,同圆的半径相等和等腰三角形的判定定理解答即可;(2)连接BE,利用直径所对的圆周角为直角,直角三角形的边角关系定理和相似三角形的判定与性质解答即可.【解答】(1)证明:连接OE,如图,∵AC是⊙O的切线,∴OE⊥AC.∵AC⊥BC,∴OE∥BC,∴∠OED=∠F.∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠F,∴BD=BF;(2)解:连接BE,如图,∵∠BDE=∠F,∴tan∠BDE=tan∠F=2,∵CF=1,tan∠F=,∴CE=2.∵BD是⊙O直径,∴∠BED=90°,∴BE⊥EF.∵EC⊥BF,∴△ECF∽△BCE,∴,∴EC2=BC•CF.∴BC=4.∴BF=BC+CF=5.∴BD=BF=5,即⊙O的直径为5.22.如图,边长为6的等边三角形ABC内接于⊙O,点D为AC上的动点(点A、C除外),BD的延长线交⊙O于点E,连接CE.(1)求证:△CED∽△BAD;(2)当DC=2AD时,求CE的长.【分析】(1)由对顶角的性质,圆周角定理得出∠CDE=∠BDA,∠A=∠E,即可证明△CED∽△BAD;(2)过点D作DF⊥EC于点F,由等边三角形的性质得出∠A=60°,AC=AB=6,由DC=2AD,得出AD=2,DC=4,由相似三角形的性质得,得出EC=3DE,由含30°角的直角三角形的性质得出DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,进而得出FC=5x,利用勾股定理得出一元二次方程(x)2+(5x)2=42,解方程求出x的值,即可求出EC的长度.【解答】(1)证明:如图1,∵∠CDE=∠BDA,∠A=∠E,∴△CED∽△BAD;(2)解:如图2,过点D作DF⊥EC于点F,∵△ABC是边长为6等边三角形,∴∠A=60°,AC=AB=6,∵DC=2AD,∴AD=2,DC=4,∵△CED∽△BAD,∴,∴EC=3DE,∵∠E=∠A=60°,DF⊥EC,∴∠EDF=90°﹣60°=30°,∴DE=2EF,设EF=x,则DE=2x,DF=x,EC=6x,∴FC=5x,在Rt△DFC中,DF2+FC2=DC2,∴(x)2+(5x)2=42,解得:x=或﹣(不符合题意,舍去),∴EC=6x=.23.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AE=12,,求⊙O的半径和EF的长.【分析】(1)连接OE,根据直径所对的圆周角是直角可得∠AEB=90°,从而可得∠AEO+∠OEB=90°,再利用角平分线和等腰三角形的性质可得∠CAE=∠AEO,从而可得∠BEF=∠AEO,然后可得∠BEF+∠OEB=90°,从而求出∠OEF=90°,即可解答;(2)利用(1)的结论可得∠BEF=∠EAO,从而可证△FEB∽△F AE,然后利用相似三角形的性质可求出BE的长,再在Rt△ABE中利用勾股定理求出AB的长,从而求出EF 的长,即可解答.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠AEO+∠OEB=90°,∵OA=OE,∴∠EAO=∠AEO,∵AE平分∠CAB,∴∠EAO=∠CAE,∴∠CAE=∠AEO,∵∠BEF=∠CAE,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:∵∠BEF=∠AEO,∠EAO=∠AEO,∴∠BEF=∠EAO,∵∠F=∠F,∴△FEB∽△F AE,∴==,∴==,∴BE=6,∴AB===30,∴=,∴EF=20,∴⊙O的半径为15,EF的长为20.。
第5章《圆》大单元教学课件山东省泰安市泰山区泰山学院附属中学2022—2023年鲁教版(五四制)数学

主题单元结构分析(纵向)
2.1图形的性质
了解(知道、初步认识)
理解(认识、会)
掌握(能)
点线面 角
抽象出的点线面体概念;
线段和差、中点;距离;角的概念;
两点确定一条直线;两点之间线段最短;
运用(探索并证明、应用) 比较大小;度量表达距离;单位换算;计算角 的和差;尺规作图(角、角平分线)
相交线 与平行 定理的证明(例74);平行于同一条直线的
弧长、扇形的面积、不是直接给出的,而是要求学生进行探索, 因此,《弧长及扇形的面积》这节不仅仅要求学生会计算,而且应该 使他们理解公式的意义,理解算法的意义.需要说明的是,推理证明 是本章采用的研究手段之一,同时,本章还体现了运动、变换转化、 分类讨论等数学思想方法,在教学中应注意体现。
五、单元整体规划
圆
等圆等弧;三组量关系定理;直线与圆的位置 关系;正多边形的概念和圆的关系。
圆的有关概念;
定义、命题、定理、推论的意义;原命题、逆 定义、 命题;原命题成立其逆命题不一 定成立;证 命题、 明的意义和必要性(例77);数学思维要合 条件和结论;互逆命题; 定理 乎逻辑(例78);不同的形式表述证明的过
教材分析
教材分析
本单元属于图形与几何板块的图形的认识方面的内容。学生在第一学段 已经直观地认识了圆,并学习了长方形、正方形等平面图形以及它们的周 长、面积计算,在此基础上本单元进一步学习圆的知识,为以后学习圆柱、 圆锥等知识和绘制简单扇形统计图打好基础。
本单元学习的圆是一种曲线图形,和以前学的直线图形在性质上有很大 的不同,但在研究方法上,联系又很紧密。学生学习这部分知识时,要留 给他们充分的思考与探究空间,让学生重点体会“化曲为直”“化圆为方” 等转化的数学思想,以及无限逼近的“极限思想”等。
专题19 图形的相似与位似的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题19 图形的相似与位似的核心知识点精讲1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质.2.探索并掌握三角形相似的性质及条件,并能利用相似三角形的性质解决简单的实际问题.3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小.4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,会根据坐标描出点的位置或由点的位置写出 它的坐标,灵活运用不同方式确定物体的位置。
考点1:比例线段1. 比例线段的相关概念 如果选用同一长度单位量得两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项.在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.若四条a ,b ,c ,d 满足或a :b=c :d ,那么a ,b ,c ,d 叫做组成比例的项,线段a ,d 叫做比例外项,线段b ,c 叫做比例内项.如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 2.比例的基本性质:①a :b=c :d ad=bc ②a :b=b :c .3.黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB ≈0.618AB. 考点2:相似图形1. 相似图形:我们把形状相同的图形叫做相似图形.也就是说:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的.(全等是特殊的相似图形).2.相似多边形:对应角相等,对应边的比相等的两个多边形叫做相似多边形.n m b a =cb b a =⇔ac b =⇔2215-3.相似多边形的性质:相似多边形的对应角相等,对应边成的比相等.相似多边形的周长的比等于相似比,相似多边形的面积的比等于相似比的平方.4.相似三角形的定义:形状相同的三角形是相似三角形.5.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形对应边上的高的比相等,对应边上的中线的比相等,对应角的角平分线的比相等,都等于相似比.(3)相似三角形的周长的比等于相似比,面积的比等于相似比的平方.6.相似三角形的判定:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似;(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.(5)如果一个直角三角形的斜边和一条直角边与另一个三角形的斜边和一条直角边的比对应相等,那么这两个三角形相似.考点3:位似图形1.位似图形的定义两个多边形不仅相似,而且对应顶点的连线相交于一点,不经过交点的对应边互相平行,像这样的两个图形叫做位似图形,这个点叫位似中心.2.位似图形的分类(1)外位似:位似中心在连接两个对应点的线段之外.(2)内位似:位似中心在连接两个对应点的线段上.3.位似图形的性质位似图形的对应点和位似中心在同一条直线上;位似图形的对应点到位似中心的距离之比等于相似比;位似图形中不经过位似中心的对应线段平行.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接截取点.【注意】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.【题型1:相似三角形的相关计算】【典例1】(2023•雅安)如图,在▱ABCD中,F是AD上一点,CF交BD于点E,CF的延长线交BA的延长线于点G,EF=1,EC=3,则GF的长为()A.4B.6C.8D.101.(2023•吉林)如图,在△ABC中,点D在边AB上,过点D作DE∥BC,交AC于点E.若AD=2,BD =3,则的值是()A.B.C.D.2.(2023•内江)如图,在△ABC中,点D、E为边AB的三等分点,点F、G在边BC上,AC∥DG∥EF,点H为AF与DG的交点.若AC=12,则DH的长为()A.1B.C.2D.33.(2023•东营)如图,△ABC为等边三角形,点D,E分别在边BC,AB上,∠ADE=60°.若BD=4D C,DE=2.4,则AD的长为()A.1.8B.2.4C.3D.3.24.(2023•绵阳)黄金分割由于其美学性质,受到摄影爱好者和艺术家的喜爱,摄影中有一种拍摄手法叫黄金构图法.其原理是:如图,将正方形ABCD的底边BC取中点E,以E为圆心,线段DE为半径作圆,其与底边BC的延长线交于点F,这样就把正方形ABCD延伸为矩形ABFG,称其为黄金矩形.若CF=4 a,则AB=()A.(﹣1)a B.(﹣2)a C.(+1)a D.(+2)a5.(2023•哈尔滨)如图,AC,BD相交于点O,AB∥DC,M是AB的中点,MN∥AC,交BD于点N,若DO:OB=1:2,AC=12,则MN的长为()A.2B.4C.6D.8【题型2:相似三角形的实际应用】【典例2】(2022•广西)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是米.1.(2023•南充)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m,同时量得小菲与镜子的水平距离为2m,镜子与旗杆的水平距离为10m,则旗杆高度为()A.6.4m B.8m C.9.6m D.12.5m2.(2023•达州)如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为cm.(结果保留根号)3.(2023•潍坊)在《数书九章》(宋•秦九韶)中记载了一个测量塔高的问题:如图所示,AB表示塔的高度,CD表示竹竿顶端到地面的高度,EF表示人眼到地面的高度,AB、CD、EF在同一平面内,点A、C、E在一条水平直线上.已知AC=20米,CE=10米,CD=7米,EF=1.4米,人从点F远眺塔顶B,视线恰好经过竹竿的顶端D,可求出塔的高度.根据以上信息,塔的高度为米.【题型3:位似】【典例3】(2023•朝阳)如图,在平面直角坐标系中,已知点A(2,2),B(4,1),以原点O为位似中心,相似比为2,把△OAB放大,则点A的对应点A′的坐标是()A.(1,1)B.(4,4)或(8,2)C.(4,4)D.(4,4)或(﹣4,﹣4)1.(2023•浙江)如图,在直角坐标系中,△ABC的三个顶点分别为A(1,2),B(2,1),C(3,2),现以原点O为位似中心,在第一象限内作与△ABC的位似比为2的位似图形△A′B′C′,则顶点C′的坐标是()A.(2,4)B.(4,2)C.(6,4)D.(5,4)2.(2023•长春)如图,△ABC和△A'B'C'是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC与△A'B'C'的周长之比为.3.(2023•烟台)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(﹣3,0),A1(﹣2,1),A2(﹣1,0),A3(﹣2,﹣1),则顶点A100的坐标为()A.(31,34)B.(31,﹣34)C.(32,35)D.(32,0)一.选择题(共10小题)1.已知,则的值是()A.B.C.3D.2.如图,△ABC∽△ADE,若∠A=60°,∠ABC=45°,那么∠E=()A.75°B.105°C.60°D.45°3.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A,B,C都在横线上.若线段BC=4cm,则线段AC的长是()A.4cm B.5cm C.6cm D.7cm4.下列各组中的四条线段成比例的是()A.1cm,2cm,3cm,4cm B.2cm,3cm,4cm,5cmC.2cm,3cm,4cm,6cm D.3cm,4cm,6cm,9cm5.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高16 5cm,下半身长x与身高l的比值是0.60,为尽可能达到美的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm6.如图,在△ABC中,DE∥BC,DF∥AC,则下列比例式中正确的是()A.=B.=C.=D.=7.如图,直线l1∥l2∥l3,分别交直线m、n于点A、B、C、D、E、F.若AB:BC=5:3,DE=15,则E F的长为()A.6B.9C.10D.258.△ABO三个顶点的坐标分别为A(2,4),B(6,0),C(0,0),以原点O为位似中心,把这个三角形缩小为原来的,可以得到△A'B'O,则点A′的坐标是()A.(1,2)B.(1,2)或(﹣1,﹣2)C.(2,1)或(﹣2,﹣1)D.(﹣2,﹣1)9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.3:1C.9:1D.9:1610.小明用地理中所学的等高线的知识在某地进行野外考察,他根据当地地形画出了“等高线示意图”,如图所示(注:若某地在等高线上,则其海拔就是其所在等高线的数值;若不在等高线上,则其海拔在相邻两条等高线的数值范围内),若A,B,C三点均在相应的等高线上,且三点在同一直线上,则的值为()A.B.C.D.2二.填空题(共5小题)11.如果两个相似三角形的周长比为2:3,那么它们的对应高的比为.12.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测得AB=1.6m,BC=12.4m,则楼高CD为m.13.如图,在某校的2022年新年晚会中,舞台AB的长为20米,主持人站在点C处自然得体,已知点C 是线段AB上靠近点B的黄金分割点,则此时主持人与点A的距离为米.14.《九章算术》是中国古代的数学专著,书中记载了这样一个问题:“今有勾五步,股十二步.问勾中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.15.如图,在边长为1的正方形网格中,A、B、C、D为格点,连接AB、CD相交于点E,则AE的长为.三.解答题(共5小题)16.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.17.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.18.如图,矩形ABCD中,M为BC上一点,EM⊥AM交AD的延长线于点E.(1)求证:△ABM∽△EMA;(2)若AB=4,BM=3,求ME的长.19.某数学兴趣小组要完成一个项目学习,测量凌霄塔的高度AB.如图,塔前有一棵高4米的小树CD,发现水平地面上点E、树顶C和塔顶A恰好在一条直线上,测得BD=57米,D、E之间有一个花圃距离无法测量;然后,在E处放置一平面镜,沿BE后退,退到G处恰好在平面镜中看到树顶C的像,EG =2.4米,测量者眼睛到地面的距离FG为1.6米;已知AB⊥BG,CD⊥BG,FG⊥BG,点B、D、E、G 在同一水平线上.请你求出凌霄塔的高度AB.(平面镜的大小厚度忽略不计)20.如图,已知AD,BC相交于点E,且△AEB∽△DEC,CD=2AB,延长DC到点G,使CG=CD,连接AG.(1)求证:四边形ABCG是平行四边形;(2)若∠GAD=90°,AE=2,CG=3,求AG的长.一.选择题(共10小题)1.如图,在等边△ABC中,点D,E分别是BC,AC上的点,∠ADE=60°,AB=4,CD=1,AE=()A.3B.C.D.2.如图,在等边△ABC中,点D,E分别在边BC,AC上,∠ADE=60°,若AD=4,=,则DE的长度为()A.1B.C.2D.3.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,D为线段BC上一点,以AD为一边构造Rt△ADE,∠DAE=90°,AD=AE,下列说法正确的是()①∠BAD=∠EDC;②△ADO∽△ACD;③;④2AD2=BD2+CD2.A.仅有①②B.仅有①②③C.仅有②③④D.①②③④5.凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB的距离之比为5:4,则物体被缩小到原来的()A.B.C.D.6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E,F,连接BD、DP,BD与CF相交于点H,给出下列结论:①∠DPC=75°;②CF=2AE;③;④△FPD∽△P HB.其中正确结论的个数是()A.4B.3C.2D.17.如图,在边长为5的正方形ABCD中,点E在AD边上,AE=2,CE交BD于点F,则DF的长为()A.B.C.D.8.如图,在Rt△ABC中,∠ABC=90°,AB=4,AC=5,AE平分∠BAC,点D是AC的中点,AE与BD 交于点O,则的值为()A.2B.C.D.9.如图,有一块直角边AB=4cm,BC=3cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.B.C.D.10.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.点P 的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,BP的长为()A.B.C.D.二.填空题(共6小题)11.如图,△ABC中,AB=4,BC=5,AC=6,点D、E分别是AC、AB边上的动点,折叠△ADE得到△A′DE,且点A′落在BC边上,若△A′DC恰好与△ABC相似,AD的长为.12.如图,△ABC和△ADE都是等边三角形,点D在BC上,DE交AC于点F,若DF=2,EF=4,则C D的长是.13.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,BD=1,CD=4,则AD的长为.14.如图,一张矩形纸片ABCD中,(m为常数),将矩形纸片ABCD沿EF折叠,使点A落在BC边上的点H处,点D的对应点为点M,CD与HM交于点P.当点H落在BC的中点时,且,则m=.15.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,AE平分∠BAC交BC于点E,连接CD交AE 于点F.若AC=5,BC=12,则EF的长是.16.如图,在平面直角坐标系中,已知A(1,0),B(2,0),C(0,1),在坐标轴上有一点P,它与A、C两点形成的三角形与△ABC相似,则P点的坐标是.三.解答题(共3小题)17.如图,点P在△ABC的外部,连结AP、BP,在△ABC的外部分别作∠1=∠BAC,∠2=∠ABP,连结PQ.(1)求证:AC•AP=AB•AQ;(2)判断∠PQA与∠ACB的数量关系,并说明理由.18.如图,在△ABC中,点D,E分别在边BC,AC上,AD与BE相交于点O,且AB=AD,AE2=OE•B E.(1)求证:①∠EAD=∠ABE;②BE=EC;(2)若BD:CD=4:3,CE=8,求线段AE的长.19.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图①,在正方形ABCD中,点E,F分别是AB、AD上的两点,连接DE,CF,DE⊥CF,求证△AED≌△DFC.【类比探究】(2)如图②,在矩形ABCD中,AD=7,CD=4,点E是边AD上一点,连接CE,BD,且CE⊥BD,求的值.【拓展延伸】(3)如图③,在Rt△ABC中,∠ACB=90°,点D在BC边上,连结AD,过点C作CE⊥AD于点E,CE的延长线交AB边于点F.若AC=3,BC=4,,求CD的值.20.(2023•武汉)问题提出如图(1),E是菱形ABCD边BC上一点,△AEF是等腰三角形,AE=EF,∠AEF=∠ABC=α(α≥90°),AF交CD于点G,探究∠GCF与α的数量关系.问题探究(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF的大小;(2)再探究一般情形,如图(1),求∠GCF与α的数量关系.问题拓展将图(1)特殊化,如图(3),当α=120°时,若,求的值.1.(2023•徐州)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC 上,且,则AE的长为()A.1B.2C.1或D.1或22.(2023•济南)如图,在△ABC中,AB=AC,∠BAC=36°,以点C为圆心,以BC为半径作弧交AC于点D,再分别以B,D为圆心,以大于BD的长为半径作弧,两弧相交于点P,作射线CP交AB于点E,连接DE.以下结论不正确的是()A.∠BCE=36°B.BC=AEC.D.3.(2023•阜新)如图,△ABC和△DEF是以点O为位似中心的位似图形,相似比为2:3,则△ABC和△DEF的面积比是.4.(2023•乐山)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE交于点F.若,则=.5.(2023•北京)如图,直线AD,BC交于点O,AB∥EF∥CD,若AO=2,OF=1,FD=2,则的值为.6.(2023•大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M 恰好落在边DC上,则图中与△NDM一定相似的三角形是.7.(2023•辽宁)如图,平行四边形ABCD的对角线AC,BD相交于点O,过点B作BE∥AC,交DA的延长线于点E,连接OE,交AB于点F,则四边形BCOF的面积与△AEF的面积的比值为.8.(2022•东营)如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为.9.(2023•湘潭)在Rt△ABC中,∠BAC=90°,AD是斜边BC上的高.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.10.(2023•攀枝花)拜寺口双塔,分为东西两塔,位于宁夏回族自治区银川市贺兰县拜寺口内,是保存最为完整的西夏佛塔,已有近1000年历史,是中国佛塔建筑史上不可多得的艺术珍品.某数学兴趣小组决定采用我国古代数学家赵爽利用影子对物体进行测量的原理,来测量东塔的高度.东塔的高度为AB,选取与塔底B在同一水平地面上的E、G两点,分别垂直地面竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为46m,并且东塔AB、标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即E D=2m),从D处观察A点,A、F、D在一直线上;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也在一直线上,且B、E、D、G、C在同一直线上,请你根据以上测量数据,帮助兴趣小组求出东塔AB的高度.11.(2023•上海)如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠F AC=∠ADE,AC=AD.(1)求证:DE=AF;(2)若∠ABC=∠CDE,求证:AF2=BF•CE.12.(2023•菏泽)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF的长.。
2024数学中考压轴题-圆(九大题型和解题方法)

专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。
目录:题型1:圆与三角形综合题型2:圆与四边形综合题型3:圆有关的动态问题题型4:圆与坐标系或函数题型5:以实际问题为背景,求圆与三角形、四边形综合问题题型6:最值问题题型7:在解三角形、四边形中作辅助圆题型8:定值问题题型9:在圆综合中求解三角函数值题型1:圆与三角形综合1.(2024·黑龙江哈尔滨·一模)已知,AD 、BC 为O 两条弦,AD BC ⊥于点E ,连接OE ,AE CE =.(1)如图1,连接OE ,求AEO ∠的度数;(2)如图2,连接AC ,延长EO 交AC 于点N ,点F 为AC 上一点,连接EF ,在EF 上方作等腰直角三角形EFG ,且90EGF ∠=︒,连接NG ,求证:NG BC ∥;(3)在(2)的条件下,连接AB ,CD ,当点G 落在线段AB 上时,过点O 做OL OE ⊥,交CD 于点L ,交CE于点T ,若2OE EG CL ==,求O 半径的长.2.(2024·黑龙江哈尔滨·一模)已知:AB 为O 的直径,点C 为 AB 上一点,连接AC ,点D 为 BC上一点,连接AD ,过点D 作AB 的垂线,垂足为点F ,交O 于点E ,连接CE ,分别交AD 和AB 于点H 和点K ,且90AHE =︒∠.(1)如图1,求证:CAD BAD ∠=∠;(2)如图2,连接HF ,过点H 作HF 的垂线交AB 于点T ,求证:2AB FT =;(3)如图3,在(2)的条件下,连接BC 交AD 于点G ,延长CD 交AB 的延长线于点M ,若CM AG =,5FT =,求CG 的长.3.(2024·黑龙江哈尔滨·一模)如图1,在O 中,直径AB 垂直弦CD 于点G ,连接AD ,过点C 作CF AD ⊥于F ,交AB 于点H ,交O 于点E ,连接DE .(1)如图1,求证:2E C ∠=∠;(2)如图2,求证:DE CH =;(3)如图3,连接BE ,分别交AD CD 、于点M N 、,当2OH OG =,HF =EN 的长.4.(2024·浙江·模拟预测)如图1,ABC 内接于O ,作AD BC ⊥于点D .(1)连结AO ,BO .求证:2180AOB DAC ∠+∠=︒;(2)如图2,若点E 为弧AC 上一点,连结BE 交AD 于点F ,若2BAD CAD ∠∠=,490DBF CAD ∠+∠=︒,连结OF ,求证:OF 平分AFB ∠;(3)在(2)的条件下,如图3,点G 为BC 上一点,连结EG ,2BGE C ∠=∠.若AD =3BD EG +=,求DF 的长.题型2:圆与四边形综合5.(2024·浙江杭州·模拟预测)如图,四边形ABCD 内接于O ,AC 为O 的直径,DE AC ⊥于点F 交BC 于点E .(1)设DBC α∠=,试用含α的代数式表示ADE ∠;(2)如图2,若3BE CE =,求BDDE的值;(3)在(2)的条件下,若,AC BD 交于点G ,设FGx CF=,cos BDE y ∠=.①求y 关于x 的函数表达式.②若BC BD =,求y 的值.6.(2024·广东珠海·一模)如图1,F 为正方形ABCD 边BC 上一点,连接AF , 在AF 上取一点O , 以OA 为半径作圆, 恰好使得O 经过点B 且与CD 相切于点E .(1)若正方形的边长为4时,求O 的半径;(2)如图2, 将AF 绕点A 逆时针旋转45︒后,其所在直线与O 交于点G ,与边CD 交于点H ,连接DG BG ,.①求ADG ∠的度数;②求证:··²AB BF AG FG BG +=.题型3:圆有关的动态问题7.(2024·广东·一模)综合探究:如图,已知10AB =,以AB 为直径作半圆O ,半径OA 绕点O 顺时针旋转得到OC ,点A 的对应点为C ,当点C 与点B 重合时停止.连接BC 并延长到点D ,使得CD BC =,过点D 作DE AB ⊥于点E ,连接AD ,AC .(1)如图1,当点E 与点O 重合时,判断ABD △的形状,并说明理由;(2)如图2,当1OE =时,求BC 的长;(3)如图3,若点P 是线段AD 上一点,连接PC ,当PC 与半圆O 相切时,判断直线PC 与AD 的位置关系,并说明理由.8.(2024·浙江湖州·一模)如图,在ABCD Y 中,∠B 是锐角,AB =10BC =,在射线BA 上取一点P ,过P 作PE BC ⊥于点E ,过P ,E ,C 三点作O .(1)当3cos 5B =时,①如图1,若AB 与O 相切于点P ,连结CP ,求CP 的长;②如图2,若O 经过点D ,求O 的半径长.(2)如图3,已知O 与射线BA 交于另一点F ,将BEF △沿EF 所在的直线翻折,点B 的对应点记为B ',且B '恰好同时落在O 和边AD 上,求此时PA 的长.9.(2024·云南昭通·模拟预测)如图,在O 中,AB 是O 的直径,点M 是直径AB 上的一个动点,过点M 的弦CD AB ⊥,交O 于点C 、D ,连接BC ,点F 为BC 的中点,连接DF 并延长,交AB 于点E ,交O 于点G .图1 图2 备用图(1)如图1,连接CG ,过点G 的直线交DC 的延长线于点P .当点M 与圆心O 重合时,若PGC MDE ∠=∠,求证:PG 是O 的切线;(2)在点M 运动的过程中,DE kDF =(k 为常数),求k 的值;(3)如图2,连接BG OF MF 、、,当MOF △是等腰三角形时,求BGD ∠的正切值.题型4:圆与坐标系或函数10.(2024·福建龙岩·一模)如图,抛物线234y x x =-++与x 轴分别交于A 、B 两点(点A 在点B 的左侧)与y 轴交于点C .(1)直接写出A 、B 、C 三点的坐标;(2)如图(1),P 是抛物线上异于A ,B 的一点,将点B 绕点P 顺时针旋转45︒得到点Q ,若点Q 恰好在直线AP 上,求点P 的坐标;(3)如图(2),MN 是抛物线上异于B ,C 的两个动点,直线BN 与直线CM 交于点T ,若直线MN 经过定点()1,3,求证:点T 的运动轨迹是一条定直线.11.(2024·江苏常州·模拟预测)定义:在平面直角坐标系xOy 中,P 、Q 为平面内不重合的两个点,其中1122(,),(,)P x y Q x y .若:1122x y x y +=+,则称点Q 为点P 的“等和点”.(1)如图1,已知点()21P ,,求点P 在直线1y x =+上“等和点”的坐标;(2)如图2,A 的半径为1,圆心A 坐标为()20,.若点()0P m ,在A 上有且只有一个“等和点”,求m 的值;(3)若函数()22y x x m =-+≤的图像记为1W ,将其沿直线x m =翻折后的图像记为2W .当1W ,2W 两部分组成的图像上恰有点()0P m ,的两个“等和点”,请直接写出m 的取值范围.12.(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy 中,抛物线23y ax bx =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,已知点A 的坐标为(10)-,,点B 的坐标为(30),.(1)求出这条抛物线的函数表达式;(2)如图2,点D 是第一象限内该抛物线上一动点,过点D 作直线l y 轴,直线l 与ABD △的外接圆相交于点E .①仅用无刻度直尺找出图2中ABD △外接圆的圆心P .②连接BC 、CE ,BC 与直线DE 的交点记为Q ,如图3,设CQE △的面积为S ,在点D 运动的过程中,S是否存在最大值?如果存在,请求出S 的最大值;如果不存在,请说明理由.13.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =--∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =-,②41y x =-,③23y x =-+,④31y x =--中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号)(2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =-+是函数2)304(2y x x x =-++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.题型5:以实际问题为背景,求圆与三角形、四边形综合问题14.(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ;【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积;【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.15.(2024·陕西西安·一模)【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______;【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值;【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.题型6:最值问题16.(2024·湖南长沙·三模)如图1,,,A B C 为O 上不重合的三点,GC 为O 的切线,1902G A ∠+∠=︒.(1)求证:GB 为O 的切线;(2)若ABC 为等腰三角形,345,tan 4BAC BAC ∠<︒∠=,求BC AG的值;(3)如图2,若AB 为直径,M 为线段AC 上一点且GM GB ⊥,2223880AM OB GB GB +-+-=,02GB <<,求MGBA S 四边形的最大值.17.(2024·重庆·模拟预测)如图,在直角ABC 中,90BAC ∠=︒.点D 为ABC 内一点,且60ADB ∠=︒,E 为线段BD 的中点,连接AE .(1)如图1,若AB AC ==,2AD =,求BE 的长;(2)如图2,连接CD ,若AB AC =,BAE ACD ∠=∠,过点E 作EF AD ⊥交于F ,求证:AE =;(3)如图3,过点D 作DM AC ⊥于点M ,DN BC ⊥于点N ,连接MN ,若AB =4AC =,求MN 的最小值.题型7:在解三角形、四边形中作辅助圆18.(2024·福建泉州·一模)如图1,在ABCD Y 中,BE 平分ABC ∠交AD 于点E ,F 是CD 上一点,且DF DE =.(1)求证:BE EF ⊥;(2)如图2,若120A ∠=︒,FG BC ⊥于点G ,H 是BF 的中点,连接DG ,EH ,EG ,且EG 与BF 相交于点K .①求证:DG EH =;②若2CF DF =,求KFGK的值.题型8:定值问题19.(2024·浙江·模拟预测)如图1,E 点为x 轴正半轴上一点,E 交x 轴于A 、B 两点,P 点为劣弧 BC上一个动点,且(1,0)A -、(1,0)E .(1) BC的度数为 °;(2)如图2,连结PC ,取PC 中点G ,则OG 的最大值为 ;(3)如图3,连接AC 、AP 、CP 、CB .若CQ 平分PCD ∠交PA 于Q 点,求AQ 的长;(4)如图4,连接PA 、PD ,当P 点运动时(不与B 、C 两点重合),求证:PC PDPA+为定值,并求出这个定值.题型9:在圆综合中求解三角函数值20.(2024·湖南长沙·一模)如图1,在Rt ABC △中,90ABC ∠=︒,30C ∠=︒,B C =,D 是BC 的中点.经过A ,B ,D 三点的O 交AC 于点E ,连接BE .(1)求AE 和BE 的长;(2)如图2,两动点P 、Q 分别同时从点A 和点C 出发匀速运动,当点P 运动到点E 时,点Q 恰好运动到点B ,P 、Q 停止运动,连接PQ .①记AP x =,当PQC △的面积最大时,求x 的值;②如图3,连接BP 并延长交O 于点F ,连接AF 、FE .当BE 平分FBC ∠时,求sin ABF ∠的值.21.(2024·上海杨浦·一模)已知以AB 为直径的半圆O 上有一点C ,CD OA ⊥,垂足为点D ,点E 是半径OC 上一点(不与点O 、C 重合),作EF OC ⊥交弧BC 于点F ,连接OF .(1)如图1,当FE 的延长线经过点A 时,求CDAF的值;(2)如图2,作FG AB ⊥,垂足为点G ,连接EG .①试判断EG 与CD 的大小关系,并证明你的结论;②当EFG 是等腰三角形,且4sin 5COD ∠=,求OE OD的值.专题01 中考压轴题-圆(九大题型+解题方法)1、圆中常见相似三角形2.在圆中解三角形或四边形的常用思路画出特殊图形:如圆中的特殊三角形、特殊四边形等,在已知条件下,以结果为导向,在这些特殊图形中求出一些中间量。
数学人教六年级上册《第五单元_第02课时_圆的设计图案》(说课稿)

数学人教六年级上册《第五单元_第02课时_圆的设计图案》(说课稿)一. 教材分析人教六年级上册的数学教材,第五单元的主题是“圆的设计图案”。
这一单元旨在让学生掌握圆的基本概念、性质和应用,培养学生的观察、思考、动手操作和创新能力。
二. 学情分析六年级的学生已经掌握了初步的数学知识,对圆有一定的认识。
但他们在理解圆的性质和应用方面还存在困难。
因此,在教学过程中,我们需要关注学生的个体差异,因材施教,提高他们的数学思维能力。
三. 说教学目标1.知识与技能:让学生掌握圆的周长、直径、半径等基本概念,了解圆的性质,学会用圆设计图案。
2.过程与方法:通过观察、实践、探究、合作等环节,培养学生动手操作、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于尝试、自主学习的精神。
四. 说教学重难点1.教学重点:圆的基本概念、性质和应用。
2.教学难点:圆的周长、直径、半径的计算,以及圆的设计图案。
五. 说教学方法与手段1.教学方法:采用情境教学法、问题教学法、合作学习法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型、动手操作等,直观展示圆的性质和应用。
六. 说教学过程1.导入新课:通过展示精美的圆设计图案,引发学生对圆的兴趣,导入新课。
2.探究圆的性质:引导学生观察圆的模型,探究圆的周长、直径、半径等基本概念,理解圆的性质。
3.实践操作:让学生动手测量圆的周长、直径、半径,加深对圆性质的理解。
4.合作学习:分组讨论如何利用圆设计图案,培养学生的创新能力。
5.作品展示:让学生展示自己的设计作品,互相评价,取长补短。
6.总结提升:对本节课的内容进行总结,强调圆的性质和应用。
七. 说板书设计板书设计要简洁明了,突出圆的基本概念、性质和应用。
可以采用思维导图的形式,将圆的周长、直径、半径等知识点进行整合。
八. 说教学评价通过课堂表现、作品展示、课后作业等方式,对学生的知识掌握、能力培养和情感态度进行评价。
九年级数学专题复习圆综合复习

总复习圆综合复习【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点进阶:圆心确定圆的位置,半径确定圆的大小. 2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦. ②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧. ⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧. ⑦同心圆:圆心相同,半径不相等的圆叫做同心圆. ⑧弓形:由弦及其所对的弧组成的图形叫做弓形. ⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角. 要点进阶:圆周角等于它所对的弧所对的圆心角的一半.圆外角度数等于它所夹弧的度数的差的一半. 圆内角度数等于它所夹弧的度数的和的一半.考点二、圆的有关性质 1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合. 2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示.要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点进阶:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点进阶:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点进阶:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R≥r).d为圆心距.要点进阶:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r1-r2”时,要特别注意,r1>r2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点进阶:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n nnn n S a r n P r ==.考点五、圆中的计算问题 1.弧长公式:180n Rl π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和. 要点进阶:(1)在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.(2)求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.考点六、四点共圆 1.四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.证明四点共圆一些基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距.2.如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆. (若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆. 即利用相交弦、切割线、割线定理的逆定理证四点共圆.考点七、与圆有关的比例线段(补充知识)1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD. 连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB. 用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理【典型例题】类型一、圆的有关概念及性质例1. BC为O的弦,∠BOC=130°,△ABC为O的内接三角形,求∠A的度数.【变式】如图,∠AOB=100°,点C 在⊙O 上,且点C 不与A 、B 重合,则∠ACB 的度数为( )A .50B .80或50C .130D .50 或130类型二、与圆有关的位置关系例2.如图,已知正方形的边长是4cm ,求它的内切圆与外接圆组成的圆环的面积.(答案保留π)例3.如图,已知⊙O 的半径为6cm ,射线PM 经过点O ,10cm OP ,射线PN 与⊙O 相切于点Q .A,B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动.设运动时间为t s . (1)求PQ 的长;(2)当t 为何值时,直线AB 与⊙O 相切?A BO【变式】已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,2sin3ABC∠=,求BF的长.类型三、与圆有关的计算例4.如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;(2)求正六边形T1,T2的面积比S1:S2的值.【变式】有一个亭子,它的地基是半径为8m的正六边形,求地基的周长和面积.(结果保留根号)类型四、与圆有关的综合应用例5.如图,AB是⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过点D作EF∥BC,交AB、AC的延长线于点E、F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=,CF=1,求⊙O的半径及EF的长.【变式】已知:如图,△ABC中,∠BAC=90°,点D在BC边上,且BD=BA,过点B画AD的垂线交AC于点O,以O为圆心,AO为半径画圆.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为8,tan∠C=,求线段AB的长,sin∠ADB的值.例6.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:;(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC 三者之间有何数量关系,并给予证明.【变式】(1)如图①,M、N分别是⊙O的内接正△ABC的边AB、BC上的点且BM=CN,连接OM、ON,求∠MON的度数;(2)图②、③、…④中,M、N分别是⊙O的内接正方形ABCD、正五边ABCDE、…正n边形ABCDEFG…的边AB、BC上的点,且BM=CN,连接OM、ON,则图②中∠MON的度数是,图③中∠MON的度数是;…由此可猜测在n边形图中∠MON的度数是;(3)若3≤n≤8,各自有一个正多边形,则从中任取2个图形,恰好都是中心对称图形的概率是 .一、选择题1.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距d的取值范围是()A.d>8 B.d>2 C.0≤d<2 D.d>8或d<22.如图,等腰梯形ABCD内接于半圆D,且AB=1,BC=2,则OA=( )A.132+B.2 C.323+D.152+3.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4 cm,以点C为圆心,以2 cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交第2题第3题第5题4.已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1=3,则圆O1与圆O2的位置关系是( )A.相交或相切 B.相切或相离 C.相交或内含 D.相切或内含5.如图所示,在圆O内有折线OABC,其中OA=8,AB=2,∠A=∠B=60°,则BC的长为( )A.19 B.16 C.18 D.206.如图,MN是半径为0.5的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为( )A.22B.2 C.1 D.27.如图,分别以A,B为圆心,线段AB的长为半径的两个圆相交于C,D两点,则∠CAD的度数为_______.8.如图,现有圆心角为90°的一个扇形纸片,该扇形的半径是50cm.小红同学为了在圣诞节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么被剪去的扇形纸片的圆心角应该是________度.第7题第8题第9题9.如图,AB⊥BC,AB=BC=2 cm,OA与OC关于点O中心对称,则AB、BC、CO、OA所围成的面积是________cm2.10.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点,若两圆的半径分别为3 cm和5 cm,则AB的长为________cm.11.将半径为4 cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是________cm.第10题第11题12.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=n,则S△AEF=mn;④EF是△ABC的中位线.其中正确的结论是.13.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)证明:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离;(3)若,求的值.14.如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△DEC外接圆的切线,求∠C的大小;(2)当AB=1,BC=2时,求△DEC外接圆的半径.15.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.16. 如图,已知:AC是⊙O的直径,PA⊥AC,连接OP,弦CB∥OP,直线PB交直线AC于D,BD=2PA.(1)证明:直线PB是⊙O的切线;(2)探究线段PO与线段BC之间的数量关系,并加以证明;(3)求sin∠OPA的值.。
初中数学动点问题及练习题附参考答案

初中数学动点问题及练习题附参考答案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查。
从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.专题一:建立动点问题的函数解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式。
二、应用比例式建立函数解析式。