Buck电路的设计与仿真(开环设计与仿真)Saber
Saber仿真在Buck电路结构推导教学中的应用

Saber仿真在Buck电路结构推导教学中的应用摘要:在电力电子技术的仿真过程中,采用Saber仿真软件可以使教学过程更为生动直观。
本文首先阐述了采用Saber仿真软件进行辅助教学的必要性,然后通过对仿真波形的分析,逐步对Buck降压电路的结构进行推导,教学过程生动直观,对教学质量的提高有明显的促进作用。
关键词:Saber Buck 仿真《电力电子技术》是电气类学生普遍反映比较难的一门课程,其原因主要在于:一方面电路拓扑结构较多且复杂;另一方面是由于器件工作状态不断变化,导致电路工作状态较多,使得电路工作波形复杂,学生理解起来较为困难。
课件的引入,再加上动画演示,能够帮助学生理解各工作状态的波形,但是在教学过程中仍然显得过于理论化,与实践相脱节,很难达到理想的教学效果。
引入仿真软件教学后,教师可以在仿真中一边搭建电路,一边针对电路的构成进行讲解,并对各项参数进行修改,仿真后让学生观察工作波形的变化情况,学生对各项参数设计的理解将更为深刻。
同时,学生参与到仿真分析中,增加了教学的互动性,同时提高了学生学习的积极性[1]。
Saber是1987年由Analogy公司推出的一款仿真软件,到现在已有二十多年的历史[2]。
它主要用于混合信号和混合技术领域的仿真验证,主要分为三个部分:SaberGuide、SaberSketch和SaberScope。
SaberSketch主要用于绘制电路图,而SaberGuide用于仿真控制,仿真结果可在SaberScope查看。
与其他仿真软件相比,Saber具有以下特点:(1)器件库丰富。
它包含了各种元器件的理想模型,以及各大公司生产的常用芯片模型。
(2)分析功能全面。
它既包含了DC工作点分析、时域分析、频域分析等基本分析功能,还包含温度、参数灵敏度、蒙特卡诺、噪声等各种高级分析功能。
(3)数据处理能力强大。
可以自由的对仿真结果数据进行各种分析和比较乃至运算。
因此Saber仿真软件在电力电子仿真中应用非常广泛,将其与电力电子技术教学相结合,将更有助于加强学生对电路工作原理的理解。
基于saber的buck降压电路的设计

基于s a b e r的b u c k降压电路的设计The Standardization Office was revised on the afternoon of December 13, 2020前言在实际电力电子装置中,工程人员往往凭经验通过不断更换元器件或改变结构使装置满足一定的动态和静态特性,而通过计算机仿真能方便地完成这种改变,从而缩短产品开发周期,减小研究开发成本。
另外,在电力电子课程教学中,单纯地讲解开关元器件和各种变换电路理论,显得枯燥而缺乏生动,计算机辅助分析和设计在电力电子课程教学中显示出了它的强大的优势,通过电路仿真使得课堂教学概念讲解直观化,理论结果可视化。
Saber仿真软件是美国Analogy公司开发的功能强大的电力电子系统仿真软件之一,可用于电子、电力电子、机电一体化、机械、水力、控制等领域的系统设计和仿真。
它具有很大的通用模型库和较为精确的具体型号的器件模型,其元件模型库中有4 700多种具体型号的器件模型,500多种通用模型。
针对电力电子应用,Saber提供了电源设计的环境— PowerExpress,它支持行为级和元件级的设计。
Saber的MAST语言是一种硬件描述语言,运用该语言可以方便地建立用户自身的元件或电路模型,其程序兼容Spice仿真程序。
专门为Saber仿真器而设计的SaberSketch提供了友好的用户图形界面,使得仿真非常直观,让使用者易学易用。
掌握Saber仿真软件对于研究开发电力电子装置及其控制系统,以及电力电子教学都具有重要的意义。
目录前言 (1)目录 (2)1. 基本的Buck 型变换器(开环) (3)1.1 Buck 变换器基本电路形式 (3)1.2 各器件参数和指标之间关系的定性分析 (4)1.3 实验仿真及分析 (4)2 闭环控制的构成与性能分析 (6)2.1 差分放大电路 (6)2.2 功率放大器(PI)模块 (7)2.3 PWM 块 (8)3 主电路 (9)3. 1 主电路参数讨论 (9)3.1.1 电容对输出电压波形的响 (10)3.1.2 电感对输出电压波形的影响 (11)4 结语 (12)参考文献 (13)摘要:Buck 型变换器是现代电力电子技术中一种常用的电能变换方法,主要用于计算机、精密仪器、通讯系统等高性能DC - DC 直流开关电源之中,它是现代电能变换中的一种重要方法。
开关电源中Saber仿真设计实例

经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊?其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。
一、 Saber在变压器辅助设计中的优势:1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。
主要功率级指标是相当接近真实的,细节也可以被充分体现。
2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。
3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。
从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。
4、由于变压器是置于真实电路的仿真环境中求解的,所有与变压器有关的电路和器件均能够被联合仿真,对变压器的仿真实际上成了对主电路的仿真,从而不仅能够获得变压器的设计参数,还同时获得整个电路的运行参数以及主要器件的最佳设计参数。
二、 Saber 中的变压器我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些 )分别是:xfrl 线性变压器模型,2~6绕组xfrnl 非线性变压器模型,2~6绕组单绕组的就是电感模型: 也分线性和非线性2种线性变压器参数设置(以2绕组为例):其中:lp 初级电感量ls 次级电感量np、ns 初级、次级匝数,只是显示用,不是真参数,可以不设置rp、rs 初级、次级绕组直流电阻值,默认为0,实际应该是该绕组导线的实测或者计算电阻值,在没有得到准确数据前,建议至少设置一个非0值,比如1p(1微微欧姆)k 偶合(互感)系数,建议开始设置为1,需要考虑漏感影响时再设置为低于1的值。
SABER 环路计算,补偿和仿真

BUCK 电路的环路计算,补偿和仿真Xia Jun 2010-8-14 本示例从简单的BUCK 电路入手,详细说明了如何进行电源环路的计算和补偿,并通过saber 仿真验证环路补偿的合理性。
一直以来,环路的计算和补偿都是开关电源领域的“难点”,很多做开关电源研发的工程师要么对环路一无所知,要么是朦朦胧胧,在产品的开发过程中,通过简单的调试来确定环路补偿参数。
而这种在实验室里调试出来的参数真的能满足各种实际的使用情况吗?能保证电源产品在高低温的情况下,在各种负载条件下,环路都能够稳定吗?能保证在负载跳变的情况下收敛吗?太多的未知数,这是产品开发的大忌。
我们必须明明白白的知道,环路的稳定性如何?相位裕量是多少?增益裕量是多少?高低温情况下这些值又会如何变化?在一些对动态要求非常严格的场合,我们如何折中考虑环路稳定性和动态响应之间的关系?有的放矢,通过明确的计算和仿真,我们的产品设计才是科学的,合理的,可靠的。
我们的目标是让产品经得起市场的检验,让客户满意,让自己放心。
一切从闭环系统的稳定性说起,在自动控制理论中,根据乃奎斯特环路稳定性判据,如果负反馈系统在穿越频率点的相移为180°,那么整个闭环系统是不稳定的。
很多人可能对这句话很难理解,虽然自动控制理论几乎是所有大学工科学生的必修课,可大部分是是抱着应付的态度的,学完就忘了。
那就再给大家讲解一下吧。
等式:V out=[Vin-V out*H(S)]*G(S)公式:Vout Vin G S ()1G S ()H S ()⋅+G(S)/(1+G(S)*H(S))就称之为系统的闭环传递函数,如果1+G(S)*H(S)=0,那么闭环系统的输出值将会无限大,此时闭环系统是不收敛的,也即是不稳定的。
G(S)*H(S)是系统的开环传递函数,当G(S)*H(S)=-1时,以S=j ω带入,即获得开环系统的频域响应为G(j ω)*H(j ω)=-1,此时频率响应的增益和相角分别为:gain =‖-1‖=1angle=tan -1(0/-1)=180°从上面的分析可以看出,如果扰动信号经过G(S)和H(S)后,模不变,相位改变180°,那么这个闭环系统就是不稳定的。
Buck电路的软开关设计和仿真本科毕业论文

重庆大学本科学生毕业设计(论文)Buck电路的软开关设计和仿真摘要在当今节能型社会中,如何提高电源的效率成为电源技术研究的重点。
早期的开关电源均采用硬开关技术,在开通或关断过程中伴随着较大的损耗,并且开关频率越高,开关损耗就越大。
而高频化是减小开关电源体积的重要途径,但是硬开关电源中高频化必然带来电源效率的降低,因此硬开关电源不能适应高频化的发展趋势。
这样采用软开关技术的电源应运而生,它是解决高频化和提高电源效率二者矛盾的有效手段。
本文对采用N沟道增强型MOSFET作开关器件的Buck电路进行了软开关的设计和仿真。
用到的方案是准谐振充放电模式,使MOSFET漏源极两端的电压能在栅极触发脉冲到来前变为零,使开关管能进行零电压开通。
这样就能有效地实现Buck电路的软开关,提高电路的效率。
最后利用Saber仿真软件,对设计的软开关控制策略进行了仿真验证,结果与预期相符合。
在得到此方案的顺利运行后,考虑到输出支路电感电流存在反向的问题,使得输出电流纹波较大,又运用叠加原理的思路,设计了另一方案,从而有效地避免了输出电流反向的问题。
关键词:降压变换器,软开关,Saber仿真ABSTRACTIn today's energy-saving type society, how to improve the efficiency of power supply becomes an important aspect of power technology research. In early power supply research times hard switching technology was adopted. The switching-on or switching-off process accompanied with great loss, and the higher switching the frequency is, the greater the switching loss is. The high operating frequency is an important way to reduce the volume, so the hard switching technology doesn't suit it. Then the soft switching technology appears. It is a good method to solve the high operating frequency and improving the efficiency problem.This article presents a soft switching method of the Buck converter which uses the N channel enhancement type MOSFET as the switch and the simulation. The design is quasi resonant charging and discharging mode which makes the D-S voltage become zero before the gate trigger pulse come, so the MOSFET can operate in a zero voltage turn-on mode. In this way, it can effectively realize the soft switching of Buck converter and improve the efficiency of the circuit. Finally I use the saber software to do the simulation and receive the expected result. After that, considering the reverse slip output inductor current problem which makes the output current ripple large, I present another method which can avoid the problem.Key words:Buck converter, soft switching, saber simulation目录摘要 (I)ABSTRACT.................................................. I I 1 绪论. (1)1.1 研究背景 (1)1.2 研究的目的及意义 (1)1.3 研究的主要内容 (2)2 Buck电路软开关电路设计及原理分析 (3)2.1 Buck电路软开关设计方案 (3)2.2 原理分析 (5)2.3 参数计算与设置 (9)3 Saber仿真验证 (10)3.1 Saber仿真软件的组成 (10)3.2 Saber仿真软件的特征 (10)3.3 Saber的分析功能 ................................................................................ 错误!未定义书签。
Buck-Boost变换器的设计与仿真

1 概述直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
其中,直接直流变流电路又叫斩波电路,它包括降压斩波电路(Buck Chopper)、升压斩波电路(Boost Chopper)、升降压斩波电路(Buck/Boost)、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路共六种基本斩波电路。
Buck/Boost升降压斩波电路同时具有Buck斩波电路和Boost斩波电路的特点,能对直流电直接进行降压或者升压变换,应用广泛。
本文将对Buck/Boost升降压斩波电路进行详细的分析。
RVDRVDRVD 2 主电路拓扑和控制方式2.1 Buck/Boost 主电路的构成Buck/Boost 变换器的主电路与Buck 或Boost 变换器所用元器件相同,也由开关管、二极管、电感、电容等构成,如图1所示。
与Buck 和Boost 不同的是电感L 在中间,不在输出端也不在输入端,且输出电压极性与输入电压极性相反。
开关管也采用PWM 控制方式。
Buck/Boost 变换器也由电感电流连续和断续两种工作方式,但在实际应用中,往往要求电流不断续,即电流连续,当电路中电感值足够大时,就能使得电路工作在电流连续的状态下。
因此为了分析方便,现假设电感足够大,则在一个周期内电流连续。
图2-1 Buck/Boost 主电路结构图电流连续时有两个开关模态,即V 导通时的模态1,等效电路见图2(a );V 关断时的模态2,等效电路见图2(b )。
(a )V 导通(b )V 关断,VD 续流图2-2 Buck/Boost 不同模态等效电路ttttt2.2 电感电流连续时的工作原理及基本关系电感电流连续工作时的工作主要波形见图2-3。
图2-3电感电流连续时的主要波形为了方便分析,假设电感、电容的值足够大,并且忽略电感的寄生电容。
电感电流连续工作时,Buck/Boost 变换器有V 导通和V 关断两种工作模态。
Buck电路的设计与仿真(开环设计与仿真)2014

• 网络资源
– 使用方法介绍
41
小结||3-6||
• 掌握DC-DC电路参数设计方法; • 掌握用SaberSketch输入电路原理图的方法、 掌握瞬态仿真的基本参数设置方法、掌握 查看波形方法; • 借助仿真软件深入理解Buck电路工作原理。 • 作业: • 1:完成单端正激电路设计报告(含所有主 电路参数设计,需要查阅相关手册,选取 所有元器件) ; • saber0307@;Password:0307123456
42
作业内容
• 1:单端正激电路设计报告(含变压器与电 感器的设计);
– 主电路设计(变压器、开关管、二极管、滤波 电感、滤波电容); – 仿真分析(1,采用理想元器件分析性能指标的 满足情况;2,评估所选元器件的合理性;3, 理想元器件与实际元器件模型带来的性能指标 差异性分析)
四.闭环仿真;
五.元件级仿真。
32
开环仿真(瞬态)、分析与模型完善
(1)原理图编辑
(2)仿真模拟 (3)仿真结果分析 (4)模型完善
33
(4)模型完善
滤波电感——串联电阻线路压降;(实 际设计<需要查磁芯手册>) II. 滤波电容—串联电阻 输出电压纹波; III. 线路寄生参数及其影响 I.
13
(1)原理图编辑
Switch, Power semiconductor Inductor Logic Clock Diode, ideal Resistor Capacitor
Voltage source, constant ideal DC supply
Ground, (Saber node 0)
39
(4)模型细化(完善)
① 开关管——应力计算、选取及实际器件选取;
(完整word版)buck-boost变换器的建模与仿真

题目:Vg 1.5VQ135mΩ100uH100uFR5ΩV D0.5V图1 buck—boost 变换器电路图一、开关模型的建模与仿真图2 buck-boost 变换器的开关模型占空比由0.806变化到0.7的电感电流波形占空比由0.806变化到0.7的电容电压波形图3 buck —boost 变换器的开关模型的仿真二、 大信号模型与仿真1、 开关导通时:Vg 1.5VR on35m ΩV-图4 开关导通时的工作状态此时,电感电压和电容电流方程:(t)v (t)v (t)(t)(t)(t)(t)L g on c di L i R dtdv v i C dt R ⎧==-⎪⎪⎨⎪==-⎪⎩2、 开关断开时:100uH100uFVi c+-0.5Vi图5 开关断开时的工作状态此时,电感电压和电容电流方程:(t)v (t)(t)(t)(t)(t)(t)L D cdi L V v dtdv v i C i dt R ⎧==--⎪⎪⎨⎪==-⎪⎩3、平均方程电源电压、电感电流、电容电压变化的不大均为低频信号,则(t)(t)g g v v = ;(t)(t)i i =;v(t)v(t)=又因为:(t)v (t)L d i L dt= (t)(t)c d v i Cdt= 则有,电感电压平均方程:()()'v (t)d(t)v (t)(t)+d (t)(t)L g on D i R V v =---电容电流平均方程:''(t)(t)(t)(t)d(t)()d (t)((t))=d (t)(t)c v v v i i R R R=-+--+ 输入电流平均方程:g (t)d(t)(t)i i =4、大信号模型:()()''g (t)d(t)v (t)(t)+d (t)(t)d (t)(t)=d (t)(t)(t)d(t)(t)g on D d i L i R V v dt v v C i dt R i i ⎧=---⎪⎪⎪-+⎨⎪⎪=⎪⎩由方程可得到三个等效电路:-+-+-+g (t)i v (t)g (t)v D (t)i 'D (t)i d (t)v Cdt(t)d i Ldt'(0.5D )VonDR '(t)D v v (t)g D 图6buck-boost 变换器的大信号模型的等效电路大信号模型的仿真电路:图7 大信号模型仿真电路图大信号模型的仿真波形:电感电流随占空比变化的波形电容电压随占空比变化的波形图8 大信号模型仿真波形图三、 小信号模型假设,gv (t)=V +v (t)d(t)=D+d(t)(t)=(t)v(t)=V+v(t)(t)=(t)g g g g g i I i i I i ΛΛΛΛΛ⎧⎪⎪⎪⎪⎨+⎪⎪⎪⎪+⎩ 且各变量的扰动值远小于其稳态值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)原理图编辑
④ 修改元器件属性
– – – – – – 理解所选择元器件的属性 定义属性 帮助文件的使用 画线 重新布线 连线与电压节点命名
⑤ 布线
⑥ 保存
15
开环仿真(瞬态)、分析与模型细化
(1)原理图编辑 (2)仿真 (3)仿真结果分析 (4)模型细化
16
(2)仿真模拟:仿真工具和仿真类型
Cf
I ripple 8 f sVout ( p p )
100 F
ESRmax
V 0.05 12.5m I 4
充电电荷Q 充电电流 * 充电时间 1 1 = I ripple * Ts C f *Vout ( p p ) 4 2
37
电解电容的ESR、ESL
38
例:Buck类LC滤波输出电流为20A,允许纹波纹波电压为 100mV。f=100kHz .选择电解电容。 解:纹波电流为4A。因为ΔUpp= Δ IRESR= 4×65×10-6/C ,则需要C= 4×65×10-6/0.05=2600μF,取2700uF,其ESR 约为24.1m;ESR引起的纹波为96.4m 如果不考虑ESR,按照此容量计算纹波电压为ΔUpp= Δ IT/2C = 4×10×10-6/(2×2700×10-6)=7.5mV 纹波: (96.4) 2 (7.5) 2 96.7 mV
• DC analysis • Plot after analysis
26
Analysis > Time Domain > Transient :
Calibration
– Truncation Error
在分析过程中每次计 算结果的舍入精度。这个 参数对仿真结果精度影响 很大,甚至导致仿真不收 敛。参数值越小,仿真精 度越高,但参数值过小会 降低仿真速度。通常取 100u即可。0.1倍改变
3
(1)性能指标
• DC-DC变换器性能指标: • 输入电压:36-72 VDC(额定48V) • 输出性能:
– 额定输出电压 Vout 28VDC – 输出电流纹波 Vout(p-p) <50mV – 额定负载电流 Iout 10A,在负载电流大于2A时, 电感电流工作于CCM。
• 其他性能:
– 开关频率 100kHz
28
开环仿真(瞬态)、分析与模型细化
(1)原理图编辑
(2)仿真模拟 (3)仿真结果分析 (4)模型细化
29
(3)仿真结果分析
• 查看仿真波形
– 图形文件的打开 – 现有信号的查看 – 信号的运算
• 测量分析结果 • 验证设计是否满足要求
– 观测各种情形下关键点波形
30
(3)仿真结果分析
① 输出电压纹波;
23
(2)仿真模拟
② 时域分析(transient)
时域分析的概念与作用
• 瞬态分析用于检验系统的时域特性,此分 析通常从静态工作点开始。是功率变换器 数值仿真中应用最广泛的分析类型。
瞬态分析对话框
24
Analysis > Time Domain > Transient :
Basic
• End Time:定义瞬态分 析结束时间; • Time Step:步长;
四.闭环仿真;
五.元件级仿真。
32
开环仿真(瞬态)、分析与模型完善
(1)原理图编辑
(2)仿真模拟 (3)仿真结果分析 (4)模型完善
33
(4)模型完善
滤波电感——串联电阻线路压降;(实 际设计<需要查磁芯手册>) II. 滤波电容—串联电阻 输出电压纹波; III. 线路寄生参数及其影响 I.
电容等效电路:C,ESR,ESL和RS
Z 1 jLESL RESR jC
ESR:引线、焊接和介质极化损耗。介质损耗与温 度和频率有关。一般ESR与其容量的乘积为 RESRC=50~80×10-6(s) ESL:引线、电容极板结构有关。 RS:泄漏电阻,一般很大 寿命降额:Arrhenius定律,容芯温度减少10℃ ,寿 命增加1倍。 ESR与纹波电流:电解电容的温升是RESRI2引起的。 开关电源中输出纹波电压主要是ESR引起的。而I 为纹波电流的有效值。
• 网络资源
– 使用方法介绍
41
小结||3-6||
• 掌握DC-DC电路参数设计方法; • 掌握用SaberSketch输入电路原理图的方法、 掌握瞬态仿真的基本参数设置方法、掌握 查看波形方法; • 借助仿真软件深入理解Buck电路工作原理。 • 作业: • 1:完成单端正激电路设计报告(含所有主 电路参数设计,需要查阅相关手册,选取 所有元器件) ; • saber0307@;Password:0307123456
• •
19
难以进行直流分析的电路
• 电容割集(电容和电流源组成的割集);
• 电压源与电感串联、电流源与电容串联;
• 具有不同初值的电感串联
• 具有不同初值的电容并联;
20
Analyses > Operating Point > DC Operating Point :(简略介绍)
21
仿真器主要参数:
• Sample point Density
27
Sample Point Density:
• 仿真器对电路中的非线性模块做线性化处理时将 其分为n个线性段(n值为此参数值的2倍),n越大 ,精度越高,但会降低仿真速度,最大可取1k。 • DC分析中,有助于找到直流工作点; • Transient 分析中,乘以DC分析中的该设置值; • 取值越大,曲线越平滑,越逼近真实波形;2倍
13
(1)原理图编辑
Switch, Power semiconductor Inductor Logic Clock Diode, ideal Resistor Capacitor
Voltage source, constant ideal DC supply
Ground, (Saber node 0)
b.
初选磁芯型号:
AP Ae AW
• •
L f I 2 106 Bm JKW Kc
其中Lf为电感值(H),I为通过电感的直流平均值(A), Bm是磁芯工作磁密(Gs),J是线圈电流密度,通常取3~5 (A/mm2),Kw是窗口的填充系数,Kc为磁芯填充系数。 经计算,查相关手册后可初选出磁芯型号。
35
(2)滤波电感设计
③ 计算匝数和气隙
a. b. 最大磁通摆幅: 计算匝数和气隙
0 N 2 Ae
Lf
④
计算导体尺寸
• 线圈电流密度通常取3~5(A/mm2)。
⑤ 校核:
Bm、窗口、损耗(铜耗,铁耗查曲线)
0 NI p max Bm
36
II 滤波电容设计(电解)
• If>Io充电,If<Io放电;
– 设计中有关时间常数的 1/10; – 驱动源最小的上升或下 降沿; – 正弦驱动源输入周期的 1/100。
• Start Time:开始时间;
25
Analysis > Time Domain > Transient :
Basic
• Monitor progress
– 0 执行时间 – -1 执行概要和时间 – 其他整数 迭代信息、运 算法则、截断误差、 CPU时间等
a. b. 寄生电感; 寄生电容;
IV. 半导体器件的寄生参数和实际元器件的选 取
34
I 滤波电感设计 ① 电感量计算; ② 磁芯选取
a. 电感磁芯材料的选取:
• 有较大的直流偏磁,磁通摆幅小,相应交流损耗也小,因此 可以选择较高的饱和磁密。应选取(铁氧体、铁粉芯、铁铝 硅Kool u、MPP、 high flux、非晶等 );----
第二章 DC-DC电路(Buck)的设计与仿真
1
DC-DC电路(Buck)的设计与仿真
一.开环设计;
二.开环仿真(瞬态)、分析与模型细化;
三.闭环设计与仿真;
四.闭环仿真;
五.元件级设计与仿真。
2
一 Buck电路的开环设计
(1)性能指标;
(2)Buck电路的工作原理;
(3)Buck电路的开环设计;
4
(2)Buck电路的工作原理
• 电路拓扑
Q
A L D C + RL U o -
+ Ui -
ub b
• CCM下的电路工作原理
5
(3)Buck电路的开环设计
•
主电路参数设计
(1)占空比 (2)滤波电感量滤波电感设计 (3)滤波电容 (4)功率器件
6
占空比
(1)占空比
Dmax Dmin Dnom Vout 28 0.78 Vin min 36 Vout 28 0.39 Vin max 72 Vout 28 0.58 Vinnom 48
17
(2)仿真模拟
① DC工作点分析 (DC operating point)
DC分析的概念与作用 执行DC分析(主要设置) 查看和评估工作点
18
(2)仿真模拟
① DC工作点分析(DC operating point)
DC分析的概念与作用
• 静态工作点:电子线路中的一些非线性元件(如 二极管、三极管),其运行特性取决于偏置点, 称为静态工作点。为时域分析和交流小信号分析 提供初始值。 t=0时,所有时变参量为0情况下,分析电路的DC 偏置点。(如电感为短路,电容为开路等) 作用:求解系统的静态工作点,为其他分析提供 计算初始点;提供快速检查。
42
作业内容
• 1:单端正激电路设计报告(含变压器与电 感器的设计);