三角函数辅助角公式化简(1)

合集下载

辅助角公式的解说

辅助角公式的解说

关于辅助角公式的解说 对于辅助角公式,大家都很熟悉。

公式如下:)sin(cos sin 22ϕααα++=+b a b a 其中:ab =ϕtan 。

但是在实际运用中,最让大家感到头疼的是关于辅助角ϕ的大小确定。

下面就此公式的实际运用作如下解说。

一、辅助角使用的准备(1) 顺序:要使正弦在前,余弦在后;(2) 系数:分析好a 、b ,正弦系数为a 、余弦系数为b 。

二、象限的确定(1) 当a 、b 都是正数时,ϕ在第一象限!(2) 当a 、b 都是负数时,ϕ在第三象限!(3) 当a 是正数,b 是负数时,ϕ在第四象限!(4) 当a 是负数,b 是正数时,ϕ在第二象限!(5) 规律:x y a b ==ϕtan ,利用x 、y 的正负确定象限。

三、b a 22+的确定(系数,相当于辅助直角三角形中的斜边长) (1)b a 22+的大小不管a 、b 符号如何,b a 22+始终是正数。

(2) b a 22+的大小与a 、b 顺序无关。

(3) 1||||==b a 时,222=+b a (4) 2||||==b a 时,2222=+b a (5) 2||1||==b a ,时,522=+b a (6) 23||21||==b a ,时,122=+b a (7) 36||33||==b a ,时,122=+b a(8) 3||1||==b a ,时,222=+b a 三、ϕ角的大小确定(1)1=a b ,4πϕ=或45πϕ=(4ππ+k )(2)1-=a b ,43πϕ=或4πϕ-=(4ππ-k ) (3)33=a b ,6πϕ=或67πϕ=(6ππ+k ) (4)33-=a b ,65πϕ=或6πϕ-=(6ππ-k ) (5)3=a b ,3πϕ=或34πϕ=(3ππ+k ) (6)3-=a b ,32πϕ=或3πϕ-=(3ππ-k ) 四、例说辅助角的运用(一)︒+︒75sin 15sin (2015年四川高考题)来分析:分析:先由诱导公式化为:︒+︒=︒+︒cos15sin1575sin 15sin ,然后直接利用辅助角公式得: 26232sin602)45sin(152cos15sin1575sin 15sin =⋅=︒⋅=︒+︒=︒+︒=︒+︒ (二)公式的灵活运用(1)直接运用辅助角公式 ︒=︒+︒=︒+︒sin502)45sin(52cos5sin5(2)化系数,利用两角和的三角函数变换︒=︒+︒=︒︒+︒︒=︒+︒=︒+︒sin502)45sin(525cos 45sin sin5(cos452)cos522sin522(2cos5sin5)(3)化系数,利用两角和的三角函数变换︒=︒-︒=︒︒+︒︒=︒+︒=︒+︒cos402)5cos(4525sin 45sin cos5(cos452)sin522cos522(2cos5sin5)(三)拓展分析︒-︒5sin cos5的思考:(1)利用辅助角公式︒=︒--=︒-︒-=︒-︒-=︒-︒sin40240sin(2)455sin(2)5cos 5(sin 5sin cos5)(2)利用辅助角公式︒=︒=︒+︒=︒+︒-=︒-︒sin402140sin(2)1355sin(25cos 5sin 5sin cos5)(3)利用两角和计算︒=︒=︒︒-︒︒=︒-︒=︒-︒sin40250cos 2)5sin 45sin 5cos 45(cos 2)5sin 225cos 22(25sin cos5(4)利用两角和计算 ︒=︒︒-︒︒=︒-︒=︒-︒40sin 2)5sin 45cos 5cos sin452)5sin 225cos 22(25sin cos5(。

辅助角公式

辅助角公式

推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1]?(就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]?在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

他的译书也为中国近代物理学的发展起了启蒙作用。

辅助角公式

辅助角公式

辅助角公式Revised on November 25, 2020推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

[1]在19世纪把西方近代知识翻译为中文的传播工作中﹐李善兰作出了重大贡献。

辅助角公式

辅助角公式

辅助角公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)推导对于f(x)=asinx+bcosx(a>0)型函数,我们可以如此变形,设点(a,b)为某一角φ(-π/2<φ<π/2)终边上的点,则,因此就是所求辅助角公式。

又因为,且-π/2<φ<π/2,所以,于是上述公式还可以写成该公式也可以用余弦来表示(针对b>0的情况),设点(b,a)为某一角θ(-π/2<θ<π/2)终边上的点,则,因此同理,,上式化成若正弦和余弦的系数都是负数,不妨写成f(x)=-asinx-bcosx,则再根据得记忆很多人在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,的位置永远是你用来表示函数名称的系数。

例如用正弦来表示asinx+bcosx,则反正切就是b/a(即正弦的系数a在分母)。

如果用余弦来表示,那反正切就要变成a/b(余弦的系数b 在分母)。

疑问为什么在推导辅助角公式的时候要令辅助角的取值范围为(-π/2,π/2)?其实是在分类讨论a>0或b>0的时候,已经把辅助角的终边限定在一、四象限内了,此时辅助角的范围是(2kπ-π/2,2kπ+π/2)(k是整数)。

而根据三角函数的周期性可知加上2kπ后函数值不变,况且在(-π/2,π/2)内辅助角可以利用反正切表示,使得公式更加简洁明了。

提出者,原名李心兰,字竟芳,号秋纫,别号壬叔。

出身于读书世家,其先祖可上溯至南宋末年汴梁(今)人李伯翼。

生于1811年 1月22日,逝世于1882年12月9日,人,是中国近代着名的数学家、天文学家、力学家和,创立了二次的幂级数展开式。

[1](就是现在的)他研究各种,和对数函数的幂级数展开式,这是李善兰也是19 世纪中国数学界最重大的成就。

三角函数辅助角公式化简

三角函数辅助角公式化简

(2)若

,求
的值。
标准文案
19.已知 f x 2cosx sin x 6
3sinx cosx sin 2x ,
(1)求函数 y f x 的单调递增区间;
(2)设 △ABC的内角 A 满足 f A 2 ,而 AB AC 3 ,求边 BC的最小值.
20.已知函数 f x
cos x 2
3cosx cosx
( 2)函数 得到函数
的图象向右平移 个单位后, 再将得到的图象上各点的横坐标伸长到原来的 的图象,求 的单调递减区间 .
4 倍,纵坐标不变,
23.已知函数 f x cos4 x sin2x sin4 x . ( 1)求函数 f x 的递减区间; ( 2)当 x 0, 时,求函数 f x 的最小值以及取最小值时 x 的值 .
f (x)= a ?b 且 f ( -x)=f ( x). 3
(Ⅰ)求 f (x)的解析式及单调递增区间;
(Ⅱ)将 f( x)的图象向右平移 单位得 g(x)的图象, 若 g(x)+1≤ ax+cosx 在 x∈[0 , ]
3
4
上恒成立,求实数 a 的取值范围.
18. 已知函数
(1)求函数
在 上的单调递增区间;
2
24.已知函数 f x 2 3sinxcosx 2sin2x 1.
( 1)求函数 f x 的对称中心和单调递减区间;
( 2)若将函数 f x 图象上每一点的横坐标都缩短到原来的
1(纵坐标不变) ,然后把所得图象向左平移

2
6
单位长度,得到函数 g x 的图象,求函数 g x 的表达式 .
标准文案
实用文档
17.已知函数 f x Asin x ( 1) 求函数 f x 的解析式;

高一数学专题辅导讲义7辅助角公式及其应用

高一数学专题辅导讲义7辅助角公式及其应用

高一数学补充讲义7:辅助角公式及其应用一.问题提出:三角恒等变换在函数中的常见问题、方法及注意点(1)常见问题:求三角函数的周期、值域、对称轴、单调区间等.(2)常见方法:利用辅助角公式把函数化成一个角的三角函数的形式,进而求以上问题.在变换过程中,常用换元、逆用公式等数学思想.二.教学过程:1.辅助角公式 引例:化简(1) (2(3公式:,b a b a ϕϕ其中所在象限由的正负决定,且tan = 推导:化为一个角的三角函数形式说明:1)对形如cos sin (,,y a x b x a b ωωω=+均为非零常数)的三角式,可以转化为形如sin()y A x ωϕ=+的三角式,使问题得到简化,体现了化归思想。

2)类似的cos sin a x b x ωω+也可以转化为cos()A x ωϕ±的形式,应用时可灵活处理3)对定义R 上的函数cos sin y a x b x ωω=+ 思考:若6sin ),(,),x x x ϕϕππϕ-=+∈-求的值sin cos a x b x +x x ⎫=+⎪⎭cos sin ϕϕ==(令)sin cos cos sin x x ϕϕ+=()x ϕ=+sin cos a x b x +()x ϕ=+1sin cos 22x x -cos x x+cos )x x -sin cos a x b x +2.应用例题讲解例1.化简下列各式,并求所给函数的最小正周期及值域()1cos y x x =()2y x x =()2312sin cos y x x x =-+()4sin(2)sin 23y x x π=-+变式:1.已知()cos ,(0,)f x x x x π=+∈,求()f x 的值域.2.分别求()3sin 4cos f x x x =+ 在下列范围的值域: ()1x R ∈; ()202x π≤≤.例2.已知()sin 2cos 2f x x a x =+的一条对称轴方程为8x π=-,求a 的值.变式:设函数()sin cos (0)f x a x b x ωωω=+>,已知函数()f x 的最小正周期为π,且当6x π=时()f x 取最大值为2,求满足()1f x >的x 的取值范围。

《辅助角公式》 讲义

《辅助角公式》 讲义

《辅助角公式》讲义一、引入在三角函数的学习中,我们常常会遇到形如\(a\sin x +b\cos x\)这样的式子。

为了更方便地对其进行分析和处理,我们引入了一个非常重要的公式——辅助角公式。

二、什么是辅助角公式辅助角公式的一般形式为:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)。

这个公式的作用在于将两个不同的三角函数\(\sin x\)和\(\cos x\)合并成一个单一的三角函数\(\sin(x +\varphi)\),从而简化计算和分析。

三、辅助角公式的推导为了推导辅助角公式,我们可以利用三角函数的和角公式:\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)令\(a\sin x + b\cos x = R\sin(x +\varphi)\)则\(R\sin(x +\varphi) = R(\sin x\cos\varphi +\cosx\sin\varphi) = R\cos\varphi\sin x + R\sin\varphi\cos x\)所以\(R\cos\varphi = a\),\(R\sin\varphi = b\)两边平方相加可得:\(R^2(\cos^2\varphi +\sin^2\varphi) =a^2 + b^2\)因为\(\cos^2\varphi +\sin^2\varphi = 1\),所以\(R =\sqrt{a^2 + b^2}\)则\(\tan\varphi =\frac{\sin\varphi}{\cos\varphi} =\frac{b}{a}\)这样就得到了辅助角公式:\(a\sin x + b\cos x =\sqrt{a^2 +b^2} \sin(x +\varphi)\),其中\(\varphi\)满足\(\tan\varphi=\frac{b}{a}\)四、辅助角公式的应用(一)化简三角函数表达式例 1:化简\(\sqrt{3}\sin x +\cos x\)首先,\(R =\sqrt{(\sqrt{3})^2 + 1^2} = 2\)\(\tan\varphi =\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\),所以\(\varphi =\frac{\pi}{6}\)则\(\sqrt{3}\sin x +\cos x = 2\sin(x +\frac{\pi}{6})\)例 2:化简\(5\sin x 12\cos x\)\(R =\sqrt{5^2 +(-12)^2} = 13\)arctan\frac{12}{5}\)则\(5\sin x 12\cos x = 13\sin(x \arctan\frac{12}{5})\)(二)求三角函数的最值例 3:求函数\(y = 2\sin x + 2\sqrt{3}\cos x\)的最大值和最小值先将其化为辅助角公式的形式:\(R =\sqrt{2^2 +(2\sqrt{3})^2} = 4\)\(\tan\varphi =\sqrt{3}\),所以\(\varphi =\frac{\pi}{3}\)则\(y = 4\sin(x +\frac{\pi}{3})\)因为\(\sin(x +\frac{\pi}{3})\)的最大值为\(1\),最小值为\(-1\)所以\(y\)的最大值为\(4\),最小值为\(-4\)(三)求解三角函数方程例 4:求解方程\(3\sin x + 4\cos x = 2\)将左边化为辅助角公式:\(R =\sqrt{3^2 + 4^2} = 5\)arctan\frac{4}{3}\)则\(3\sin x + 4\cos x = 5\sin(x +\arctan\frac{4}{3})\)原方程变为\(5\sin(x +\arctan\frac{4}{3})= 2\)\(\sin(x +\arctan\frac{4}{3})=\frac{2}{5}\)则\(x +\arctan\frac{4}{3} = k\pi +(-1)^k\arcsin\frac{2}{5}\),\(k\in Z\)\(x = k\pi +(-1)^k\arcsin\frac{2}{5} \arctan\frac{4}{3}\),\(k\in Z\)五、使用辅助角公式的注意事项(一)正确确定辅助角\(\varphi\)要根据\(\tan\varphi =\frac{b}{a}\)来确定\(\varphi\)的值,同时要注意\(\varphi\)所在的象限。

三角函数公式与方法汇总

三角函数公式与方法汇总

三角函数公式与方法汇总三角函数是数学中的重要概念,广泛应用于几何学、物理学、工程学等领域。

掌握并熟练运用三角函数的公式与方法,对于解决各种问题具有重要意义。

下面是三角函数公式与方法的汇总。

一、基本公式及性质:1. 正弦函数(sin):正弦函数是一个周期函数,周期为2π,具有以下重要性质:-定义域:(-∞,+∞)-值域:[-1,1]- 奇函数:sin(-x) = -sin(x)- 辅助角公式:sin(A ± B) = sinA cosB ± cosA sinB- 和差化积公式:sin(A + B) + sin(A - B) = 2sinA cosB2. 余弦函数(cos):余弦函数也是一个周期函数,周期为2π,具有以下重要性质:-定义域:(-∞,+∞)-值域:[-1,1]- 偶函数:cos(-x) = cos(x)- 辅助角公式:cos(A ± B) = cosA cosB ∓ sinA sinB- 和差化积公式:cos(A + B) + cos(A - B) = 2cosA cosB正切函数也是一个周期函数,周期为π,具有以下重要性质:-定义域:(-∞,+∞)-值域:(-∞,+∞)- 奇函数:tan(-x) = -tan(x)- 辅助角公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA tanB)4. 余切函数(cot):余切函数是正切函数的倒数,具有以下重要性质:-定义域:(-∞,+∞)-值域:(-∞,+∞)- 奇函数:cot(-x) = -cot(x)- 辅助角公式:cot(A ± B) = (cotA cotB ∓ 1) / (cotB ± cotA)5. 正割函数(sec):正割函数是余弦函数的倒数,具有以下重要性质:-定义域:(-∞,-1]∪[1,+∞)-值域:(-∞,-1]∪[1,+∞)- 偶函数:sec(-x) = sec(x)- 辅助角公式:sec(A ± B) = (secA secB ± tanA tanB) / (secB ± secA)余割函数是正弦函数的倒数,具有以下重要性质:-定义域:(-∞,-1]∪[1,+∞)-值域:(-∞,-1]∪[1,+∞)- 奇函数:csc(-x) = -csc(x)- 辅助角公式:cs c(A ± B) = (cscA cscB ± cotA cotB) / (cscB ± cscA)二、三角函数的基本关系式:1. 余弦和正弦关系:cos^2(x) + sin^2(x) = 12. 正切与余切关系:tan(x) = 1 / cot(x)3. 正割与余割关系:sec(x) = 1 / cos(x)4. 余切与直角三角形关系:cot(x) = adjacent / opposite5.三角函数的平方关系:- cos^2(x) = (1 + cos(2x)) / 2- sin^2(x) = (1 - cos(2x)) / 2- tan^2(x) = (1 - cos(2x)) / (1 + cos(2x))三、三角函数的周期性及对称性:1. 正弦函数的周期性:sin(x + 2πn) = sin(x)2. 余弦函数的周期性:cos(x + 2πn) = cos(x)3. 正切函数的周期性:tan(x + πn) = tan(x)4.正割、余切、正切函数的奇偶性:- sec(-x) = sec(x)- csc(-x) = -csc(x)- tan(-x) = -tan(x)四、三角恒等式:1.基本恒等式:- sin^2(x) + cos^2(x) = 1- 1 + tan^2(x) = sec^2(x)- 1 + cot^2(x) = csc^2(x)2.余弦的恒等式:- cos(A + B) = cosA cosB - sinA sinB- cos(A - B) = cosA cosB + sinA sinB3.正弦的恒等式:- sin(A + B) = sinA cosB + cosA sinB- sin(A - B) = sinA cosB - cosA sinB4.正割与余割的恒等式:- sec(A + B) = secA secB + tanA tanB- sec(A - B) = secA secB - tanA tanB- csc(A + B) = cscA cscB - cotA cotB- csc(A - B) = cscA cscB + cotA cotB五、解三角函数方程的方法:1.化简法:根据已知条件和三角函数的性质,将复杂的三角方程化简为简单的形式,然后求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;
(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;
(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.
8.(1) (2) 在区间 上单调递增,在区间 上单调递减.
三角函数辅助角公式化简
一、解答题
1.已知函数 ,
(1)求 的对称中心;
(2)讨论 在区间 上的单调性.
2.已知函数 .
(1)将 化简为 的形式,并求 最小正周期;
(2)求 在区间 上的最大值和最小值及取得最值时 的值.
3.已知函数 .
(1)求 的最小正周期;
(2)求 在区间 上的单调递增区间及最大值与最小值.
试题解析:1)由已知
令 ,得 ,对称中心为 , .
(2)令 ,
得 , ,增区间为
令 ,
得 , ,增区间为
上的增区间为 ,减区间为 .
2.(1) , ;(2) 时, , 时, .
【解析】试题分析:(1)由三角函数的公式化简可得 ,由周期公式可得答案;(2)由x的范围可得 的范围,可得f(x)的范围,结合三角函数在该区间的单调性,可得最值及对应的x值.
(2)将f(x)的图象向右平移 单位得g(x)=sinx,即sinx+1≤ax+cosx在x∈[0, ]上恒成立,利用数形结合分别研究h(x)=sinx-cosx和φ(x)=ax—1即可.
试题解析:
(Ⅰ)∵f(x)= =sinxcosφ+cosxsinφ=sin(x+φ),
再由f( -x)=f(x)可知函数f(x)的图象关于直线x= 对称,
6.(1) (2)
【解析】试题分析:(1) ,令 解得x即可(Ⅱ)求 在 上的单调区间,则令 解得x,对k赋值得结果.
试题解析:
(Ⅰ)
令 ,得 ,
故所求对称中心为
(Ⅱ)令 ,解得
又由于 ,所以
故所求单调区间为 .
点睛:三角函数的大题关键是对f(x)的化简,主要是三角恒等变换的考查,化简成 类型,把wx+ 看成整体进行分析.
试题解析:
(1)f(x)=2cosxcos(x- )- sin2x+sinxcosx

= cos2x+sin2x
=2sin ,
∴T=π.
(2)
画出函数 在x∈ 的图像,由图可知 或
故a的取值范围为 .
11.(1) (2)
【解析】试题分析:(1)由三角恒等变换化简得 ,由 可解得增区间(2) 由 得 , ,由余弦定理得 ,即 即得
试题解析:
(1)

所以 的最小正周期 .
(2)令 ,函数 的单调递增区间是 , .
由 ,得 , .
设 , ,易知 .
所以,当 时, 在区间 上单调递增。
∵ ,
∴ ,
∴ ,

∴ 最大值为2,最小值为-1.
点睛:解题的关键是将函数化成f(x)=Asin(ωx+φ)的形式后,把ωx+φ看成一个整体去处理,特别是在求单调区间的时候,要注意复合函数单调性规律“同增异减”,如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.
=
的最大值为2.
要 使取最大值 ,
故 的集合为 .
(2) ,
化简得 ,
,只有
在 中,由余弦定理, ,
由 当 时等号成立, 最小为1.
点睛:(1)要求三角函数的最值,就要化成,一次一角一函数的形式;
(2)巧妙利用三角函数值求得角A,再利余弦定理得边的关系,得到最值;
14.(1) (2)
【解析】试题分析:(1)先根据二倍角公式以及辅助角公式将函数化为基本三角函数: ,再根据正弦函数周期性质求 ,并根据单调性性质求单调增区间(2)先根据正弦定理将边化为角,由诱导公式及两角和正弦公式化简得 ,即得 ,根据锐角三角形得A取值范围,根据正弦函数性质求 的取值范围.
(3)求 在区间 上的最大值和最小值.
8.设函数 .
(1)求 的最小正周期;
(2)讨论 在区间 上的单调性.
9.已知函数 ,
(I)求 的最大值和对称中心坐标;
(Ⅱ)讨论 在 上的单调性。
10.已知函数 .
(1)求 的最小正周期;
(2)若关于 的方程 在 上有两个不同的实根,求实数 的取值范围.
11.设 .
同理可求得f(x)的单调减区间 ,,在 上的减速区间有 .
递增区间: 和 ;递减区间: .
10.(1) ;(2) 的取值范围为
【解析】试题分析:
(1)由题意结合诱导公式和同角三角函数基本关系整理函数的解析式为:f(x)=2sin ,结合三角函数的周期公式可知T=π.
(2)原问题等价于 ,结合函数的图象可得 或 ,求解不等式可得a的取值范围为 .
(2)当 时,求 的值域.
22.已知函数 为偶函数,且函数 图象的两相邻对称轴间的距离为 .
(1)求 的值;
(2)函数 的图象向右平移 个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数 的图象,求 的单调递减区间.
23.已知函数 .
(1)求函数 的递减区间;
(2)当 时,求函数 的最小值以及取最小值时 的值.
7.(1) ;(2)单调递增区间为 ;(3) , .
【解析】试题分析:(1)由和差角公式及二倍角公式化简得: ,进而得最小正周期;
(2)由 可得增区间;
(3)由 得 ,根据正弦函数的图象可得最值.
试题解析:
(1)
.
的最小正周期 .
(2)由
解得
函数 的单调递增区间为
(3)
当 时, ,
当 时, , .
点睛:三角函数式的化简要遵循“三看”原则
得: .
∴函数 的单调增区间为 , .
(2)∵ ,即 .
∴ .
可得 , .
∵ ,
∴ .
由 ,且 的面积为 ,即 .
∴ .
由余弦定理可得: .
∴ .
13.(1) , (2)a最小值为1.
【解析】试题分析:(1)利用二倍角公式和两角和差公式将原式子化一;(2)由 得
到 , ;由余弦定理得 最小为1;
(1)
4.(1) ,最大值为1(2)
【解析】试题分析:(1)先根据二倍角公式以及辅助角公式将函数化为基本三角函数形式,再根据正弦函数性质求最小正周期 及最大值;(2)根据正弦函数性质列不等式 ,解得函数 的单调递增区间.
试题解析:解:
(1)

即 时
取最大值为1
(2)令
∴ 的单调增区间为
5.(1)答案见解析;(2) .
24.已知函数 .
(1)求函数 的对称中心和单调递减区间;
(2)若将函数 图象上每一点的横坐标都缩短到原来的 (纵坐标不变),然后把所得图象向左平移 个单位长度,得到函数 的图象,求函数 的表达式.
参考答案
1.(1)对称中心为 , ;(2)增区间为 ,减区间为 .
【解析】试题分析:利用降幂公式和辅助角公式将已知函数解析式转化为正弦型函数,根据正弦函数的性质来求对称中心,其对称中心能使函数值为0,从而角的终边在x轴上;(2)首先求出函数的单调区间,再根据自变量的取值范围来求落在给定范围上的的单调区间.
【解析】试题分析:
(1)整理函数的解析式可得 ,则函数的最小正周期为 ;对称轴方程为 ;
(2)结合函数的定义域和(1)中整理的函数的解析式可得函数的值域为 .
试题解析:
(1)

函数图象的对称轴方程为
(2)
因为 在区间 上单调递增,在区间 上单调递减,
所以当 时, 取最大值1
又 ,当 时, 取最小值
所以函数 在区间 上的值域为
试题解析:(1) ,最小正周期为 ,
∴ ,令 ,即 ,
∴ 的单调递增区间为 .
(2)∵ ,∴ ,
整理得: , , ,∵锐角三角形 ,∴ 且 ,
∴ ,∴ ,∴ .
15.(Ⅰ)f(x)=sin(x+ ), ;(Ⅱ) .
【解析】试题分析:(1)利用向量的坐标运算得到 ,再由f( -x)=f(x)可知函数f(x)的图象关于直线x= 对称,所以 +φ= +kπ,进而得到φ= ,利用三角函数的性质求解单调区间即可;
∴ +φ= +kπ,k∈Z,又|φ|< ,∴φ=
∴f(x)=sin(x+ ),
由2kπ- ≤x+ ≤2kπ+ 可得2kπ- ≤x≤ 2kπ+ ,
∴函数的递增区间为[2kπ- ,2kπ+ ],k∈Z;
(Ⅱ)由图象平移易知g(x)=sinx,即sinx+1≤ax+cosx在x∈[0, ]上恒成立.
也即sinx-cosx≤ax-1在x∈[0, ]上恒成立.
16.已知向量 =(2cos , sin ), =(cos ,2cos ),(ω>0),设函数f(x)= ,且f(x)的最小正周期为π.
(1)求函数f(x)的表达式;
(2)求f(x)的单调递增区间.
17.已知函数 的部分图象如图所示.
(1) 求函数 的解析式;
(2) 如何由函数 的通过适当图象的变换得到函数 的图象, 写出变换过程;
(1)求 的单调递增区间;
(2)锐角 中,角 的对边分别为 ,若 , , ,求 的值.
12.已知函数 .
(1)求函数 的单调增区间;
(2) 的内角 , , 所对的边分别是 , , ,若 , ,且 的面积为 ,求 的值.
13.设函数 .
(1)求 的最大值,并写出使 取最大值时 的集合;
(2)已知 中,角 的边分别为 ,若 ,求 的最小值.
相关文档
最新文档