三角形的三条边的关系
三角形三边关系的公式及例题

三角形的相关知识点一直都是考试的重点知识,那么三角形的三边关系指的是什么?打击一起来看看吧。
三角形三边关系公式
三角形是由不在同一直线上的三条线段,首尾顺次相接所组成的封闭图形。
在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
若两条较短边的和小于最长边,则不能构成三角形。
三角形边长公式:c²=a²+b²。
已知三角形两条直角边的长度,可按公式
c²=a²+b²计算斜边。
三角形三边关系例题
1、若等腰三角形的两边长分别为3和7,则它的周长为_______;若等腰三角形的两边长分别是3和4,则它的周长为_____。
2、长为10、7、5、3的四跟木条,选其中三根组成三角形有___种选法。
3、已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成______个三角形。
4、在△ABC中,下列a与bsinA的关系正确的是()
A.a>bsinA
B.a≥bsinA
C.a<bsinA
D.a≤bsinA
5、△ABC中,a=5,b=3,sinB=22,则符合条件的三角形有()
A.1个
B.2个
C.3个
D.0个
以上就是三角形三边关系的相关知识以及一些例题,希望对大家有所帮助。
三角形三边关系

三角形三边关系三角形是几何图形中最基本也是最重要的图形之一。
三角形的三边关系是三角形性质的基石,掌握好这一基本概念对于理解其他几何概念非常重要。
本文将详细介绍三角形三边关系及其应用。
一、三角形三边关系的定义三角形是由三条不在同一直线上的线段首尾顺次相接所组成的图形。
根据三角形的定义,我们可以知道三角形的任意两边之和大于第三边,任意两边之差小于第三边。
这种性质通常被称为“三角形三边关系”。
二、三角形三边关系的证明证明三角形三边关系有多种方法,其中最经典的是利用“反证法”。
假设三角形三边a、b、c满足a<b+c,我们来证明这与假设矛盾。
假设反面成立,即a≥b+c,那么b+c≥a+c,即b≥a+c-c=a,这与题目中a>b矛盾。
因此,我们的假设是错误的,所以三角形三边关系成立。
三、三角形三边关系的几何应用三角形三边关系在几何学中有着广泛的应用。
例如,它可以用来判断三条线段能否组成一个三角形,或者比较两条线段的长度大小。
它还可以用于解决一些与三角形有关的实际问题,如测量不可直接测量的距离或高度等。
四、总结三角形三边关系是几何学中的一个基本概念,它反映了三角形中任意两边之和与第三边的关系。
这一性质不仅在几何学中有着广泛的应用,而且在解决实际问题时也具有重要意义。
掌握好三角形三边关系对于理解其他几何概念也是非常有帮助的。
三角形三边的关系在几何学中,三角形是一种基本的图形,其三边之间的关系是构成三角形的核心要素。
本文将探讨三角形三边的关系,以及其在实际生活中的应用。
一、三角形三边的关系三角形三边的关系可以用以下三个基本定理来描述:1、三角形两边之和大于第三边。
这意味着,任意两边之和必须大于第三边,否则不能构成三角形。
2、三角形两边之差小于第三边。
这意味着,任意两边之差必须小于第三边,否则也不能构成三角形。
3、三角形的任意两边之和大于第三边,同时任意两边之差小于第三边。
这个定理实际上是前两个定理的组合。
直角三角形三条边的关系公式

直角三角形三条边的关系公式
直角三角形是指其中一个角是90度的三角形。
在直角三角形中,三条边之间有着重要的关系,可以用数学公式来表示。
1. 勾股定理:勾股定理是直角三角形中最基本的关系公式,它表示直角三角形的两条直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a和b分别表示直角三角形的两条直角边,c表示斜边。
2. 正弦定理:正弦定理表示直角三角形中,任意一条边的长度与其对应的角度之间的关系。
即a/sinA=b/sinB=c/sinC,其中a、b、c分别表示直角三角形的三条边,A、B、C分别表示对应的角度。
3. 余弦定理:余弦定理表示直角三角形中,任意一条边的长度与其对应的角度之间的关系。
即a²=b²+c²-2bc*cosA,b²=a²+c²-2ac*cosB,c²=a²+b²-2ab*cosC,其中a、b、c分别表示直角三角形的三条边,A、B、C分别表示对应的角度。
这些公式的应用可以帮助我们解决直角三角形的各种问题,如求解三角形的边长、角度大小等等。
三边关系定理

三边关系定理三边关系定理是指三角形中,三条边与相关角之间的关系。
下面是三个常见的三边关系定理:1.三角不等式定理(Triangle Inequality Theorem):对于三角形的任意两边之和要大于第三边的长度。
换句话说,对于三角形的三边a、b、c,满足以下不等式:a + b > c,a + c > b,b + c > a。
如果不等式中的“>”换成“≥”,则表示三角形是退化的(例如,三边长度相等的直线)。
2.三角形两边之和大于第三边(Sum of Two Sides of a TriangleTheorem):对于三角形的两边之和大于第三边的长度。
换句话说,对于三角形的三边a、b、c,满足以下不等式:a+ b ≥ c,a + c ≥ b,b + c ≥ a。
这个定理是三角不等式定理的推广。
3.应用于边长的三边关系(Side-Length Relations):假设a、b、c分别为三角形的三边,α、β、γ分别为与边a、b、c对应的角,则有以下关系:o正弦定理(Sine Law):a/sinα = b/sinβ = c/sinγ。
这个定理表明三角形的三边与其对应的角的正弦值成比例关系。
o余弦定理(Cosine Law):c² = a² + b² - 2abcosγ。
这个定理可以用来计算三角形的某个角度的余弦、某个边的长度,或者两个边和相应角的关系。
o正弦定理的推论(Sine Law Consequence):Sinα/a = Sinβ/b = Sinγ/c。
这个定理是以上正弦定理的推论,可以用来计算三角形的角的正弦值。
这些三边关系定理在三角形的几何性质和计算中都有重要的应用,使我们能够了解和计算各边和角之间的关系。
三角形三边关系归纳

三角形三边关系的考点问题三角形的三条边之间主要有这样的关系:三角形的两边的和大于第三边,三角形的两边的差小于第三边.利用这两个关系可以解决许多典型的几何题目.现举例说明.一、确定三角形某一边的取值范围问题根据三角形三边之间关系定理和推论可得结论:三角形的两边为a、b,那么第三边c 满足|a-b|<c<a+b.例1 用三条绳子打结成三角形(不考虑结头长),其中两条长分别是3m和7m,问第三条绳子的长有什么限制.简析设第三条绳子的长为x m,那么7-3<x<7+3,即4<x<10.故第三条绳子的长应大于4m且小于10m。
二、判定三条线段能否组成三角形问题根据三角形的三边关系,只需判断最小的两边之和是否大于第三边即可.例2〔1〕以下长度的三根木棒首尾相接,不能做成三角形框架的是〔〕A,5cm、7cm、10cm B,7cm、10cm、13cmC,5cm、7cm、13cm D,5cm、10cm、13cm〔2〕〔2004年哈尔滨市中考试题〕以以下各组线段为边,能组成三角形的是〔〕A,1cm,2cm,4cm B,8cm,6cm,4cm C,12cm,5cm,6cm D,2cm,3cm,6cm 简析由三角形的三边关系可知:(1)5+7<13,故应选C;(2)6+4>8,故应选B.例3 有以下长度的三条线段能否组成三角形?〔1〕a-3,a,3(其中a>3);〔2〕a,a+4,a+6(其中a>0);〔3〕a+1,a+1,2a(其中a>0).简析〔1〕因为(a-3)+3=a,所以以线段a-3,a,3为边的三条线段不能组成三角形.〔2〕因为(a+6)-a =6,而6与a+4的大小关系不能确定,所以以线段a,a+4,a+6为边的三条线段不一定能组成三角形.〔3〕因为(a+1)+(a+1)=2a+2>2,(a+1)+2a=3a+1>(a+1),所以以线段a +1,a+1,2a为边的三条线段一定能组成三角形.三、求三角形某一边的长度问题此类问题往往有陷阱,即在根据题设条件求得结论时,其中可能有一个答案是错误的,需要我们去鉴别,而鉴别的依据就是这里的定理及推论.例4 等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两局部,求这个三角形的腰长.简析如图1,设腰AB=x cm,底BC=y cm,D为AC边的中点.根据题意,得x+12x=12,且y+12x=21;或x+12x=21,且y+12x=12.解得x=8,y=17;或x=14,y=5.显然当x=8,y=17时,8+8<17不符合定理,应舍去.故此三角形的腰长是14cm.例5一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,那么第三边长为______.简析设第三边长为x厘米,因为9-2<x<9+2,即7<x<11,而x是奇数,所以x=9.故应填上9厘米.四、 求三角形的周长问题此类求三角形的周长问题和求三角形某一边的长度问题一样,也会设计陷阱,所以也应防止答案的错误.例6 等腰三角形的一边等于5,另一边等于6,那么它的周长等于_______. 简析 等腰三角形的一边等于5,另一边等于6,并没有指明是腰还是底,故应由三角形的三边关系进行分类讨论,当5是腰时,那么底是6,即周长等于16;当6是腰时,那么底是5,即周长等于17.故这个等腰三角形的周长是16或17.五、判断三角形的形状问题判断三角形的形状主要是根据条件寻找边之间的关系.例7 a 、b 、c 是三角形的三边,且满足a 2+b 2+c 2-ab -bc -ca =0.试判断三角形的形状. 简析 因为a 2+b 2+c 2-ab -bc -ca =0,那么有2a 2+2b 2+2c 2-2ab -2bc -2ca =0.于是有〔a-b 〕2+〔b-c〕2+〔c-a 〕2=0.此时有非负数的性质知〔a -b 〕2=0;〔b-c〕2=0;〔c-a 〕2=0,即a -b =0;b-c=0;c-a =0.故a =b =c .所以此三角形是等边三角形.六、化简代数式问题这里主要是运用两边之和大于第三边,两边之差小于第三边,从而确定代数式的符号. 例8 三角形三边长为a 、b 、c ,且|a +b -c|+|a -b -c|=10,求b 的值.简析 因a +b >c ,故a +b -c >0`因a -b <c ,故a -b -c <0.所以|a +b -c|+|a -b -c |= a +b -c -(a -b -c )=2b =10.故b =5.七、确定组成三角形的个数问题要确定三角形的个数只需根据题意,运用三角形三边关系逐一验证,做到不漏不重. 例9 现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成三角形的个数为〔 〕A.1B.2C.3D.4简析 由三角形的三边关系知:假设以长度分别为2cm 、3cm 、4cm ,那么可以组成三角形;假设以长度分别为3cm 、4cm 、5cm ,那么可以组成三角形;假设以长度分别为2cm 、3cm 、5cm ,那么不可以组成三角形;假设以长度分别为2cm 、4cm 、5cm ,那么也可以组成三角形.即分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成三角形的个数为3,故应选C .例10 求各边长互不相等且都是整数、周长为24的三角形共有多少个?简析 设较大边长为a ,另两边长为b 、c .因为a <b +c ,故2a <a +b +c ,a <21(a +b +c ).又a +a >b +c ,即2a >b +c .所以3a >a +b +c ,a >31(a +b +c ).所以,31(a +b +c )<aB C 图2 图1 D CB A<21(a +b +c ).31×24<a <21×24.所以8<a <12.即a 应为9,10,11.由三角形三边关系定理和推论讨论知:⎪⎩⎪⎨⎧===,7,8,9c b a ⎪⎩⎪⎨⎧===,6,8,10c b a⎪⎩⎪⎨⎧===,5,9,10c b a ⎪⎩⎪⎨⎧===,6,7,11c b a ⎪⎩⎪⎨⎧===,5,8,11c b a ⎪⎩⎪⎨⎧===,4,9,11c b a ⎪⎩⎪⎨⎧===.3,10,11c b a由此知符合条件的三角形一共有7个.八、说明线段的不等问题在平面几何问题中,线段之间的不等关系的说明,很多情况下必须借助三角形三边之间的关系定理及推论.有时可直接加以运用,有时那么需要添加辅助线,创造条件才能运用.例11 P 是△ABC 内任意一点,试说明AB +BC +CA >P A +PB +PC >21(AB +BC +CA )的理由.简析 如图2,延长BP 交AC 于D 点.在△ABD 中,可证明AB +AD >BP +PD .在△PDC 中,可证明PD +DC >PC .两式相加,可得AB +AC >BP +PC ,同理可得AB +BC >P A +PC ,BC +CA >P A +PB .把三式相加后除以2,得AB +BC +CA>P A +PB +PC .在△P AB 中,P A +PB >AB ;在△PBC 中,PB +PC >BC ;在△P AC 中,P A +PC >CA .上面三式相加后除以2,得P A +PB +PC >21(AB +BC +CA ),综上所述:AB +BC +CA >P A +PB +PC >21(AB +BC +CA ).课堂练习1. 假设三角形的两边长分别为6、7,那么第三边长a 的取值范围是__________。
三角形三边关系 申思

三角形三边关系申思
三角形的三边关系是指三角形三条边之间的关系。
在任意三角
形中,三条边的长度之间存在着一定的关系,这些关系可以通过几
何定理和三角函数来描述。
首先,我们来谈谈三角形的三条边之间的大小关系。
对于任意
三角形,任意两边之和大于第三边,任意两边之差小于第三边。
这
个性质被称为三角形的边长关系定理,也被称为三角不等式定理。
这个定理的意义在于,如果我们知道了三角形的两条边的长度,就
可以根据这个定理来判断第三条边的取值范围,从而避免构造不成
三角形的情况。
其次,我们可以通过三角函数来描述三角形的三边关系。
在三
角形中,我们通常会用正弦、余弦和正切等三角函数来描述角和边
的关系。
例如,正弦定理指出,在任意三角形ABC中,三条边a、b、c和对应的角A、B、C之间满足以下关系,
a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径。
这个定
理可以用来求解三角形的边长或角度,特别适用于不等边三角形的
计算。
此外,还有余弦定理和正弦定理等可以描述三角形三边关系的
定理。
余弦定理可以用来计算三角形的边长,而正弦定理则可以用
来计算三角形的面积等。
总的来说,三角形的三边关系涉及到了三角形的边长大小关系、三角函数和三角形的几何性质。
通过这些关系,我们可以更好地理
解和计算三角形的各种性质,从而更好地解决与三角形相关的问题。
三角形三边关系

三角形三边关系(1)三角形三边关系定理及推论定理:三角形两边的和大于第三边。
(2)表达式:△ABC 中,设a >b >c 则b-c <a <b+ca-c <b <a+ca-b <c <a+b (3)应用1、给出三条线段的长度,判断它们能否构成三角形。
方法(设a 、b 、c 为三边的长)①若a+b >c ,a+c >b ,b+c >a 都成立,则以a 、b 、c 为三边的长可构成三角形; ②若c 为最长边且a+b >c ,则以a 、b 、c 为三边的长可构成三角形;③若c 为最短边且c >|a-b|,则以a 、b 、c 为三边的长可构成三角形。
2、已知三角形两边长为a 、b ,求第三边x 的范围:|a-b|<x <a+b 。
3、已知三角形两边长为a 、b(a >b),求周长L 的范围:2a <L <2(a+b)。
4、证明线段之间的不等关系。
复习巩固,引入新课2、已知:如图△ABC 中AG 是BC 中线,AB=5cm AC=3cm ,则△ABG 和△ACG 的周长的差为多少?△ABG 和△ACG的面积有何关系?3、三角形的角平分线、中线、高线都是( )A 、直线B 、线段C 、射线D 、以上都不对4、三角形三条高的交点一定在( )A 、三角形的内部B 、三角形的外部C 、顶点上D 、以上三种情况都有可能5、直角三角形中高线的条数是( )A 、3B 、2C 、1D 、06、判断:(1) 有理数可分为正数和负数。
(2) 有理数可分为正有理数、正分数、负有理数和负分数。
BE FB C7、现有10cm 的线段三条,15cm 的线段一条,20cm 的线段一条,将它们任意组合能够得到几种不同形状的三角形?三角形三边的关系一、三角形按边分类(见同步辅导二)练习1、两种分类方法是否准确:不等边三角形 不等三角形三角形 三角形 等腰三角形等腰三角形 等边三角形2、如图,从家A 上学时要走近路到学校B ,你会选哪条路线? 3、以下各组里的三条线段组成什么形状的三角形?(1)3cm 4cm 6cm (2)4cm 4cm 6cm(3)7cm 7cm 7cm (4)3cm 3cm 7cm4、求复习巩固,引入新课中的练习4中各三角形的任意两边的和,比较与第三边的关系。
直角三角形的三边关系与计算

直角三角形的三边关系与计算直角三角形是一种特殊的三角形,其中一个角度为90度。
在直角三角形中,三条边之间存在着一定的关系,可以通过已知条件计算出未知边的长度。
本文将详细介绍直角三角形的三边关系与常见的计算方法。
1. 三边关系在直角三角形中,三条边分别称为斜边、邻边和对边。
根据三边关系,我们可以得出以下结论:1.1 斜边与邻边的关系斜边是直角三角形中最长的一条边,通常用字母c表示。
邻边是直角三角形中与直角相邻的边,通常用字母a表示。
根据勾股定理,斜边的长度c可以通过邻边的长度a和对边的长度b计算得出,即c^2 = a^2 + b^2。
1.2 对边与邻边的关系对边是直角三角形中与直角相对的边,通常用字母b表示。
根据三角函数定义,正弦函数(sin)可以用对边与斜边的比值来表示,即sin(A) = b / c,其中A为直角对边所对的角。
1.3 对边与斜边的关系根据三角函数定义,正切函数(tan)可以用对边与邻边的比值来表示,即tan(A) = b / a。
2. 计算方法在已知直角三角形的一些条件下,可以使用上述三边关系来计算未知边的长度。
2.1 已知斜边和一边如果已知斜边c的长度和邻边a(或对边b)的长度,可以使用勾股定理来计算未知的边。
例如,已知斜边c = 5,邻边a = 3,可以使用勾股定理计算对边b 的长度:b = √(c^2 - a^2) = √(5^2 - 3^2) = √(25 - 9) = √16 = 42.2 已知对边和邻边如果已知对边b和邻边a的长度,可以使用正切函数来计算斜边c 的长度。
例如,已知对边b = 4,邻边a = 3,可以使用正切函数计算斜边c 的长度:tan(A) = b / ac = √(a^2 + b^2) = √(3^2 + 4^2) = √(9 + 16) = √25 = 52.3 已知斜边和对边如果已知斜边c和对边b的长度,可以使用正弦函数来计算邻边a 的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真真假假
(1)任何三条线段都能围成一个三角形。(
×
)
(2)因为a+b>c,所以a、b、c三条线段可以围成 三角形 (
×
)
(3)以长为3cm、5cm、7cm、10cm的四条线段中, 任选三条线段围成三角形,有二种选法。(
√
)
小明想要给他的小狗做一个房子,房顶的框架是
三角形的,其中一根木条是3分米,另一根是5分米,
三角形三条边的关系
河滨小学:孙彩霞
小明上学哪条路最近呢?
两点间所有连线中线段最短,这条线段的长度 叫做两点间的距离。
实验操作:
从下面4根小棒中,任选3根小棒,摆一摆,看一
看,能围成三角形吗?
30cm 18cm
15cm
12cm
小组实验要求:(时间8分钟)
(1)任选三根小棒,摆一摆,看能否围成三角形. (2) 记录每次使用的小棒长度及实验结果。
那么第三根木条可以是多少呢?(取整分米数)
5 3 3 5 3 4 5 3 5 5 3 6
你认为最有可能是哪种?
3 5 3
5
5
dog
5 3 7
3
18cm 1cm 30cm 15cm 12cm 18cm 15cm
两条边的和大于第三边,能围成三角形。
我来验证:
实验过程中,能围成三角形的三条边 是否任意两条边的和大于第三边?
三角形任意两边的和大于第三边。
学习目标
1、通过动手操作,知道三角形任意两边的和大于 第三边。 2、会判断已知长度的三条线段能否组成三角形。
下面的几组小棒能不能围成三角形?
பைடு நூலகம்
只要较短的两条线段的长度和大于第三条线段,就能围成 三角形;否则,就不能围成三角形。
慧眼识金
下列各组线段能围成三角形吗? (1) 3cm ,8cm, 5cm (2) 8cm ,7cm, 6cm ( 不能 ) ( 能 )
(3) 3cm ,10cm, 5cm ( 不能 )
实验情况 小棒长度(单位:厘米) 第一根 第二根 第三根 能否围成
第1种
第2种 第3种 第4种
小组交流:
观察并思考: 三条边在什么情况下,能围成三角形, 什么情况下不能围成三角形。
不能围成:
12cm
30cm 15cm
18cm
30cm
12cm
两条边的和 等于 第三边,不能围成三角形。 小于
能围成: