三角形三边之间的关系
直角三角形的三边关系

直角三角形的三边关系直角三角形是指其中一个角为直角(90度)的三角形。
在直角三角形中,三边之间存在着特殊的关系,这些关系对于数学和实际应用领域都具有重要意义。
一、勾股定理直角三角形的最重要的定理就是勾股定理,它描述了直角三角形的三边之间的关系。
勾股定理表达式如下:c^2 = a^2 + b^2其中,a和b是直角三角形的两个直角边,c是斜边(斜边是直角三角形中与直角不相邻的边)。
这个定理意味着,如果我们知道了直角三角形的两个直角边的长度,我们就可以计算出斜边的长度。
也就是说,勾股定理提供了计算直角三角形边长的方法。
二、三角函数在直角三角形中,三角函数被广泛应用来描述三边之间的关系。
常见的三角函数有正弦、余弦和正切。
1. 正弦函数(sin):定义为直角三角形中斜边与斜边上的对边的比值。
sinA = 对边/斜边2. 余弦函数(cos):定义为直角三角形中斜边与斜边上的邻边的比值。
cosA = 邻边/斜边3. 正切函数(tan):定义为直角三角形中对边与邻边的比值。
tanA = 对边/邻边通过三角函数,我们可以在直角三角形中计算出任意一个角的大小。
反之,如果我们知道了三角形的某个角度和任意两个边的长度,我们也可以通过三角函数计算出第三边的长度。
三、特殊的三边关系除了勾股定理和三角函数之外,直角三角形还有一些特殊的三边关系。
1. 等腰直角三角形:当直角三角形的两个直角边相等时,称为等腰直角三角形。
在等腰直角三角形中,斜边的长度等于直角边的开根号2倍。
2. 等边直角三角形:当直角三角形的三边都相等时,称为等边直角三角形。
在等边直角三角形中,三个角都是45度。
3. 30-60-90三角形:当直角三角形的两个锐角分别为30度和60度时,称为30-60-90三角形。
在这种三角形中,边的比例关系为1:√3:2。
斜边的长度等于短直角边的开根号3倍。
4. 45-45-90三角形:当直角三角形的两个锐角都为45度时,称为45-45-90三角形。
三角形三边关系定理(共6张PPT)

如(图3),能任.意因画为一5个+解△6A>得B1C0,,x一1=0只3+小.66虫.>从5,点1B0 出+ 5发>,6沿,三角形的边爬到点C,它有几条路线可以选择?各条线路的长一样吗?你能运用所
学解知得识x 解= 1释0你. 的结果吗?你能由此推出三条边之间有怎样的关系?
B即C三>角A形C两-A边B的.和所大于以第,三边三.边长分别为3.6 cm,7.2 cm,7.2 cm.
(1)3,4,5;(2)5,6,11;(3)5,6,10.
解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
符合三角形两边的和大于第三边.
(2)不能.因为5 + 6 =11,
不符合三角形两边的和大于第三边.
(3)能.因为5 + 6>10,10 + 6>5,10 + 5>6,
符合三角形两边的和大于第三边.
即三角形两边的和大于第三边.
B
C
探索三角形三边的关系
• 问题:
由不等式②③移项可得 BC >AB -AC,
BC >AC -AB. 由此你能得出什么结论?
AB + AC >BC, ① AC + BC >AB, ② AB + BC >AC. ③
三角形两边的差小于第Biblioteka 边.三角形三边关系定理的应用
例1 下列长度的三条线段能否组成三角形?为什么?
(〔31) 〕能如.果因腰为长是5 +底6边>的102,倍1,0那+ 么6>各5边,的10长+是5>多6少,?
( 三3角)形能三.边因关为系5定+理6>的1应0,用10 ABC + ABCC >>BACB, ①②
三角形的三边关系ppt

直角三角形中,有一个内角为90°,即∠C=90°。
轴对称
等腰直角三角形是轴对称图形,对称轴为底边的 垂直平分线。
06
总结
主要观点的总结
三角形三边关系是指三角形的三条边之间的长度关系, 可以用不等式表示为两边之和大于第三边,两边之差小 于第三边。
在三角形中,任意两边之和大于第三边,任意两边之差 小于第三边。
个人感悟及收获
学习三角形三边关系让我对几何学有了更深入的认识和理解, 也让我感受到了几何学的严谨和实用性。
通过学习三角形三边关系,我不仅掌握了一种新的证明方法, 而且也增强了自己的数学素养和逻辑思维能力,这对于我未来 的学习和工作都非常重要。
在学习三角形三边关系的过程中,我深刻体会到了数学知识的 连贯性和系统性,以及数学知识在解决实际问题中的重要作用 。
三角形三边长大于0。
可加性
任意两边之和大于第三边。
可减性
任意两边之差小于第三边。
三角形按边分类
01
02
03
等边三角形
三边长度都相等的三角形 。
等腰三角形
两边长度相等,第三边不 等的三角形。
一般三角形
三条边长度都不相等的三 角形。
三角形边的关系
勾股定理
在直角三角形中,两条直角边的平方和等于斜边的平方。
相关概念简介
等边三角形
三条边长度相等的三角形。
等腰三角形
两条边长度相等的三角形。
三角形
由三条直线段连接的封闭图形,其中任意 两条边都相交于一个顶点。
边
三角形中的三条线段。在等腰三角形中, 两条边长度相等。
角度
三角形中三个内角的大小。在等边三角形 中,三个角度相等。
三角形三边关系

第3题 第4题讲 义知识点1:三角形三边的关系:三角形两边的和大于第三边,两边的差小于第三边。
知识点2:三角形的内角和等于180°,三角形的外角和等于360° 知识点3:直角三角形的性质与判定知识点4:多边形内角和:()1802⋅-n ° 多边形的外角和等于360°知识点5:多边形所有对角线的条数:()23-n n ,多边形从一个顶点出发有3-n 条对角线自主练习: 一、选择题1.以下列各组线段为边,能组成三角形的是 ( ) A . 2 cm ,3 cm ,5 cm B .3 cm ,3 cm ,6 cm C . 5 cm ,8 cm ,2 cm D . 4 cm ,5 cm ,6 cm2.已知等腰三角形的两边长分别为3和6,则它的周长等于 ( ) A . 12 B .12或15 C . 15 D .15或183. 如图,在△ABC 中,∠B =67°,∠C =33°,AD 是△ABC 的角平分线,则∠CAD 的度数为( ) A .40° B .45° C .50° D .55°4.如图:将一副三角板按如图所示摆放,图中∠α的度数是( )A .75°B .90° C.105° D .120° 5.一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )A 、4B 、5C 、6D 、7 6.下面各角能成为某多边形的内角和的是( )A .430°B .4343°C .4320°D .4360° 7. 在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是( )。
A .6<AD <8 B .2<AD <14 C .1<AD <7 D .无法确定 二、填空题8.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是利用了___________________.9.一个多边形的每个内角都等于150°,则这个多边形是_____边形。
直角三角形三边比例关系

直角三角形三边比例关系直角三角形是一种特殊的三角形,其中一个角度为90度,另外两个角度则分别为锐角和钝角。
在直角三角形中,三个边长之间存在着一种重要的比例关系,这种关系在数学中被称为“直角三角形三边比例关系”。
在直角三角形中,三条边分别被称为斜边、对边和邻边。
斜边是直角三角形中最长的边,对边则是与直角相对的边,邻边则是与直角相邻的边。
在直角三角形中,三个边长之间的比例关系可以表示为:斜边的长度 = 对边的长度×正弦角度 + 邻边的长度×余弦角度这个公式被称为“正弦定理”,它可以帮助我们计算直角三角形中任意一条边的长度,只要我们知道另外两条边的长度和它们与直角的夹角大小。
另外,直角三角形中还存在着一个重要的比例关系,被称为“勾股定理”。
勾股定理告诉我们,在一个直角三角形中,斜边的平方等于对边的平方加上邻边的平方。
这个公式可以表示为:斜边的平方 = 对边的平方 + 邻边的平方勾股定理是直角三角形中最基础的性质之一,它可以帮助我们计算直角三角形中任意一条边的长度,只要我们知道另外两条边的长度。
除了正弦定理和勾股定理之外,直角三角形中还存在着其他的比例关系。
例如,三角形的内角和为180度,因此在直角三角形中,直角的角度为90度,而其他两个角度之和则为90度。
因此,如果我们知道一个角度的大小,就可以计算出另外一个角度的大小。
此外,在直角三角形中,正弦角度、余弦角度和正切角度之间也存在着一定的比例关系。
例如,正切角度等于对边与邻边的比值。
这些比例关系可以帮助我们计算直角三角形中各个角度的大小和三条边的长度。
总之,直角三角形三边比例关系是数学中非常重要的一种关系,它可以帮助我们计算直角三角形中各个角度的大小和三条边的长度。
通过学习这种比例关系,我们可以更好地理解直角三角形的性质和特征,从而更好地解决与直角三角形相关的数学问题。
三角形三边关系归纳

三角形三边关系的考点问题三角形的三条边之间主要有这样的关系:三角形的两边的和大于第三边,三角形的两边的差小于第三边.利用这两个关系可以解决许多典型的几何题目.现举例说明.一、确定三角形某一边的取值范围问题根据三角形三边之间关系定理和推论可得结论:三角形的两边为a、b,那么第三边c 满足|a-b|<c<a+b.例1 用三条绳子打结成三角形(不考虑结头长),其中两条长分别是3m和7m,问第三条绳子的长有什么限制.简析设第三条绳子的长为x m,那么7-3<x<7+3,即4<x<10.故第三条绳子的长应大于4m且小于10m。
二、判定三条线段能否组成三角形问题根据三角形的三边关系,只需判断最小的两边之和是否大于第三边即可.例2〔1〕以下长度的三根木棒首尾相接,不能做成三角形框架的是〔〕A,5cm、7cm、10cm B,7cm、10cm、13cmC,5cm、7cm、13cm D,5cm、10cm、13cm〔2〕〔2004年哈尔滨市中考试题〕以以下各组线段为边,能组成三角形的是〔〕A,1cm,2cm,4cm B,8cm,6cm,4cm C,12cm,5cm,6cm D,2cm,3cm,6cm 简析由三角形的三边关系可知:(1)5+7<13,故应选C;(2)6+4>8,故应选B.例3 有以下长度的三条线段能否组成三角形?〔1〕a-3,a,3(其中a>3);〔2〕a,a+4,a+6(其中a>0);〔3〕a+1,a+1,2a(其中a>0).简析〔1〕因为(a-3)+3=a,所以以线段a-3,a,3为边的三条线段不能组成三角形.〔2〕因为(a+6)-a =6,而6与a+4的大小关系不能确定,所以以线段a,a+4,a+6为边的三条线段不一定能组成三角形.〔3〕因为(a+1)+(a+1)=2a+2>2,(a+1)+2a=3a+1>(a+1),所以以线段a +1,a+1,2a为边的三条线段一定能组成三角形.三、求三角形某一边的长度问题此类问题往往有陷阱,即在根据题设条件求得结论时,其中可能有一个答案是错误的,需要我们去鉴别,而鉴别的依据就是这里的定理及推论.例4 等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两局部,求这个三角形的腰长.简析如图1,设腰AB=x cm,底BC=y cm,D为AC边的中点.根据题意,得x+12x=12,且y+12x=21;或x+12x=21,且y+12x=12.解得x=8,y=17;或x=14,y=5.显然当x=8,y=17时,8+8<17不符合定理,应舍去.故此三角形的腰长是14cm.例5一个三角形的两边分别是2厘米和9厘米,第三边长是一个奇数,那么第三边长为______.简析设第三边长为x厘米,因为9-2<x<9+2,即7<x<11,而x是奇数,所以x=9.故应填上9厘米.四、 求三角形的周长问题此类求三角形的周长问题和求三角形某一边的长度问题一样,也会设计陷阱,所以也应防止答案的错误.例6 等腰三角形的一边等于5,另一边等于6,那么它的周长等于_______. 简析 等腰三角形的一边等于5,另一边等于6,并没有指明是腰还是底,故应由三角形的三边关系进行分类讨论,当5是腰时,那么底是6,即周长等于16;当6是腰时,那么底是5,即周长等于17.故这个等腰三角形的周长是16或17.五、判断三角形的形状问题判断三角形的形状主要是根据条件寻找边之间的关系.例7 a 、b 、c 是三角形的三边,且满足a 2+b 2+c 2-ab -bc -ca =0.试判断三角形的形状. 简析 因为a 2+b 2+c 2-ab -bc -ca =0,那么有2a 2+2b 2+2c 2-2ab -2bc -2ca =0.于是有〔a-b 〕2+〔b-c〕2+〔c-a 〕2=0.此时有非负数的性质知〔a -b 〕2=0;〔b-c〕2=0;〔c-a 〕2=0,即a -b =0;b-c=0;c-a =0.故a =b =c .所以此三角形是等边三角形.六、化简代数式问题这里主要是运用两边之和大于第三边,两边之差小于第三边,从而确定代数式的符号. 例8 三角形三边长为a 、b 、c ,且|a +b -c|+|a -b -c|=10,求b 的值.简析 因a +b >c ,故a +b -c >0`因a -b <c ,故a -b -c <0.所以|a +b -c|+|a -b -c |= a +b -c -(a -b -c )=2b =10.故b =5.七、确定组成三角形的个数问题要确定三角形的个数只需根据题意,运用三角形三边关系逐一验证,做到不漏不重. 例9 现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成三角形的个数为〔 〕A.1B.2C.3D.4简析 由三角形的三边关系知:假设以长度分别为2cm 、3cm 、4cm ,那么可以组成三角形;假设以长度分别为3cm 、4cm 、5cm ,那么可以组成三角形;假设以长度分别为2cm 、3cm 、5cm ,那么不可以组成三角形;假设以长度分别为2cm 、4cm 、5cm ,那么也可以组成三角形.即分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成三角形的个数为3,故应选C .例10 求各边长互不相等且都是整数、周长为24的三角形共有多少个?简析 设较大边长为a ,另两边长为b 、c .因为a <b +c ,故2a <a +b +c ,a <21(a +b +c ).又a +a >b +c ,即2a >b +c .所以3a >a +b +c ,a >31(a +b +c ).所以,31(a +b +c )<aB C 图2 图1 D CB A<21(a +b +c ).31×24<a <21×24.所以8<a <12.即a 应为9,10,11.由三角形三边关系定理和推论讨论知:⎪⎩⎪⎨⎧===,7,8,9c b a ⎪⎩⎪⎨⎧===,6,8,10c b a⎪⎩⎪⎨⎧===,5,9,10c b a ⎪⎩⎪⎨⎧===,6,7,11c b a ⎪⎩⎪⎨⎧===,5,8,11c b a ⎪⎩⎪⎨⎧===,4,9,11c b a ⎪⎩⎪⎨⎧===.3,10,11c b a由此知符合条件的三角形一共有7个.八、说明线段的不等问题在平面几何问题中,线段之间的不等关系的说明,很多情况下必须借助三角形三边之间的关系定理及推论.有时可直接加以运用,有时那么需要添加辅助线,创造条件才能运用.例11 P 是△ABC 内任意一点,试说明AB +BC +CA >P A +PB +PC >21(AB +BC +CA )的理由.简析 如图2,延长BP 交AC 于D 点.在△ABD 中,可证明AB +AD >BP +PD .在△PDC 中,可证明PD +DC >PC .两式相加,可得AB +AC >BP +PC ,同理可得AB +BC >P A +PC ,BC +CA >P A +PB .把三式相加后除以2,得AB +BC +CA>P A +PB +PC .在△P AB 中,P A +PB >AB ;在△PBC 中,PB +PC >BC ;在△P AC 中,P A +PC >CA .上面三式相加后除以2,得P A +PB +PC >21(AB +BC +CA ),综上所述:AB +BC +CA >P A +PB +PC >21(AB +BC +CA ).课堂练习1. 假设三角形的两边长分别为6、7,那么第三边长a 的取值范围是__________。
三角形三边关系 申思

三角形三边关系申思
三角形的三边关系是指三角形三条边之间的关系。
在任意三角
形中,三条边的长度之间存在着一定的关系,这些关系可以通过几
何定理和三角函数来描述。
首先,我们来谈谈三角形的三条边之间的大小关系。
对于任意
三角形,任意两边之和大于第三边,任意两边之差小于第三边。
这
个性质被称为三角形的边长关系定理,也被称为三角不等式定理。
这个定理的意义在于,如果我们知道了三角形的两条边的长度,就
可以根据这个定理来判断第三条边的取值范围,从而避免构造不成
三角形的情况。
其次,我们可以通过三角函数来描述三角形的三边关系。
在三
角形中,我们通常会用正弦、余弦和正切等三角函数来描述角和边
的关系。
例如,正弦定理指出,在任意三角形ABC中,三条边a、b、c和对应的角A、B、C之间满足以下关系,
a/sinA=b/sinB=c/sinC=2R,其中R为三角形外接圆的半径。
这个定
理可以用来求解三角形的边长或角度,特别适用于不等边三角形的
计算。
此外,还有余弦定理和正弦定理等可以描述三角形三边关系的
定理。
余弦定理可以用来计算三角形的边长,而正弦定理则可以用
来计算三角形的面积等。
总的来说,三角形的三边关系涉及到了三角形的边长大小关系、三角函数和三角形的几何性质。
通过这些关系,我们可以更好地理
解和计算三角形的各种性质,从而更好地解决与三角形相关的问题。
三角形三边关系

三角形三边关系(1)三角形三边关系定理及推论定理:三角形两边的和大于第三边。
(2)表达式:△ABC 中,设a >b >c 则b-c <a <b+ca-c <b <a+ca-b <c <a+b (3)应用1、给出三条线段的长度,判断它们能否构成三角形。
方法(设a 、b 、c 为三边的长)①若a+b >c ,a+c >b ,b+c >a 都成立,则以a 、b 、c 为三边的长可构成三角形; ②若c 为最长边且a+b >c ,则以a 、b 、c 为三边的长可构成三角形;③若c 为最短边且c >|a-b|,则以a 、b 、c 为三边的长可构成三角形。
2、已知三角形两边长为a 、b ,求第三边x 的范围:|a-b|<x <a+b 。
3、已知三角形两边长为a 、b(a >b),求周长L 的范围:2a <L <2(a+b)。
4、证明线段之间的不等关系。
复习巩固,引入新课2、已知:如图△ABC 中AG 是BC 中线,AB=5cm AC=3cm ,则△ABG 和△ACG 的周长的差为多少?△ABG 和△ACG的面积有何关系?3、三角形的角平分线、中线、高线都是( )A 、直线B 、线段C 、射线D 、以上都不对4、三角形三条高的交点一定在( )A 、三角形的内部B 、三角形的外部C 、顶点上D 、以上三种情况都有可能5、直角三角形中高线的条数是( )A 、3B 、2C 、1D 、06、判断:(1) 有理数可分为正数和负数。
(2) 有理数可分为正有理数、正分数、负有理数和负分数。
BE FB C7、现有10cm 的线段三条,15cm 的线段一条,20cm 的线段一条,将它们任意组合能够得到几种不同形状的三角形?三角形三边的关系一、三角形按边分类(见同步辅导二)练习1、两种分类方法是否准确:不等边三角形 不等三角形三角形 三角形 等腰三角形等腰三角形 等边三角形2、如图,从家A 上学时要走近路到学校B ,你会选哪条路线? 3、以下各组里的三条线段组成什么形状的三角形?(1)3cm 4cm 6cm (2)4cm 4cm 6cm(3)7cm 7cm 7cm (4)3cm 3cm 7cm4、求复习巩固,引入新课中的练习4中各三角形的任意两边的和,比较与第三边的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小 明 上 学 线 路 图
1、我上学有几条路可以走? 2、走哪条路最近,为什么?
实验:用以下四组小棒摆三角形。
(1) 6厘米
√ 7厘米
8厘米
(2)
4厘米 5厘米 9厘米
×
3厘米
(3)
8厘米
(4)
× 6厘米
10厘米
√ 11厘米
11厘米
探索发现:三角形三条边之间究竟有什么样的关 系?
745 746 747
748
74 9
7 4 10
挑战自我
(1)任何三条线段都能组成一个三角形。
( ×)
(2)因为a+b>c,所以a、b、c三边可以构成三角形( × )
(3) 以长为3cm、5cm、7cm、10cm、12cm的五条线
段中的三条线段为边,可构成__4___个三角形。
小明想要给他的小狗做一个房子,房顶的 框架是三角形的,其中一根木条是3分米,另一 根是5分米,那么第三根木条可以是多少分米呢?
8+11(> )11 11+11(> )8
两条边之和小于第三条边
两条边之和小于第三条边
不能围成三角形
两条边之和等于第三条边
两条边长度之和等于第三条边 不能围成三角形
两条边长度之和大于第三条边
两条边之和大于第三条边
可以围成三角形
√
√
×
√
可以用较短的两条线段的和与第三条线段相 比较来检验
三条 边长 能否摆成 三角形
6cm 7cm 8cm
4cm
5cm 9cm
3cm 6cm 10cm
能 不能 不能
8cm
能
11cm
11cm
任意两边的和是否大于第三边
6+7 ( >)8 6+8( >)7 7+8( >)6
4+5(= )9 4+9( >)5 5+9( >)4
3+6( < )10 3+10( >)6 6+10( > )3
图书馆
3、请你设计。 公路两侧有A、B两个村子(如图),现
在要在公路上修建一个公共汽车站,让这两 个村子的人都能最省时、最方便。请问,公 共汽车C应建在什么地方?
A
B
4、请你算一算
小明要取三根小棒。他已经取了两 根,第一根长4厘米,第二根长7 厘米。第三根取几厘米就一定能围 成一个三角形?
7 44
(取整分米数) 你认为最有可能是哪种?
533 534
3
3
5
535 536
5
5
dog
537
3
用长度为2cm、2cm、6cm、6cm、6cm 这五条线段中的任意三条线段拼成一个
三角形,你能拼成几种不同的形状?
6
6
2
6
6
6
用15根等长的火柴棒摆成的三角形中, 最长边最多可以由几根火柴棒组成?
下列各组线段能围成三角形吗?
1、4cm ,9cm, 5cm (×) 2、8cm ,7cm, 6cm (√ ) 3、3cm ,10cm, 5cm (×)
尽管草地不 允许踩,但还是 被人们踩出了一 条小路,这是为 什么?我们能不 能运用今天所学 的知识解释这一 现象?
教 学 楼
大 草坪
道
请勿 践踏!