物质结构与性质知识点归纳

合集下载

高中化学物质结构与性质知识点归纳

高中化学物质结构与性质知识点归纳
本文总结了高中化学物质结构与性质的重要知识点。首先阐述了电子层、能级与原子轨道的概念,包括s、p电子的原子轨道特征及基态原子的核外电子排布规律。接着介绍了构造原理与核外电子排布,涉及电子排布式的书写和元素周期表的分区。此外,还探讨了第一电离能和电负性的变化规律。在化学键与分子立体结构方面,详细解释了共价键的饱和性、方向性,以及键能、键长、键角等键参数对分子稳定性的影响。同时,提供了分子立体结构的判断方法和பைடு நூலகம்的极性与分子极性的关系。文档还介绍了等电子体原理、配合物理论、手性分子的识别依据,以及含氧酸酸性强弱的规律。最后,阐述了范德华力和氢键对物质性质的影响。这些知识点共同构成了高中化学物质结构与性质的核心框架,有助于学生全面理解和掌握该领域的基本知识。

物质结构与性质--高考化学知识点归纳

物质结构与性质--高考化学知识点归纳

物质结构与性质--高考化学知识点归纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN物质结构与性质18种元素72种元素15、16、17纵列依次称为A、ⅣA、ⅤA、ⅥA、ⅦA族、7、11、12纵列依次称为B、ⅥB、ⅦB、ⅠB、ⅡB族常考Fe,Cu及其离子的电子排布式)第18纵列称为零族(稀有气体元素)、2两个纵列划为s区(价电子电子在s轨道)13~18六个纵列划为p区(价电子在p轨道)3~10八个纵列划为d区(价电子在d轨道)ds区第11、12两个纵列划为ds区(价电子在d、s轨道)f区镧系和锕系元素属于f区(价电子在f轨道)Ps:价电子指原子核外电子中能与其他原子相互作用形成化学键的电子。

第一部分:元素周期表知识点1 单核微粒半径大小判断规律(1)先看电子层数,若不同,则层数多者微粒半径大(如:Br>Cl>F)(2)若电子层数相同,再看原子序数,序数小者半径大(如:Na+>Mg+>Al3+)(3)若是同种元素化合价不同的离子或原子,核外电子多者半径大(如:Fe>Fe2+>Fe3+)知识点2 有关周期和族的几个关系(1)周期序数=电子层数(2)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB族的族序数=原子最外层的电子数(ns+np或ns)。

(3)副族ⅢB~ⅦB族的族序数=最外层s电子数+次外层d电子数。

(4)零族:最外层电子数等于8或2。

第二部分:元素周期律知识点1 周期律基本内容知识点2 同周期、同主族元素性质递变规律1、元素原子失电子(还原性)能力强弱比较依据(1)依据金属活动性顺序表,越靠前元素原子失电子能力越强。

(2)比较元素单质与水(或酸)的反应置换出氢的难易程度。

越易发生,失电子能力越强。

(3)比较元素最高价氧化物对应水化物碱性强弱。

碱性越强,失电子能力越强。

(4)根据金属与盐溶液间的置换反应,失电子能力强的置换成失电子能力弱的。

(5)一般金属阳离子的氧化能力越强,则对应的金属单质的还原性越弱(Fe对应的是Fe2+)(6)电化学原理:不同金属形成原电池时,通常作负极的金属性强;在电解池中的惰性电极上,先析出的金属性弱。

化学选修三物质结构与性质知识点总结

化学选修三物质结构与性质知识点总结

化学选修三物质结构与性质知识点总结1.元素周期表与元素结构-元素周期表是根据元素的原子序数和电子排布特征排列的周期性表格,主要包括周期、族、主族、副族等概念。

-元素周期表可以用于预测元素的化学性质,如金属、非金属、半金属的区分。

-元素的电子排布规律有利于理解原子结构与化学性质的关系。

2.化学键与分子结构-化学键是通过原子间的相互作用而形成的,可以分为离子键、共价键和金属键等。

-共价键是通过共享电子对来形成的,可以分为单、双、三键,键长和键能与键数有关。

-分子的结构与键的类型、角度、形状等有关,如分子几何构型、杂化、极性等。

3.氢键与离子相互作用-氢键是分子间的一种特殊化学键,主要由氢原子和带有高电负性的原子(如氮、氧、氟等)间的相互作用形成。

-氢键可以影响物质的物理性质,如溶解度、沸点、熔点等。

-离子相互作用是由正负电荷之间的相互吸引力所形成的,主要涉及离子晶体、离子键和离子化合物等。

4.化学结构与热力学性质-化学结构对热力学性质有重要影响,如化学键的键能、键长、键角等与分子的稳定性和反应性有关。

-化学反应的平衡常数与反应物浓度、温度、压力等因素有关,可以通过热力学计算和实验测定。

-熵与化学反应的随机程度有关,通过熵的计算可以判断反应的进行程度和可能性。

5.化学结构与动力学性质-化学结构对物质的动力学性质也有重要影响,如反应速率、反应机理、催化等。

-反应过程中的活化能和反应速率常数与化学键的强度、键能和活化能有关。

-催化剂的存在可以改变反应的速率和路径,提高反应的效率。

6.材料结构与性质-材料的结构对其性质有很大影响,如晶体结构、晶型、晶界、光学性质、导电性等。

-材料的晶体结构可以通过X射线衍射、电子显微镜等进行表征和分析。

-材料的性质可以通过材料的制备、处理和性能测试来评价和优化。

总结以上是化学选修三物质结构与性质的知识点,通过学习这些内容可以更好地理解物质的结构特征与性质表现之间的关系,并且具备一定的实验和分析能力。

高中化学《选修三物质结构与性质》知识归纳

高中化学《选修三物质结构与性质》知识归纳

高中化学《选修三物质结构与性质》知识归纳选修三《物质结构与性质》是高中化学课程中的一本重要教材。

本书主要介绍了物质的结构与性质的关系,以及有机化合物、配位化学、无机材料等内容。

下面是关于该教材的知识归纳。

第一章物质的结构和性质1.物质的微观结构:原子、离子和分子是物质的微观结构。

2.物质的宏观性质:密度、熔点、沸点、导电性、导热性、溶解性等是物质的宏观性质。

3.物质的宏观性质与微观结构的关系:物质的性质与其微观结构相关,如金属的导电性、晶体的硬度等。

第二章有机化合物的结构和性质1.有机化合物的元素组成:有机化合物主要由碳、氢和少量氧、氮、硫等元素组成。

2.有机化合物的结构:有机化合物由分子构成,分子由原子通过共价键连接。

3.有机化合物的性质:有机化合物具有燃烧性、酸碱性、氧化还原性、流动性、挥发性等特性。

4.有机物的分类:根据分子中所含的官能团,有机物可分为醇、酮、醛、酸、酯、醚、芳香化合物等不同类型。

第三章有机反应与有机合成1.有机反应的定义:有机反应是指有机化合物在适当条件下发生变化,形成具有新性质的有机化合物。

2.脱水反应:脱水反应是指有机化合物中的水分子与有机分子发生反应,生成新的有机化合物。

3.氢化反应:氢化反应是指有机化合物中的氢气与有机分子发生反应,生成新的有机化合物。

4.酸碱催化:酸碱催化是指在酸碱存在的条件下,有机化合物的反应速率增加。

第四章金属配合物1.配位化合物的概念:配位化合物是指由一个或多个给体与一个或多个受体之间通过配位键结合形成的化合物。

2.配位键:配位键是指由配体中的一个或多个电子对与金属离子形成的共价键。

3.配位数:配位数是指一个金属离子周围配位体的数目。

4.配位化合物的性质:配位化合物具有明显的颜色、溶解度、稳定性等特性。

第五章无机材料1.无机材料的分类:无机材料可分为金属材料、非金属材料和无机非金属材料。

2.无机材料的性质:金属材料具有导电性、延展性、塑性等特性;非金属材料主要用于绝缘材料、陶瓷材料等;无机非金属材料具有耐高温、耐腐蚀等特性。

高中化学物质结构与性质知识点总结

高中化学物质结构与性质知识点总结

高中化学物质结构与性质知识点总结高中化学中,物质结构与性质是一个重要的知识点,它涉及到了原子、分子和化学键的结构与物质的性质。

下面我将结合具体的内容,总结一下高中化学中物质结构与性质的知识点。

1. 原子结构:原子是物质的基本单位,由原子核和电子组成。

原子核由质子和中子组成,质子的数量决定了元素的原子序数,中子的数量决定了同位素的形成。

原子核带有正电荷,电子带有负电荷,在原子中保持电中性。

2. 元素周期表:元素周期表按照原子序数将元素排列,可以反映元素的物理和化学性质。

周期表的横行称为周期,纵列称为族。

周期表的左侧是金属元素,右侧是非金属元素,中间有一部分是过渡金属元素。

3. 分子结构:分子是原子的结合体,由两个或多个原子通过化学键连接而成。

分子的结构决定了物质的性质。

分子中的原子通过共价键连接,共享电子对。

可以是单原子分子(如氢气H2,氧气O2)或多原子分子(如水H2O,二氧化碳CO2)。

4. 杂化轨道:杂化轨道是一种由不同能级的原子轨道混合而成的轨道。

杂化轨道可以解释分子的几何形状和键的性质。

最常见的杂化轨道有sp3杂化、sp2杂化和sp杂化,分别对应于四方形、三角形和线性分子的形状。

5. 化学键:化学键是原子中的电子分布和共享的结果,是原子间相互作用的力。

常见的化学键有共价键和离子键。

共价键是通过电子的共享形成的,可以是单键、双键或三键。

离子键是由正负离子间的静电吸引力形成的。

6. 金属键:金属键是金属元素中的电子形成的。

金属中的电子形成了一个电子海,所有金属离子共享这个电子海中的电子,形成金属键。

金属键的存在使得金属具有良好的导电性和热导性。

7. 键能和键长:键能是分子中化学键的强度,可以通过断裂或形成化学键需要的能量来衡量。

键能越大,化学键越难断裂。

键长是化学键两个原子之间的距离,一般情况下,键长越短,化学键越强。

8. 极性分子和非极性分子:分子的极性与它的电子云的分布有关。

如果一个分子中的正电荷和负电荷分布不均匀,分子就是极性分子。

高三化学知识点:物质的结构和性质

高三化学知识点:物质的结构和性质

高三化学知识点:物质的结构和性质物质的结构和性质是化学学科中的重要知识点,对于高三学生来说,理解和掌握这一部分内容对于提高化学成绩和深入理解化学学科有着至关重要的作用。

一、物质的结构1.1 原子结构原子是物质的基本单位,由原子核和核外电子组成。

原子核由质子和中子组成,质子带正电,中子不带电。

核外电子带负电,围绕原子核运动。

1.2 分子结构分子是由两个或多个原子通过共价键连接在一起形成的。

分子中原子之间的连接方式有单键、双键和三键等。

分子结构对分子的性质有着重要影响。

1.3 离子结构离子是由于原子或分子失去或获得电子而带电的粒子。

离子结构对离子的性质有着重要影响。

1.4 晶体结构晶体是由周期性排列的原子、分子或离子组成的有序结构。

晶体有四种基本的晶格结构:立方晶系、六方晶系、四方晶系和单斜晶系。

二、物质的性质2.1 物理性质物理性质是指物质在不发生化学变化的情况下所表现出的性质。

常见的物理性质包括颜色、状态、密度、熔点、沸点等。

2.2 化学性质化学性质是指物质在发生化学变化时所表现出的性质。

常见的化学性质包括氧化性、还原性、酸碱性、稳定性等。

2.3 物质的性质与结构的关系物质的性质与其结构有着密切的关系。

例如,原子的最外层电子数决定了元素的化学性质;分子的结构决定了分子的化学性质和物理性质;离子的结构决定了离子的化学性质等。

三、物质的结构和性质的关系物质的结构和性质之间存在着密切的关系。

结构决定性质,性质反映结构。

了解和掌握物质的结构和性质的关系对于理解化学反应的原理和预测物质的性质有着重要意义。

四、学习方法4.1 理论联系实际学习物质的结构和性质时,要将理论知识与实际例子相结合,通过实际例子来理解和掌握理论知识。

4.2 多做题物质的结构和性质是化学学科中的重要知识点,需要通过多做题来加深理解和掌握。

可以做课后习题、模拟试题等,通过做题来检验自己的学习效果。

4.3 总结归纳学习物质的结构和性质时,可以通过总结归纳的方式来加深理解和记忆。

高中化学选修3物质结构与性质全册知识点总结

高中化学选修3物质结构与性质全册知识点总结

高中化学选修3物质结构与性质全册知识点总结一、物态变化1.固体、液体和气体的特点和微观结构。

2.相变的概念及其条件。

3.气体的压力、体积和温度的关系(气体状态方程)。

4.确定气体的压强、体积和温度的实验方法。

二、物质的分子结构1.分子的结构和性质的关系。

2.分子的极性与非极性。

3.分子的键型及其特点。

4.共价键的键能和键长的关系。

三、化学键的性质1.同种键和异种键的定义和举例。

2.键能的概念及其在化学反应中的表现。

3.键长的测定方法及其在化学反应中的影响。

4.共价键的极性和电性的概念及其与键型的关系。

四、物质的热稳定性1.温度和物质的热稳定性的关系。

2.物质的热分解与热合成的条件和特点。

3.确定物质的热分解和热合成的方法。

五、物质的电解性1.电解质和非电解质的区别和举例。

2.电解质的导电性及其与离子的浓度和动力学的关系。

3.强电解质和弱电解质的区别和举例。

六、分子与离子的形成1.分子化合物和离子化合物的区别和举例。

2.确定分子和离子的产生与存在的条件。

七、氢键和离子键1.氢键的特点和举例。

2.氢键的性质和应用。

3.离子键的特点和举例。

4.离子键的性质和应用。

八、离子晶体和共价晶体1.离子晶体的特点和举例。

2.确定离子晶体的特性和存在的条件。

3.共价晶体的特点和举例。

4.确定共价晶体的特性和存在的条件。

九、化学键的杂化1.杂化的概念和种类。

2.方向性杂化的概念和应用。

3.确定方向性杂化的条件和特点。

十、分子结构的测定1.确定分子结构的方法。

2.确定分子结构的仪器。

3.确定分子结构的实验步骤和原理。

综上所述,以上是高中化学选修3《物质结构与性质》全册的知识点总结。

通过对这些知识点的学习,我们可以了解物质的分子结构和性质的关系,从而深入理解化学反应的本质和原理。

希望对你的学习有所帮助!。

高中化学选修3-物质结构和性质-全册知识点总结

高中化学选修3-物质结构和性质-全册知识点总结

高中化学选修3物质结构与性质知识点总结主要知识要点:1、原子结构2、元素周期表和元素周期律3、共价键4、分子的空间构型5、分子的性质6、晶体的结构和性质(一)原子结构1、能层和能级(1)能层和能级的划分①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。

原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态①基态:最低能量状态。

处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。

基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。

处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物质结构与性质知识点总结专题一了解测定物质组成和结构的常用仪器(常识性了解)。

专题二第一单元1.认识卢瑟福和玻尔的原子结构模型。

2.了解原子核外电子的运动状态,了解电子云的概念。

3.了解电子层、原子轨道的概念。

4.知道原子核外电子排布的轨道能级顺序。

知道原子核外电子在一定条件下会发生跃迁。

5.了解能量最低原理、泡利不相容原理、洪特规则,能用电子排布式、轨道表示式表示1-36号元素原子的核外电子排布。

第二单元1.理解元素周期律,了解元素周期律的应用。

2.知道根据原子外围电子排布特征,可把元素周期表分为不同的区。

3.了解元素第一电离能、电负性的概念及其周期性变化规律。

(不要求用电负性差值判断共价键还是离子键)4.了解第一电离能和电负性的简单应用。

专题三第一单元1.了解金属晶体模型和金属键的本质。

2.能用金属键理论解释金属的有关物理性质。

了解金属原子化热的概念。

3.知道影响金属键强弱的主要因素。

认识金属物理性质的共性。

4.认识合金的性质及应用。

注:金属晶体晶胞及三种堆积方式不作要求。

第二单元1.认识氯化钠、氯化铯晶体。

2.知道晶格能的概念,知道离子晶体的熔沸点高低、硬度大小与晶格能大小的关系。

3.知道影响晶格能大小的主要因素。

4.离子晶体中离子的配位数不作要求。

第三单元1.认识共价键的本质,了解共价键的方向性和饱和性。

2.能用电子式表示共价分子及其形成过程。

认识共价键形成时,原子轨道重叠程度与共价键键能的关系。

3.知道σ键和π键的形成条件,了解极性键、非极性键、配位键的概念,能对一些常见简单分子中键的类型作出判断。

注:大π键不作要求4.了解键能的概念,认识影响键能的主要因素,理解键能与化学反应热之间的关系。

5.了解原子晶体的特征,知道金刚石、二氧化硅等常见原子晶体的结构与性质的关系。

第四单元1.知道范德华力和氢键是两种最常见的分子间作用力。

2.了解影响范德华力的主要因素,知道范德华力对物质性质的影响。

3.了解氢键的概念和成因,了解氢键对物质性质的影响。

能分析氢键的强弱。

注:范德华力的分类不要求。

分子内氢键不要求。

专题四1.初步认识简单分子的空间构型、键角、极性分子、非极性分子、手性分子等概念。

2.认识分子的空间构型与极性的关系,能判断一些简单分子的极性,了解“相似相溶规则”的具体应用。

3.理解物质结构与性质之间的辩证关系、性质与应用之间的纽带关系。

注:杂化轨道理论、价电子对互斥理论不要求。

不要拓展等电子原理。

不要用偶极距来衡量分子极性大小。

专题五——了解即可。

一、原子结构与性质.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图。

小黑点不代表电子。

离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q。

原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.(1)原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2)原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3)掌握能级交错图和1-36号元素的核外电子排布式.②根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。

②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。

基态原子核外电子的排布按能量由低到高的顺序依次排布。

电子排布式:、基态锌:1s22s22p63s23p63d104s2 →简化电子排布式[Ar]3d104s2外围电子排布式:3d104s2基态钠:外围电子排布式3s1基态铁26Fe:1s22s22p63s23p63d64s2规范,1s22s22p63s23p64s23d6 不规范。

亚铁离子26Fe2+:1s22s22p63s23p63d6(失电子时,先失去最外层电子)铁离子26Fe3+:1s22s22p63s23p63d5轨道表示式:如Na:几个名词:1.原子实:原子核外内层电子已达到稀有气体结构的部分2.外围电子:过渡元素省去原子实的剩余部分。

主族、零族元素的最外层电子。

3.价电子:主族元素的外围电子排布式,也就是主族元素的最外层电子。

副族还通常包括次外层的d电子(不一定是全部)。

4.基态:最低能量状态。

如处于最低能量状态的原子称为基态原子。

5.激发态:较高能量状态(相对基态而言)。

如基态原子的电子吸收能量后,电子跃迁至较高能级成为激发态原子。

6.光谱:不同元素的原子发生跃迁时会吸收(基态→激发态)和放出(基态→激发态)能量,产生不同的光谱——原子光谱(吸收光谱和发射光谱)。

光是电子释放能量的重要形式。

利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

二、元素性质递变规律1.根据元素原子外围电子排布的特征,可将元素周期表分成5个区域。

具体地说是根据最后一个电子填充在何原子轨道上来分区(1)s区元素:外围电子只出现在s轨道上的元素。

价电子排布为ns1~2,主要包括ⅠA 和ⅡA族元素,这些元素除氢以外都是活泼的金属元素,容易失去1个或2个电子形成+1价或+2价离子(2)p区元素:外围电子出现在p轨道上的元素(s 轨道上的电子必排满)。

价电子排布为ns2np1~6,主要包括周期表中ⅢA到ⅧA和0族共6个主族元素,这些元素随着最外层电子数的增加,原子失去电子变得越来越困难,得到电子变得越来越容易。

除氢以外的所有非金属元素都在p区(3)d区元素:外围电子出现在d轨道上的元素。

价电子排布为(n-1)d1~9ns1~2,主要包括周期表中ⅢB到ⅦB和Ⅷ族,d区元素全是金属元素。

这些元素的核外电子排布的主要区别在(n-1)d的d轨道上。

由于d轨道未充满电子,因此d轨道可以不同程度地参与化学键的形成。

(4)ds区元素:ds区元素与s区元素的主要区别是s 元素没有(n-1)d电子,而ds区元素的(n-1)d轨道全充满,因此ds区元素的价电子排布是(n-1)d10ns1~2。

包括ⅠB和ⅡB,全是金属元素(5)f区元素:包括镧系元素和锕系元素,它们的原子的价电子排布是(n-2)f0~14(n-1)d0~2ns2,电子进入原子轨道(n-2)f中。

由于最外层的电子基本相同,(n-1)d的电子数也基本相同,因此镧系元素和锕系元素的化学性质非常相似。

3.元素电离能和元素电负性第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的最低能量叫做第一电离能。

常用符号I1表示,单位为kJ/mol。

(1)原子核外电子排布的周期性.随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化.(2)元素第一电离能的周期性变化.随着原子序数的递增,元素的第一电离能呈周期性变化:★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小;★同主族从上到下,第一电离能有逐渐减小的趋势.说明:①同周期元素,从左往右第一电离能呈增大趋势。

②基本规律:当原子核外电子排布在能量相等的轨道上形成全空(p0、d0、f0)、半满(p3、d5、f7)和全满(p6、d10、f14)结构时,原子的能量较低,该元素具有较大的第一电离能。

即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。

(第二周期3Li<5B <4Be<6C <8O <7N<9F <10Ne )②.元素第一电离能的运用:a.电离能是原子核外电子分层排布的实验验证.b.用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱.(3).元素电负性的周期性变化.元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。

元素电负性的周期性变化规律1.同周期:从左到右,元素电负性由小到大(稀有气体不考虑)。

2.同主族:从上到下,元素电负性由大到小有以上规律得出:元素周期表中,右上角氟元素的电负性最大,左下角铯元素的电负性最小(放射性元素除外)电负性的运用:a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素).b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键).c.判断元素价态正负(电负性大的为负价,小的为正价).d.电负性是判断金属性和非金属性强弱的重要参数(表征原子得电子能力强弱).注意:电负性的大小与电离能的大小有一定的一致性,但没有绝对的一致,如镁的电负性比铝小,但镁的电离能比铝大二.化学键与物质的性质.金属共同的物理性质:容易导电、导热、有延展性、有金属光泽等。

金属键构成微粒:金属阳离子和自由电子金属键:金属阳离子和自由电子之间的较强的相互作用成键特征:自由电子被许多金属离子所共有;无方向性、无饱和性金属键对金属通性的解释离子键――离子晶体1.理解离子键的含义,能说明离子键的形成.了解NaCl型和CsCl型离子晶体的结构特征,能用晶格能解释离子化合物的物理性质.(1).化学键:相邻原子之间强烈的相互作用.化学键包括离子键、共价键和金属键.(2).离子键:阴、阳离子通过静电作用形成的化学键.离子键无方向性、无饱和性离子键强弱的判断:离子半径越小,离子所带电荷越多,离子键越强,离子晶体的熔沸点越高.离子键的强弱可以用晶格能(符号为U )的大小来衡量,晶格能是指拆开1mol 离子晶体使之形成气态阴离子和阳离子所吸收的能量.晶格能越大,离子晶体的熔点越高、硬度越大. 用电子式表示NaCl 、K 2S 的形成过程 小结:用电子式表示离子键的形成过程1.左边是组成离子化合物的各原子的电子式 , 右边是离子化合物的电子式2.”3.用 表示电子转移的方向离子晶体:通过离子键作用形成的晶体.典型的离子晶体结构:NaCl 型和CsCl 型.氯化钠晶体中,每个钠离子周围有6个氯离子,每个氯离子周围有6个钠离子,每个氯化钠晶胞中含有4个钠离子和4个氯离子;氯化铯晶体中,每个铯离子周围有8个氯离子,每个氯离子周围有8个铯离子,每个氯化铯晶胞中含有1个铯离子和1个氯离子. NaCl 型晶体CsCl 型晶体每个Na +离子周围被6个C1—离子所包围,同样每个C1—也被6个Na +所包围。

相关文档
最新文档