烧结余热回收

烧结余热回收
烧结余热回收

烧结余热回收

■我国烧结工序能耗约占企业总能耗15%,仅次于炼铁工序,比国外先进指标高出20%以上。主要原因之一是余热资源回收与利用水平低。

■烧结余热回收做得好的国家是日本,住友和歌山钢厂的4号烧结机生产每吨烧结矿可回收蒸汽量110~120 kg,其中低压蒸气为175℃(0.78MPa),中压蒸汽375℃(2.55MPa),吨矿回收电力20kWh,工序能耗40kgce/t。

■我国马钢引进日本川崎余热发电技术,2台328m2 烧结机余热发电,2005年9月投产,装机容量17.5MW,吨矿发电10kWh,年发电0.7亿kWh,经济效益4000万元以上,年节约3万tce;济钢1台320m2烧结机国产化余热发电系统,2007年1月投产,装机容量10MW,吨矿发电17kWh,年发电0.7亿kWh。

废气温度低,且变化频繁

废气流量大,漏风率高

梯级回收,区分余热质量

煤调湿

“煤调湿”(CMC)是“装炉煤水分控制工艺”(coal moisture control process)的简称,是将炼焦煤料在装炉前去除一部分水分,保持装炉煤水分稳定在6%左右,然后装炉炼焦的一种煤预处理工艺。煤调湿有严格的水分控制措施,能确保入炉煤水分恒定。煤调湿以其显著的节能、环保和经济效益受到普遍重视。美国、前苏联、德国、法国、日本和英国等都进行过不同形式的煤调湿试验和生产,尤其是日本发展最为迅速。截至2009年底,日本现有的16个焦化厂51组(座)焦炉中,其中有36组(座)焦炉配置了煤调湿装置,占焦炉总数的70.5%。

煤调湿技术的效果是:

1)降低炼焦耗热量、节约能源。采用煤调湿技术后,煤料含水量每降低1%,炼焦耗热量相应降低62.0MJ/t(干煤)。当煤料水分从11%下降至6%时,炼焦耗热量相当于节省了62.0×(11-6)=310MJ/t(干煤)=10.6kgce/ t(干煤)。

2)提高焦炉生产能力。由于装炉煤水分的降低,使装炉煤堆密度增加,干馏时间缩短,因此,焦炉生产能力可提高4%~11%。

3)改善焦炭质量。焦炭的冷态强度DI 可提高1%~1.5%,反应后强度CSR提高1%~3%。4)扩大炼焦用煤资源。在保证焦炭质量不变的情况下,可多配弱黏结煤8%~10%。

5)减少氨水处理量。装炉煤水分若降低约5%,则可减少1/3的剩余氨水量,相应减少1/3的蒸氨用蒸汽量,同时也减轻了废水处理装置的生产负荷。

6)延长焦炉炉体寿命。因煤料水分稳定在6%水平上,使得煤料的堆密度和干馏速度稳定,焦炉操作趋于稳定,从而起到保护炉体、延长焦炉寿命的作用。

7)节能的社会效益。减少温室效应,平均每t入炉煤可减少约35.8kg的CO2排放量。

我国焦化厂炼焦煤含水量普遍偏高,年平均含水在11%左右。每万吨水进入焦炉,在焦炉中汽化要耗费大约3.9×1010kJ的热能,相当于约1300吨标准煤。如果采用煤调湿装置,不仅降低炼焦耗热量、减少温室气体排放,而且能提高焦炭产量和质量,并降低成本。由于装炉煤水分的降低,大大减少所需处理的酚氰废水量。

建议和发展方向

1)在用高炉煤气加热焦炉的钢铁企业焦化厂应大力推广以焦炉烟道废气为热源的煤调湿技术;

2)在用焦炉煤气加热焦炉的独立焦化厂应推广以低压蒸汽为热源的煤调湿技术。

能源管控中心

管理系统的工作机制

能源管理系统(EMS)体现在企业全程的能源监控设施的一整套硬件中,更关键的是体现一种能源的系统管理模式。实现能源系统的分散控制、集中管理、优化分配。通过EMS 可以达到如下目标:

㈠、可以减少能源中心定员,节约成本,提高工作效率。

㈡、调度管理人员可以更全面地了解能源系统,提高能源管理水平。

㈢、及时发现能源系统故障,加快故障处理速度,使能源系统更安全。

㈣、使能源系统的运行监视、操作控制、数据查询、信息管理实现图形化,直观化和定量化。

宝钢EMS系统1991年投入使用。吨钢综合能耗和BFG煤气的放散率两个指标每年平均降低1.6%,据估算,其中有50%应归于能源中心的节能贡献,按6年间平均750kg/t计算,每年节支8.8万吨标煤,约折合人民币2530万元。

由于该系统着眼于全厂的能源在线跟踪管理,对煤气等的综合利用意义重大,在达到节能目的同时,降低了工厂排放气体中有害气体含量,降低气体中粉尘含量,环保效益与社会效益显而易见。

高炉综合节能技术—高风温、高富氧?

?优化高炉炉料技术

进一步提高球团配比和烧结矿、焦炭的强度等冶金性能,少用或不用块矿,大幅度提高入炉矿铁品位,降低SiO2含量、燃料灰份和入炉料粉率的技术。

?进一步提高喷煤量降低入炉焦比的冶炼技术

提高风温技术(蓄热式双预热技术的开发、热风炉新型耐火材料与新型结构等);适应大喷煤量的8-12%高富氧技术;喷枪及风口等关键设备技术;突破理论临界喷煤极限量的工艺操作技术;在高风温、高富氧率和大喷煤量条件下的低焦比冶炼技术。

?低硅生铁冶炼技术

精料条件下的SiO2还原反应控制技术;低SiO2活度、低熔点、低粘度、高流动性、高脱硫能力渣系的开发,稳定铁水硅含量的低硅生铁冶炼技术。

?进一步延长高炉寿命技术

开发新型结构冷却壁及其合理的高炉炉型,以及不同材质、不同结构的冷却壁在高炉内的分布形式;炉衬(尤其是炉缸)侵蚀在线监测与预报技术;软水密闭循环冷却技术、炉衬与冷却器快速修复技术;新型耐火材料等。

?高炉专家系统的应用技术

高炉操作智能专家指导系统;与高炉专家系统相关的监测技术;与专家系统开发有关的数据处理技术和软件平台等。

?综合节能技术

大型高炉干式除尘余压压差发电技术(TRT,发电量≥35KWh/t铁),全高炉煤气发电技术,含铁粉料的回收技术,余热回收技术,节水技术。

?高炉大型化及其强化冶炼技术

大型高炉的合理炉型的优化技术,高压操作技术,适应于高冶炼强度和高压操作的炉顶设备和鼓风及喷煤设备,精料、高风温、高富氧率、高喷煤量的相互匹配的优化操作技术。?高风温技术(1230℃—1300℃)

新型长寿热风炉的结构设计、蓄热式燃气与助燃空气双预热技术与新型耐火材料的开发。?高炉能源转换及生产清洁能源技术

高硫煤的应用技术,高炉煤气联合循环发电技术。

?高炉处理社会废弃物技术

高炉处理废塑料、废轮胎、木屑技术;高炉焚烧可燃性粒化垃圾的技术开发。

东海特钢烧结余热发电施工组织设计

唐山东海钢铁集团特钢有限公司 23198㎡烧结余热发电项目 施 工 组 织 设 计 编制单位:河南大成建设工程有限公司编制时间: 2014 年 06月 04日

第一章编制依据及工程概况 1.1 编制依据 1.1.1 唐山东海钢铁集团特钢有限公司1313.5MW烧结余热回收发电项目招标 文件; 1.1.2 唐山东海钢铁集团特钢有限公司施工现场实际状况及施工环境; 1.1.3 唐山东海钢铁集团特钢有限公司烧结生产工艺及状况; 1.1.3 国家电力公司国电电源[2002]849号《火力发电工程施工组织设计导则》; 1.1.4 国家现行的有关规程、规范; 1.1.5 河南大成建设有限公司多年的施工经验。 1.2 现场条件 1.2.1 概述 本项目为唐山东海钢铁集团特钢有限公司烧结余热发电工程,采用两段取风,闭路循环系统。5#及6#环冷机每台配设一台余热锅炉,一台热管锅炉,共用一台13.5MW补汽凝汽式汽轮机及一台15MW无刷励磁发电机。 1.2.2 地理位置 拟建厂址位于唐山市滦县茨榆坨工业园区内,距唐山市约31公里。拟建电站位于东海特钢烧结厂区内。唐山市滦县茨榆坨镇工业区,东临迁唐路,交通便利。 1.2.3 厂址自然条件 1.2.3.1地形地貌 本厂区属平原地貌,地势略有起伏,自然地面总体呈现为西高东低的趋势,最大高差约0.5米。项目场地标准冻深小于0.9m,故不考虑冻胀影响。 1.2.3.2气候特征 年平均气温 11℃ 极端最高气温 39.9℃

极端最低气温 -21 ℃ 海拔高度 25.9米 冻土深度: 0.9m 夏季室外计算干球温度: 32.7℃ 夏季室外计算湿球温度: 26.2℃ 最热月月平均相对湿度: 79% 1.2.3.3地质条件 拟建场地土属中硬场地土,建筑场地类别为Ⅱ类,位于相对稳定地块,不存在新构造活动运动,无不良地质作用,适宜作为建筑场地。 1.2.4电厂水源 该工程锅炉补充水、生活用水和其他用水采用厂区原有的水源,接入点由建设单位就近指定。 1.2.5 施工用电 从6#烧结厂西侧配电室引一条施工电源到主厂房西北角,能够满足施工区域电力供应。 施工用电应注意以下事项: 1.2.5.1实行TN-S配电系统,三级控制两级保护的配电方式,其中第一级保护的漏电保护器漏电动作电流根据用电设备数量确定,但漏电动作时间要小于 0.1s。 1.2.5.2变压器中性点直接接地的供电系统,一切用电设备、工具照明都实行保护接零;保护零线单独敷设,不通过任何开关和熔断器,在分支、终点、设备集中点或每长50m处都要重复接地,接地电阻小于10欧姆;保护零线的干线截面不小于相线的1/2,相线截面小于16平方时,保护零线与相线截面相同;移动式用电工具和设备和设备的保护零线用铜芯软线,其截面不小于相线的1/3,任何情况下小于 1.5mm2;用电设备的保护零线不得串联,用电设备的保护零线与保护零干线采用焊接、螺栓联结等,严禁缠绕和钩挂。 1.2.5.3一切用电设备在一般场所的第二级保护用漏电动作电流小于30mA,动作时间小于0.1s的漏电保护器,手持电动工具选择漏电动作电流小于15MA、动作

玻璃窑炉烟气余热发电

玻璃窑炉烟气余热回收发电 一、公司介绍 海蕲黄节能环保设备有限公司成立于2009年,是在上海蕲黄节能设备有限公司 (2004年)无法满足市场需求的基础上成立的,是国内较早开展余热回收的厂家之一,2010年被选为上海市节能协会服务产业委员会委员,并于2011年获批国家第三批节能服 务公司。通过近几年的发展,经我公司成功改造的锅炉、工业窑炉已有1000多台,公司 在锅炉及工业窑炉的余热回收利用及节能改造、纺织印染定型机的余热回收利用及节能改造、废气净化处理等领域处于国内先进水平。 公司坐落在璀璨的东方明珠——上海浦东新区,公司现有锅炉节能高级专家10名,产品研发工程师人员30多名,公司拥有国内先进生产、检测设备,拥有专业的运输、安装、售后服务队伍。公司是集锅炉余热回收、环保设备研发、设计、制造、配套、安装、调试及售后服务于一体的多元化高科技环保企业。 多年来,公司自主研发的波形给煤节能装置(国家专利号:ZL 3120.9)、热管余热蒸汽发生器(国家专利号:ZL 7839.9)在纺织印染、石油化工、金属冶炼等行业广泛运用,尤其在锅炉、玻璃窑炉、陶瓷窑炉、焦化炉、矿热炉、石灰窑炉、水泥窑炉、烧结炉、退火炉、定型机等高能耗领域,为用户创造了巨大的经济效益。由我公司承担的上海重型机械厂、上海华峰集团、上海五四助剂厂的锅炉余热回收节能改造项目被列入《2009年上海市重 点节能技术改造项目汇编》。另外公司在流化床锅炉改造、冷凝水回收、余热发电、锅炉富氧燃烧改造、烟气脱硫脱硝、除尘工程等方面也处于国内领先水平。 公司以“服务于企业,贡献于社会”为宗旨,长期致力于“电力、冶炼化工、纺织印染、造纸食品、电子电器、农业”等行业的节能降耗、锅炉余热回收、定型机余热回收、废气净化、烘干干燥等工业、农业领域的集成化治理工作,并全面开展合同能源管理(EMC) 项目的节能改造工程。 蕲黄人不断加大技术创新投入,始终采用国内领先的生产设备、生产工艺和科学管理方法,一如既往的以优质产品服务广大客户。在发展的道路上,我们始终奉行“一切为了节能、一切为了客户”的宗旨,为客户提供节能产品、节能诊断改造、节能规划与设计服务及合同能源管理项目服务,以实现企业节能增效、互惠互利、共获双赢的目标,与新老朋友携手共创辉煌的明天! 、玻璃烟气余热利用的现状及发电潜力 我国的平板玻璃工业从自主开发成功第一条浮法玻璃生产线至今,已有30 余年的发展历史,到2006 年底,我国投产的浮法玻璃生产线160余条,产量已达到4.54 亿重箱,占全球产量的40%以上。 我国在浮法玻璃生产线数量快速增长的同时,其生产线的规模和技术水平也在发展,生产规模从第一条线的90t /d发展到现在最大的900t /d o

余热回收技术

余热回收技术 1、热管余热回收器 热管余热回收器即是利用热管的高效传热特性及其环境适应性制造的换热装置,主要应用于工业节能领域,可广泛回收存在于气态、液态、固态介质中的废弃热源。按照热流体和冷流体的状态,热管余热回收器可分为:气—气式、气-汽式、气—液式、液—液式、液—气式。按照回收器的结构形式可分为:整体式、分离式和组合式。 2、间壁式换热器 换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。常见间壁式换热器如:冷却塔(或称冷水塔) 、气体洗涤塔(或称洗涤塔) 、喷射式热交换器、混合式冷凝器。 3、蓄热式换热器 蓄热式换热器用于进行蓄热式换热的设备,一般用于对介质混合要求比较低的场合。换热器内装固体填充物,用以贮蓄热量。一般用耐火砖等砌成火格子(有时用金属波形带等)。

蓄热式换热分两个阶段进行。第一阶段,热气体通过火格子,将热量传给火格子而贮蓄起来。第二阶段,冷气体通过火格子,接受火格子所储蓄的热量而被加热。这两个阶段交替进行。通常用两个蓄热器交替使用,即当热气体进入一器时,冷气体进入另一器。常用于冶金工业,如炼钢平炉的蓄热室。也用于化学工业,如煤气炉中的空气预热器或燃烧室,人造石油厂中的蓄热式裂化炉。 4、节能陶瓷换热器 陶瓷换热器是一种新型的换热设备,在高温或腐蚀环境下取代了传统的金属换热设备。用它的特殊材质——SIC质,把窑炉原来用的冷空气变成了热空气来达到余热回收的目的。由于其可长期在浓硫酸、盐酸和碱性气、液体中长期使用。抗氧化,耐热震,高温强度高,抗氧化性能好,使用寿命长。热攻工业窑炉。把换取的热风作为助燃风送进窑炉与燃气形成混合气进行燃烧,可节能25%-45%,甚至更多的能源。 5、喷射式混合加热器 喷射式混合加热器是射流技术在传热领域的应用,喷射式混合加热器是通过汽、水两相流体的直接混合来生产热水的设备。喷射式混合加热器具有传换效率高,噪音低(可达到65dB以下),体积小,安装简单,运行可靠,投资少。利用喷射式混合加热器回收发电厂、造纸厂、化工厂的余热,加热采暖循环水

余热回收利用

余热回收利用(S-CO2)动力循环-应用海运 业 摘要 船舶动力的主要来源是柴油机,它已经发展成为一种高效的发电装置,用于推进和辅助用途。然而,只有小于50%的燃料能源转化为有用的工作,其余的损失。这是公认的,约占总能量的转换在30%型柴油机是在排拒天然气。最近授权的EEDI [ 1 ]系统大型船舶归功于任何可回收的能源设计的船。而一些节能的设备正在酝酿,利用风能和太阳能发电研究中,它被公认为从发动机废气和冷却水的余热回收仍然可以利用,以产生能量,从而提高能源效率的工厂。从废气中回收热能的方法之一是将热量传递给一个能量回收的介质。在大型船舶上,所用的是水和蒸汽,从而产生了我用于加热燃料油或用于涡轮机的电能生产。本文提出了一种替代流体(超临界二氧化碳)作为一种手段,通过一个碳回收的能量闭环循环燃气轮机(布雷顿循环)它明显在较低的温度和无腐蚀性,无毒,不易燃,热稳定。在超临界状态下,S-CO2已高密度的结果,如涡轮机的部件的尺寸减小。超临界二氧化碳气体涡轮机可以在一个高的循环热效率,即使在温和的温度下产生的功率对550℃。周期可以在宽范围的操作压力为20。在一个典型的发动机安装在近海供应船的排气气体的能量回收量的案例研究,提出了理论计算的热量进行的UT的功率可由发动机的超临界CO2气轮机厂产生的废气和提取 . 关键词:余热,S-CO2布雷顿循环,水, 一、引言 今天的大多数船舶使用柴油发动机的推进和电力生产。通常被认为具有实际应用潜力的热排阻式柴油机为了浪费热量恢复是排气和外套冷却液。热通常是从一个以蒸汽的形式大型海轮主推进发动机的废气是最优选的介质用于燃料和货物加热,包括国内服务所需的加热。冷却水的热量通常以新鲜水的形式回收。从辅助余热回收辅助发动机,直到最近,没有考虑经济实用的除的情况下,大型客运船舶或船舶电力推进系统的操作。国际海事组织和国际海

【免费下载】冶炼炉渣干法粒化余热回收技术

★新型高温炉渣余热回收技术研究分析及对策建议 2012年7月,国务院正式发布《“十二五”国家战略性新兴产业发展规划》,在重点发展方向和主要任务中明确提出“积极开发和推广用能系统优化技术,促进能源的梯次利用和高效利用”,确定了“中低品位余热余压回收利用技术”作为高效节能产业发展的重大行动之一。为了贯彻落实国家节约能源,保护环境的政策,建设资源节约型社会和环境友好型社会,实现可持续发展的战略目标,六院自筹资金积极开展冶炼炉渣余热回收利用技术研究。 目前我国主要采用水淬工艺处理高温炉渣。水冲渣之后产生大量蒸汽,同时生成污染性酸性气体。蒸汽直接排入大气无法进行热量回收,酸性气体造成大气的污染。由于冲渣后的水温度较低,是一种很难高效利用的低品位热源,使用热泵等技术进行利用效率低、污染大且很难在短期内回收投资。冶炼炉渣显热为高品位余热资源,有很高的回收价值,随着国际竞争的日益加剧和能源的持续紧缺,冶金行业面临着多项维系可持续发展战略的问题,其中如何高效地回收冶炼炉渣显热是其中的重要问题之一,因此有必要转变思路采用环保高效的余热利用工艺进行余热回收。 六院十一所成功开发出一种新型高温炉渣余热回收技术——离心空气粒化结合两级流化床余热回收工艺,该工艺能够高效环保地进行炉渣的余热回收,代表了国际上最为先进的高温炉渣余热吸收工艺。 一、国内外相关研究开展情况 高温炉渣余热回收的工艺主要有湿法工艺和干法工艺两种。湿法工艺是指用水或水与空气的混合物使熔融渣冷却,然后再运输的方案,一

般也称为水淬工艺。干法工艺即依靠高压空气或其他方法实现熔融金属冷却、粒化的工艺。湿法处理工艺是将高炉渣作为一种材料来加以利用,并没有对其余热量进行充分的利用。从节能和环保的角度来看,湿法工艺都无法避免处理渣耗水量大的问题。干式粒化工艺是在不消耗新水的情况下,利用高炉渣与传热介质直接或间接接触进行的高炉渣粒化和显热回收的工艺,几乎没有有害气体排出,是一种环境友好的新式处理工艺。 (一)国外研究状况 20 世纪70年代,国外就已开始研究干式粒化炉渣的方法。前苏联、英国、瑞典、德国、日本、澳大利亚等国都开展过高温炉渣(包括高炉渣、钢渣等) 干式粒化技术的研究。日本钢管公司(NKK)开发的转炉钢渣风淬粒化工艺和双内冷却转筒粒化工艺因为处理能力不高、运行不稳定、粒度不均匀等缺点不适合在现场大规模连续处理高炉渣。英国克凡纳金属公司(KvaernerMetals)提出转杯离心粒化气流化床热能回收技术,该法因为热量回收效率高,粒化后渣质量较好,粒度均匀,强度较高,粒径小于2mm等优势具有较好的发展前景。该法曾经于20世纪80年代初期在英国钢铁公司年产1万吨的高炉上进行了为期数年的工业试验,未实现大范围的工业化应用。澳大利亚也对该法的粒化和传热过程进行过一些数值计算和实验研究工作。对高炉渣中显热的回收目前在国际上仍然处于工业试验性阶段,还没有任何一种干式处理工艺实现了工业应用,但已有的各类技术研究积累了很多相关的理论知识和实践经验。 (二)国内研究状况 目前,国内冶金企业对于高温炉渣全部采用水淬工艺进行处理。高

余热回收方案

能量回收系统

第一部分:能量回收系统介绍 压缩空气是工业领域中应用最广泛的动力源之一。由于其具有安全、无 公害、调节性能好、输送方便等诸多优点,使其在现代工业领域中应用 越来越广泛。但要得到品质优良的压缩空气需要消耗大量能源。在大多 数生产型企业中,压缩空气的能源消耗占全部电力消耗的10%—35%。 根据行业调查分析,空压机系统5年的运行费用组成:系统的初期设 备投资及设备维护费用占到总费用的25%,而电能消耗(电费)占到75%, 几乎所有的系统浪费最终都是体现在电费上。 根据对全球范围内各个行业的空气系统进行评估,可以发现:绝大多数 的压缩空气系统,无论其新或旧,运行的效率都不理想—压缩空气泄漏、 人为用气、不正确的使用和不适当的系统控制等等均会导致系统效率的 下降,从而导致客户大量的能耗浪费。据统计,空气系统的存在的系统浪 费约15—30%。这部分损失,是可以通过全面的系统解决方案来消除的。 对压缩空气系统节能提供全面的解决方案应该从压缩空气系统能源审计 开始。现代化的压缩空气系统运行时所碰到的疑难和低效问题总是让人 觉得很复杂和无从下手。其实对压缩空气系统进行正确的能源审计就可 以为用户的整个压缩空气系统提供全面的解决方案。对压缩空气系统设 备其进行动态管理,使压缩空气系统组件充分发挥效能。 通过我们在压缩空气方面的专业的、全面的空气系统能源审计和分析采 取适合实际的解决方案,能够实现为客户的压缩空气系统降低10%—50% 的电力消耗,为客户带来新的利润空间。 经过连续近二十年的经济高速增长,中国已经成为全球制造业的中心,大规模的产量提升,造成巨大的资源消耗和能量需求,过快的发展正逐步制约国家经济实力的进一步提升,因此,2005年《国务院关于加强节能工作的决定》明确目标指出:

工业炉与保温技术

《工业炉与保温技术》课程论文 课题名称热工理论在工业炉窑中的应用 学生姓名肖渐知 学号0841127392 系、年级专业机械与能源工程系 08级热能工程专业 2011年9月15日

热工理论在工业炉窑中的应用 摘要:工业炉窑的发展与生产工艺密切相关。为发展新型无机材料及其各类复合材料,目前在科研工作中也发展了一些规模较小的各种炉子,如常见的无压烧结马弗炉、气氛烧结炉(氮化炉,炭化炉)、热压烧结炉、气压炉和热静压炉。由于在试验中烧结式样体积较小,炉膛尺寸也较小,因此在产品的产量和能耗方面也很少顾及。但是,一旦试验产品试制成功而进入产业化阶段,就要全面考虑经济效益和社会效益等问题。全面掌握热工理论是控制,改进,设计。提高工业窑炉效率的的关键。如降低制品热耗,提高传热速率,减少热损失,窑内气体运动合理,减少气体穿越物料的阻力损失,保证燃料在炉内的充分燃烧问题。 关键字:热工理论、工业炉窑、应用。 引言:工业炉窑是利用工业生产中用燃料燃烧或电能转换产生的热量,将物 料或工件进行冶炼、焙烧、烧结、熔化、加热等工序的热工设备。在我国以煤为主的能源结构下,工业炉窑是主要污染排放源之一,也是耗能大户。据统计,目前我国各种工业炉窑(不包括锅炉)约有11 万台,其中燃煤工业炉窑约有六万多台,分布在电石、铁合金、钢铁、建材、有色金属等高耗能、高污染行业,地域分布较广,主要分布在华北、西北和西南等地区。工业炉窑应用于国民经济的各行各业,量大面广。我国大部分工业窑炉在炉型结构、燃烧系统、余热利用、绝热材料、热工检测、自控、微机应用及环保等方面都比较落后,而且我国工业炉窑容量大多偏小,造成能源浪费,同时环境污染严重。目前我国电石、铁合金、钢铁、化工、建材、有色等主要耗能行业的工业炉窑余热利用率仅在5%左右,并且以烟气余热或直接燃烧制取蒸汽为主要利用方式,有效利用率不足40%,没有达到真正的能源综合利用,并且排放出大量的CO2,温室效应严重。我国污染严重、能源紧缺的问题,最根本的是要依靠科技进步,走出传统节能减排方法的老路。工业炉窑节能环保行业起步于节能环保密闭矿热炉技术和产品的研究开发,逐渐向炉窑尾气净化和综合利用成套技术延伸。目前我国工业炉窑密闭生产技术正取代落后的开放式、内燃式的生产方式,逐渐成为行业的主流技术。工业炉窑密闭式生产技术的快速发展使工业高温尾气净化和回收利用成为可能,实现循环经济的理念,适应低碳时代的需要。现在,行业内优势企业已经形成了工业炉窑节能环保系统解决方案,将多项关键技术进行系统集成,全面提高工业炉窑清洁生产和尾气循环利用的技术水平。未来,充分开发工业炉窑余能余热循环利用技术,拓宽应用领域,适应更多行业节能减排的需求,将成为工业炉窑节能环保行业技术发展的方向。学好热工理论,充分的把它与实际工业炉窑结合起来,必将在即将到来的节能减排中崭露头角。 正文:热工理论知识的应用无时无处不在,它的影响几乎遍及现代所有的工业部门,也渗透到农业、林业等许多技术部门中。可以说除了极个别的情况以外。

15MW烧结余热发电工程项目可行性研究报告

XXXXXX有限公司 15MW烧结余热发电工程项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 高级工程师:高建

XXXXXX有限公司 15MW烧结余热发电工程项目 可行性研究报告 报告目录 第一章总论 (1) 第一节项目名称及建设单位 (1) 一、项目名称 (1) 二、建设单位 (1) 三、场地及气象条件 (2) 四、建设性质 (2) 五、建设规模 (3) 第二节报告编制依据和研究范围 (3) 一、研究范围与误差控制 (3) 二、项目指导思想 (4) 三、编制依据 (5) 第三节主要技术结论 (5) 一、主要技术特点 (5) 二、装机方案 (6) 三、厂区总图布置 (6) 四、余热回收装置布置 (6) 五、发电主厂房布置 (7) 六、循环系统冷却塔 (7) 七、软水系统 (7) 八、热力系统 (7)

十、电气 (8) 十一、热工自动化 (9) 十二、计算机控制 (9) 十三、通风及空气调节 (9) 十四、土建设计 (9) 十五、节约能源措施 (10) 十六、环境保护 (10) 十七、劳动安全及工业卫生 (11) 十八、运行组织及定员 (12) 第四节主要技术经济指标分析 (13) 一、主要技术经济指标见表 (13) 二、项目总投资构成分析 (14) 三、资金来源与使用计划 (15) 四、综合经济技术指标分析 (16) 第五节主要研究结论 (17) 第二章项目建设背景及必要性 (19) 第一节项目提出背景 (19) 一、项目符合《产业结构调整指导目录(2011年本)(2013修正)》 (19) 二、项目符合《节能减排“十二五”发展规划》 (19) 三、项目符合《钢铁工业“十二五”发展规划》 (19) 四、项目属于申报资源节约和环境保护2014年中央预算内投资备选项目 (20) 第二节项目建设的必要性 (20) 一、市场发展的需要 (20) 二、企业发展的需要 (21) 第三章总图运输 (23) 第一节概述 (23) 一、厂址位置及交通概况 (23) 二、设计依据 (23) 三、生产设施组成 (23) 第二节总平面布置 (23) 一、厂区总平面布置 (23) 二、竖向布置 (24) 三、厂内运输及道路 (24)

#炉渣利用技术 炉渣利用工艺

炉渣利用技术炉渣利用工艺 1 用于流化床锅炉的链带式排渣控制冷却器 2 高炉水碎炉渣或其粒度调整物的防凝结剂及防凝结方法 3 高炉铁水渣铁分离装置 4 烟道灰、炉渣活化剂 5 高效利用工业炉熔渣显热的新一步法矿棉技术 6 一种电炉炼钢吹氧喷粉氧燃助熔及造泡沫渣工艺 7 钢包炉用脱氧造渣剂 8 用气、水反冲高炉水渣滤层的方法 9 旋风炉炉渣生产岩棉热衔接工艺及所采用的补热炉 10 用于液体炉渣脱铬和/或脱镍的方法 11 一种电渣炉控制系统 12 用锅炉废渣灰制水硬性凝固剂方法 13 粉煤灰炉渣砼小型空心砌块 14 炼钢电弧炉泡沫渣控制方法 15 危险废弃物及医疗垃圾处理用的溶渣焚烧炉及工艺方法 16 用于氧化处理炼钢厂炉渣的方法及所得到的LD渣 17 一种控制转炉炉底上涨溅渣的方法 18 一种用镍熔炼炉渣和钢渣的混合渣炼铁的方法 19 型煤炉正块缓漏卸双向分离排渣器 20 转炉出钢用挡渣锥 21 一种冶金炉风口、渣口表面强化的方法 22 用含钛高炉渣制备光催化材料的方法 23 一种以炉渣为基料的合成材料及其生产工艺 24 轻质隔声炉渣混凝土建筑板材 25 炉渣冷却机 26 利用沸腾炉渣制造泡沫型隔热防水保温材料 27 利用电厂炉渣生产水泥的方法 28 粒化高炉矿渣水泥砂浆 29 防御液态排渣炉析铁熔蚀的金属陶瓷涂层 30 转炉溅渣护炉方法 31 造气炉渣运用煅烧石灰的方法 32 一种石灰质碳化煤球(棒)造气炉渣的新用途 33 直流电弧电渣加热钢包炉及其控制方法 34 一种利用石灰质碳化煤球造气炉渣生产的路面砖及其方法 35 用于沸腾炉的层燃式灰渣燃烬冷却床 36 用浓盐酸高温高压处理锅炉灰渣浸取其中三氧化二铝的综合利用方法 37 稀土精矿渣电弧炉冶炼稀土中间合金 38 稀土精矿球团(或块)矿热炉制备稀土精矿渣和含铌磷铁 39 低温干馏、炉渣再燃、刮板传动式锅炉 40 用喷粉方法处理熔渣生产高价值炉渣制品 41 促进粒状炉渣脱水用的混合剂和使用方法

余热回收方案

余热回收方案 一、能量使用情况与节能要求 1.1 车间供热需求 为了保证产品质量和产能产值,三号车间的两个产品半成品仓库,冬季需要控制室内温度为22℃~40℃,以保证产品的质量,无人员值守故不需考虑温控与新风、人员舒适度问题,但须考虑入库人员的安全。 两个仓库占地面积基本相似,均为:12.65x 7=88.55m2。 仓库层高为6m,每个仓库体积为532m3。 VA装配车间,需要控制室内温度为22℃~30℃,以保证工艺的正常生产,装配车间有操作工人,需要考虑操作人员的舒适性因此提出需要对车间的温度、湿度、新风量进行控制。 装配车间占地面积15x23=345m2,层高为 2.5m,总体积为862.5m3。 武汉市地处中国中部,夏季室内温度>25℃,因此夏季不需要对生产车间供热,冬季室内温度<25℃,需要对室内供热。 车间供热需求为季节性,夏季停运,冬季投用。 1.2节能要求 公司要求不采用高品位的电能和蒸汽热能对车间供热,需要采用余热回收途径对车间供热,

1.3 车间耗热量 ①根据仓库的性质,估算每个仓库的供热负荷为25kW。 ②根据装配车间的性质,估算VA装配车间供热负荷为120kW。 1.4余热利用条件 1.4.1 可利用的热能 钢化玻璃工段有两台玻璃炉,其作用是玻璃软化后处理。玻璃高温处理后由冷风急速冷却。根据加工产品的不同,所需急冷温度由65~165℃。急冷后的热风直接排入大气,外排热风温度为45℃~65℃。外排热风仅为热空气,不含有毒有害气体。 为外排热风,每台玻璃炉配三台20000m3/h轴流风机。 根据估算,每台轴流风机按120%配置,维持室温25℃,每台轴流风机的热风可提供热负荷为100kW。 合计的余热足够满足车间的供热需求。 1.4.2可用余热回收型式。 根据现场情况,受热车间与玻璃炉间距比较近,可以将热风引入受热车间,由热风直接供暖。 该供暖方式简单易行,投资省,运行费用低,余热回收利用充分。 二、余热利用方案 2.1余热回收

工业炉

工业炉是在工业生产中,利用燃料燃烧或电能转化的热量,将物料或工件加热的热工设备。广义地说,锅炉也是一种工业炉,但习惯上人们不把它包括在工业炉范围内。 组成部分 工业炉砌体、工业炉排烟系统、工业炉预热器和工业炉燃烧装置等。 编辑本段应用分类 在铸造车间,有熔炼金属的冲天炉、感应炉、电阻炉、电弧炉、真空炉、平 ?? 工业炉 炉、坩埚炉等;有烘烤砂型的砂型干燥炉、铁合金烘炉和铸件退火炉等;在锻压车间,有对钢锭或钢坯进行锻前加热的各种加热炉,和锻后消除应力的热处理炉;在金属热处理车间,有改善工件机械性能的各种退火、正火、淬火和回火的热处理炉;在焊接车间,有焊件的焊前预热炉和焊后回火炉;在粉末冶金车间有烧结金属的加热炉等。 应用其他工业,如冶金工业的金属熔炼炉、矿石烧结炉和炼焦炉;石油工业的蒸馏炉和裂化炉;煤气工业的发生炉;硅酸盐工业的水泥窑和玻璃熔化、玻璃退火炉;食品工业的烘烤炉等。 编辑本段设计要点 1.炉型的选择 2.燃料的选择 3.燃烧装置,燃烧器的选择 4.炉子设计者须对炉子的热能利用知识较全面理解 5.炉子辐射段和对流段的热负荷合理分配以及传热面的排列布置 6.采用新技术,新材料时,尚要注意采用的新技术,新材料的先进性与可靠性,经济性想结合 7.用增加传热面积方法来提高炉子热效率的时候,除要防止低温烟气腐蚀之外,还需要注意增加面积后对系统阻力的影响工业炉的热效率和燃料消耗量。 编辑本段发展历程 工业炉的创造和发展对人类进步起着十分重要的作用。中国在商代出现了较 ?? 加热炉 为完善的炼铜炉,炉温达到1200℃,炉子内径达0.8米。在春秋战国时期,人们在熔铜炉的基础上进一步掌握了提高炉温的技术,从而生产出了铸铁 1794年,世界上出现了熔炼铸铁的直筒形冲天炉。后到1864年,法国人马丁运用英国人西门子的蓄热式炉原理,建造了用气体燃料加热的第一台炼钢平炉。他利用蓄热室对空气和煤气进行高温预热,从而保证了炼钢所需的1600℃以上的温度。1900年前后,电能供应逐渐充足,开始使用各种电阻炉、电弧炉和有芯感应炉。 二十世纪50年代,无芯感应炉得到迅速发展。后来又出现了电子束炉,利用电子束来冲击固态燃料,能强化表面加热和熔化高熔点的材料。 用于锻造加热的炉子最早是手锻炉,其工作空间是一个凹形槽,槽内填入煤炭,燃烧用的空气由槽的下部供入,工件埋在煤炭里加热。这种炉子的热效率很低,加热质量也不好,而且只能加热小型工件,以后发展为用耐火砖砌成的半封闭或全封闭炉膛的室式炉,可以用煤,煤气或油作为燃料,也可用电作为热源,工件放在炉膛里加热。 为便于加热大型工件,又出现了适于加热钢锭和大钢坯的台车式炉,为了加热长形杆件还出现了井式炉。20世纪20年代后又出现了能够提高炉子生产率和改善劳动条件的各种机械化、自动化炉型。 工业炉的燃料也随着燃料资源的开发和燃料转换技术的进步,而由采用块煤、焦炭、煤

北台450m2烧结余热发电技术方案

辽宁本溪北营钢铁(集团)股份有限公司2×450m2烧结环冷机纯低温余热发电项目 技术方案 中冶北方工程技术有限公司 2010年8月

本溪北营钢铁(集团)股份有限公司2×450m2烧结环冷机纯低温余热发电项目 目录 1 装机方案 (1) 1.1 余热锅炉系统 (1) 1.2 装机方案 (3) 2 建厂条件 (6) 2.1 厂址概况 (6) 2.2 交通运输 (7) 2.3 水源 (7) 2.4 总体布置 (7) 2.5 电气部分 (8) 3 投资估算 (9)

1 装机方案 1.1 余热锅炉系统 1.1.1余热条件 北营公司烧结厂建设2台450m2烧结机,本余热锅炉可利用的烧结环冷机热风条件如下: (a)采用环冷机一段和二段高温端热风,风温为250-400℃。 (b)烧结环冷机各段风机参数如下: 450m2烧结机风机(单台) 风量:435000Nm3/h 风压:4300Pa (c)余热锅炉排气温度为140℃,采用再循环方式,再循环后风温可达280-420℃。 (d)余热风量含尘浓度为1.0g/Nm3。粉尘成分如下: TFe----55.71% FeO----7.5% SiO2----6.24% Al2O3—3.42% CaO----11.23% MgO----2.69% S-----0.0067% 1.1.2所利用的环冷机热风资源参数 将每台环冷机一段和二段高温端风箱排出的气体作为余热锅炉的热源。一段风量取风机额定流量的70%,二段高温端风量取风机额定流量的70%,因此余热发电所利用的环冷机热风资源原始设计参数如下表。

环冷机一段所利用的热风资源参数 环冷机二段高温端所利用的热风资源参数 1.1.3余热发电工艺流程 在环冷机一段和二段高温端风箱对应的上部风罩顶部分别设置集气烟筒。在烟筒顶部设置电动蝶阀。在风罩合适位置设置烟气连通管。将环冷机一段和二段高温端风箱的温度较高的热废气分别送进余热锅炉。 余热锅炉生产时,烟筒顶部电动蝶阀关闭,使环冷机一段和二段高温端风箱的全部废气都进入余热锅炉。余热锅炉系统发生故障时,烟筒顶部电动蝶阀开启排气,使环冷机能照常生产。 余热锅炉排出的140℃气体,通过烟道送至循环风机。使之经循环风机增压后,重新回到环冷机一段和二段。余热锅炉正常运行时, 环冷机一段和二段鼓风机停运。经过烟气热平衡计算,从环冷机一段、二段抽出的热烟气量总计为609800Nm3/h,从一、二段抽出的热烟气分别引入余热锅炉;余热锅炉排烟温度为140℃,烟气量为609800Nm3/h,

空压机余热回收系统原理

●空压机余热回收系统节能原理: 螺杆空压机的工作原理是由一对相互平行啮合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,从而实现空压机的吸气、压缩和排气的全过程。螺杆空气压缩机在长期连续的运行过程中,把电能转换为机械能,机械能转换为风能,在机械能转换为风能过程中,空气得到强烈的高压压缩,使之温度骤升,这是普通物理学机械能量转换现象,机械螺杆的高速旋转,同时也摩擦发热,这些产生的高热由空压机润滑油的加入混合成油、气蒸汽排出机体,这部分高温油、气的热量相当于空压机输入功率的25-30%,它的温度通常在80℃(冬季)—100℃(夏秋季)。由于机器运行温度的要求,这些热能通过空压机的散热系统做为废热排往大气中。 螺杆空压机节能系统就是利用热能转换原理,把空压机散发的热量回收转换到水里,水吸收了热量后,水温就会升高。使空压机组的运行温度降低,不仅提高了空压机运行效率,延长空压机润滑油使用寿命,回收的热水还可用于员工热水洗澡、办公室及生产车间采暖、锅炉补充水、金属涂装清洁处理、无尘室恒温恒湿车间及其他需要使用热水的地方,从而降低了企业为福利生活用热水、工业用热水而长期支付的经营成本。 ●安装空压机余热回收系统的好处: 1、安全、卫生、方便 螺杆空压机余热回收系统与燃油锅炉比较,无一氧化碳、二氧化硫、黑烟和噪音、油污等对大气环境的污染。一旦安装投入使用,只要空压机在运行,企业就随时可以提取到热水使用。 2、提高空压机的运行效率,实现空压机的经济运转 螺杆空压机的产气量会随着机组运行温度的升高而降低。在实际使用中,空压机的机械效率不会稳定在80℃标定的产气量上工作。温度每上升1℃,产气量就下降0.5%,温度升高10℃,产气量就下降5%。一般风冷散热的空压机都在88—96℃间运行,其降幅都在4—8%,夏天更甚。安装螺杆空压机余热回收系统的空压机组,可以使空压机油温控制在80—86℃之间,可提高产气量8%~10%,大大提高了空压机的运行效率。 ●空压机余热回收系统特点: 1、空压机原有冷却系统与空压机余热回收系统是两套完全独立的系统,使用者无须担心由于空压机余热回收系统的原因而影响空压机的运行。两套系统的切换自动控制,在空压机余1 / 3 热回收系统未启用时,空压机使用机身自带冷却系统;当余热回收系统启动时,系统可自动切换至余热回收系统。 2、全自动控制系统,无需人为操作,控制系统会根据温度、水位的情况做出判断,自行决定换热方式。 ●螺杆空压机余热回收系统产热水量参数表: (空压机运行压力大于7.6kg/cm2) 可回收热时m3/h时m3/h时m3/h时m3/h机型功kca2050205520602065 13500.450.30.315kw0. 0440.519800.660.522kw 0.60.9270000.680.7630kw 03330741.110.937kw0.8

工业余热回收利用途径与技术

工业余热回收利用途径与技术 余热资源普遍存在,特别在钢铁、化工、石油、建材、轻工和食品等行业的生产过程中,都存在丰富的余热资源,所以充分利用余热资源是企业节能的主要内容之一。 余热利用的潜力很大,在当前节约能源中占重要地位。余热资源按其来源不同可划分为六类:1高温烟气的余热2高温产品和炉渣的余热3冷却介质的余热4可燃废气、废液和废料的余热5废汽、废水余热6化学反应余热余热资源按其温度划分可分为三类: 7高温余热(温度高于500℃的余热资源)8中温余热(温度在200-500℃的余热资源)低温余热(温度 低于200℃的烟 气及低于100℃ 的液体) 行业余热资源来源占燃料消耗量的比例治金轧钢加热炉、均热炉、平炉、转炉高炉、焙烧窑等33%以上化工化学反应热,如造气、变换气、合成气等的物理显热;可燃化学热,如炭黑尾气、电石气等的燃料热15%以上建材高温烟气、窑顶冷却、高温产品等约40%玻搪玻璃熔窑、搪瓷窑、坩埚窑等约20%造纸烘缸、蒸锅、废气、黑液等约15%纺织烘干机、浆纱机、蒸煮锅等约15%机械煅造加热炉、冲天炉、热处理炉及汽锤排汽等约15% 、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

烧结焊剂生产工艺

烧结焊剂生产工艺 1、成品:烧结焊剂属国家倡导的《重点行业清洁生产技术导向目录》所列项目(详见国家环保总局网站),其主要功能一是通过隔离空气,以保护焊接过程减少焊缝氧化;二是改善焊缝成型质量;三是合金强化,即在施焊中从焊剂溶入所需合金元素,强化焊缝性能。 2、主要原辅材料: 3、执行标准:《埋弧焊用碳钢焊丝和焊剂》----GB/T5293-1999 4、能耗:电能 5、生产工艺 5.1生产工艺描述: 烧结焊剂生产工艺的核心,是按照一定的配方用水玻璃将各种原辅材料搅拌均匀后,由造粒机滚动、挤压成大小不等的颗粒;然后进行烘干和筛选分检,符合10-60目大小的颗粒,进行800度左右的高温焙烧,形成较为坚硬的烧结焊剂。其中,筛选出的不符合规格要求的颗粒,大于10目的需由破碎机破碎后重新筛选,小于60目的颗粒再次回收利用。 整个生产过程主要包括配料、造粒、烘干、焙烧、筛分、包装等工序。其中,烘干工序主要蒸发掉的是完成造粒后所含水份,焙烧过程去除的是种类矿物中的结晶水,提高焊接颗粒的强度。同时,因原辅材料均为细小颗粒或粉末,配料、筛分机组运转过程会产生少量扬尘,生产配套有除尘系统,粉尘由旋风除尘机、布袋除尘器除回收并重新利用;相应工位设置吸风罩,通过除尘管道同除尘机相连。生产所需能源只有电力,全部为清洁能源。 5.2工艺流程示意图:

5.3设备组成: 5.4生产工序简况: ①配料工序: 机组----料斗(单一矿物原料)、料仓(混合料)、除尘罩、电脑计量控制、皮带机等。 工艺----单一矿物原料人工投入料斗,由电脑计量控制系统按配比由料斗自动投料到料仓,全部原料在料仓混合后通过皮带机输送到造粒机组。 ②造粒: 机组----搅拌机、造粒机、料斗、控制系统等。 工艺----工序①调配好的混合粉料由皮带机输送到搅拌机,由电脑计量加入水玻璃后进行搅拌,搅拌均匀后下放到料斗,经料斗收集后投入到造粒机进行造粒(造 粒过程类似于滚元霄),完成造粒由皮带机输送到烘干系统。 ③烘干: 机组----回转干燥机、电热风炉、余热输风系统、提升机、控制系统等。 工艺----工序②完成造粒后,由皮带机输送到回转烘干机进行烘干。初始投产时,烘干机热风由电热风炉供给,待生产正常运行后,烧结炉余热经余热输风管道 供给烘干机,电热风炉则作为热源补充。烘干机运行温度为200度左右。 烘干后的颗粒,由提升机输送至筛分机。 ④焙烧前筛分: 机组----振动式筛分机、破碎机、皮带机、料仓、控制系统等。 工艺----工序③完成烘干后,由皮带机输送到振动式筛分机进行筛选。10-60目之间

锅炉余热回收

锅炉烟气余热回收 简介: 工业燃油、燃气、燃煤锅炉设计制造时,为了防止锅炉尾部受热面腐蚀和堵灰,标准状态排烟温度一般不低于180℃,最高可达250℃,高温烟气排放不但造成大量热能浪费,同时也污染环境。热管余热回收器可将烟气热量回收,回收的热量根据需要加热水用作锅炉补水和生活用水,或加热空气用作锅炉助燃风或干燥物料。节省燃料费用,降低生产成本,减少废气排放,节能环保一举两得。改造投资3-10个回收,经济效益显著。 (一)气—气式热管换热器 (1)热管空气预热器系列 应用场合:从烟气中吸收余热,加热助燃空气,以降低燃料消耗,改善燃烧工况,从而达到节能的目的;也可从烟气中吸收余热,用于加热其他气体介质如煤气等。 设备优点: *因为属气/气换热,两侧皆用翅片管,传热效率高,为普通空预器的5-8倍; *因为烟气在管外换热,有利于除灰; *因每支热管都是独立的传热元件,拆卸方便,且允许自由膨胀; *通过设计,可调节壁温,有利于避开露点腐蚀 结构型式:有两种常用的结构型式,即:热管垂直放置型,烟气和空气反向水平流动,热管倾斜放置型,烟气和空气反向垂直上下流动。 (二)气—液式热管换热器 应用场合:从烟气中吸收热量,用来加热给水,被加热后的水可以返回锅炉(作为省煤器),也可单独使用(作为热水器),从而提高能源利用率,达到节能的目的。 设备优点: *烟气侧为翅片管,水侧为光管,传热效率高; *通过合理设计,可提高壁温,避开露点腐蚀; *可有效防止因管壁损坏而造成冷热流体的掺混; 结构型式:根据水侧加热方式的不同,有两种常用的结构型式:水箱整体加热式(多采用热管立式放置)和水套对流加热式(多采用热管倾斜放置)

余热回收技术方案

保定太行和益水泥 活性石灰线余热回收技术方案 河北朗瑞环境工程 2012年08月

1. 工程概况 一条日产800吨活性石灰生产线。计划采用窑尾余热用于办公室采暖。 河北朗瑞环境工程是一家专业从事余热回收工程的高技术公司,与华北电力大学、航空航天大学、中科院热物理研究所联合研制了高性能的热管换热器、翅片管换热器,通过ISO9001-2000质量体系论证。河北朗瑞环境工程坚持“能源节约与开发利用并举,污染源头控制与末端治理相结合”的设计原则,致力于现代科技与实际应用的完美结合,树立了众多的高效节能、综合治理、清洁生产的典工程。特别是余热回收工程在冶金、钢铁、电力、石油、化工、建材等行业的实施,受到业界人士广泛认可。 河北朗瑞环境工程针对保定太行和益公司提供的相关参数资料,根据业主相关要求和该项目的具体情况,提出采用高性能热管换热器回收石灰窑高温烟气热能的技术方案,回收的热能用来取暖,实现节能减排的效果。 2. 工艺设计条件及要求 2.1. 设计原始参数 2.2. 主要执行标准与规 《蒸汽锅炉安全技术监察规程》 《压力容器安全技术监察规程》 /T1620-1993《锅炉钢结构技术条件》 /T1613-1993《锅炉受压元件焊接技术条件》 /T3375-2002《锅炉原材料入厂检验》

/T1615-1993《锅炉油漆包装技术条件》 /T4420 《锅炉焊接工艺评定》 JB1152 《锅炉和钢制压力容器对接焊缝超声波探伤》 /T4308-1999《锅炉产品钢印及标记移植规定》 /T1611 《锅炉管子制造技术条件》 《碳钢-水重力热管技术条件》 ZBG93010《高频电阻焊螺旋翅片管》 2.3. 主要编制原则 本方案按照技术先进、工艺可靠、经济合理的原则确定技术方案,结合本工程的具体情况,编制报告重点遵循下述原则: (1)遵守国家提倡节约能源的有关标准、规和政策,如《节约能源法》,《节能减排综合性工作方案》等。 (2)采用高效、运行稳定、管理成熟的换热工艺和技术。 (3)根据行业的具体情况,综合运用导热、对流、辐射等传热原理,采用适宜的强化传热手段,通过优化设计达到最佳的传热效果 (4)在符合上述条件情况下采取投资最少、运行费用最低的方案。 (5)系统管理和维护方便,工程设计优雅美观,与周围环境和谐统一。 2.4. 设计要求 (1)换热器换热量满足取暖热负荷并且留有一定的裕量。 3. 技术简介 3.1热管及热管换热器原理及特点介绍 3.1.1热管 热管起源于二十世纪六十年代的美国,1967年一根不锈钢-水热管首次被送入地球卫星轨道并运行成功。热管理论一经提出就得到了各国科学家的高度重视,并展开了大量的研究工作,使得热管技术得以很快发展。热管技术开始主要用于航天航空领域,我国自二十世纪70年代开始对热管进行研究,自80年代以来相继开发了热管气

相关文档
最新文档