2012湖南高考数学

合集下载

2012年湖南省高考数学试卷(文科)答案与解析

2012年湖南省高考数学试卷(文科)答案与解析

2012年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(共9小题,每小题5分,满分45分)23.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()α≠=,则α≠.组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确回归直线过样本点的中心(,)根据回归方程为,),故正确;,∵回归方程为=0.856.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程的焦距为的焦距为=1b=a=2∴双曲线的方程为.①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).①﹣=﹣=>,故>,×边上的高为当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠时,(x﹣)f′(x)>0,则函数y=f(x)﹣sinx在[﹣时,(﹣时,()),函数单调减,(10.(5分)(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=.cos的普通方程是(x=,点(a=故答案为:可化为:或比赛中得分的方差为 6.8.(注:方差+…+,其中为x1,x2,…,x n的平均数)解:∵根据茎叶图可知这组数据的平均数是∴这组数据的方差是[[9+4+1+4+1615.(5分)(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.=||||cos||cos OAP=2||=6由向量的数量积的定义可知,=|||16.(5分)(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;顾客一次购物的结算时间的平均值为)18.(12分)(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.((﹣=∵点(×++,∴,<Asin2x+)]x+2x+sin2x+﹣﹣由﹣﹣≤≤)﹣x+,]AC⊥BD.(Ⅰ)证明:BD⊥PC;的高为AD+BC=×AD=2,PD=2OD=4=4S×20.(13分)(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(Ⅰ)用d表示a1,a2,并写出a n+1与a n的关系式;(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表aa(a+]=d=﹣a(a﹣a+](2d[(,即(d==a21.(13分)(2012•湖南)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐,其焦距,利用离心率为,即可求得椭圆,由,利用,即可求得点的方程为:,其焦距为的方程为:=同理可得是方程所以,且,,得满足),或(22.(13分)(2012•湖南)已知函数f(x)=e﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:k=﹣=[=从而。

2012年高考数学湖南卷理科试题及答案(全word版)

2012年高考数学湖南卷理科试题及答案(全word版)

D C B A图1湖南省2012年高考试题数学( 理科)分值:150分 时量:120分钟 考试日期:2012-06-07一、选择题:本大题共8个小题,每小题5分,共40分. 1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N =( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}2.命题“若4απ=,则tan 1α=”的逆否命题是 ( ) A .若4απ≠,则tan 1α≠ B .若4απ=,则tan 1α≠C .若tan 1α≠,则4απ≠D .若tan 1α≠,则4απ=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是 ( )4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)i i x y(1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论中不正确的是( )A. y 与x 具有正的线性相关关系B. 回归直线方程过样本点的中心(,)x yC. 若该大学某女生身高增加1cm,则其体重约增加0.85kgD. 若该大学某女生身高为170cm,则可断定其体重为58.79kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -=D .2212080x y -= 6.函数()sin cos()6f x x x π=-+的值域为( )A .[-2,2]B .] C .[-1,1] D .] 7.在ABC ∆中, AB =2, AC =3,AB BC ⋅=1,则BC = ( ) ABC.D8.已知两条直线1:l y m =和8:(0,l y m m =>≠,1l 与函数2|log |y x =的图象从左至ABPO图2图3图4右相交于点A B 、,2l 与函数2|log |y x =的图象从左至右相交于点C D 、.记线段AC 和BD 在x 轴上的投影长度分别为a ,b ,当m 变化时,ba的最小值为( ) A . B . C . D .二、填空题:本大题共8个小题,考生作答7个小题,每小题5分,共35分,把答案填写在题中的横线上. (一)选做题(请在第9、10、11两题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xoy 中,已知曲线11,:(12x t C t y t =+⎧⎨=-⎩为参数)与曲线2sin ,:3cos x a C y θθ=⎧⎨=⎩ (θ为参数,a >0) 有一个公共点在x 轴上,则a = .10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若PA =1,AB =2,PO =3,则圆O 的半径等于 . (二)必做题(12〜16题)12.已知复数z=(3+i)2(i 为虚数单位),则|z|= .13.6的二项展开式中的常数项为 (14.如果执行如图3所示的程序框图,输入1,3x n =-=,15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图 象如图4所示,其中P 为图象与y 轴的交点,,A C 为图 象与x 轴的两个交点,B 为图象的最低点.(1)若6ϕπ=,点P 的坐标为,则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取 一点,则该点在ABC ∆内的概率为 . 16.设*2(2,)n N n n N =≥∈,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列113124N N P x x x x x x -=将此操作称为C 变换,将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ,当22i n ≤≤-时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +,例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置; (2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如上表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间x 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥底面ABCD ,4,3,5,90,AB BC AD DAB ABC E ===∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成 的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{a n }的各项均为正数,记A(n)=12n a a a +++,B(n)=231n a a a ++++,C(n)=342n a a a ++++,n=1,2,….(Ⅰ)若121,5a a ==且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{a n }的通项公式. (Ⅱ)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个数(),(),()A n B n C n组成公比为q 的等比数列.BDPE20.(本小题满分13分)某企业接到生产3000台某产品的A,B,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A,B,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xoy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别于曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()ax f x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k 问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.参考答案一、选择题 B,C,D,D A,B,A,B 二、填空题 9.32 10.1{|}4x x > 11. 12. 10 13. -160 14. -4 15.(1) 3 (2)4π16.(1) 6 ,(2)43211n -⨯+三、解答题17.【解】(Ⅰ)由已知得251055y ++=,所以20y =,所以1003025201015x =----=……2分该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得:153303251(1),( 1.5),(2)10020100101004P X P X P X =========, 201101( 2.5),(3)100510010P X P X ======. 所以X 的分布列如右表所示, X 的数学期望为()E X =1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9…………………………………6分 (Ⅱ) 记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,i X (i =1,2)为该顾客前面第i 位顾客的结算时间,则1()(1P A P X ==且211)(1X P X =+=且211.5)( 1.5X P X =+=且21)X =…………………8分由于各顾客的结算相互独立,且i X (i =1,2)的分布列都与X 的分布列相同,所以…………10分121212()(1)(1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=333333920202010102080=⨯+⨯+⨯= 故该顾客结算前的等候时间不超过2.5分钟的概率为980.………………………………………12分 〖点评〗本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.【解】解法一:(Ⅰ)连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5,又AD =5,E 是CD 得中点,所以CD ⊥AE ,…………………………2分 PA ⊥平面ABCD,CD ⊂平面ABCD.所以PA ⊥CD ,………………3分 而PA,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .………………………………………………5分(Ⅱ)过点B 作BG ∥CD,分别与AE,AD 相交于点F 、G,连接PF, 由CD ⊥平面PAE 知,BG ⊥平面PAE,于是∠BPF 为直线PB 与平面PAE 所成的角,且BG ⊥AE .……………………………………7分 由PA ⊥平面ABCD 知,∠PBA 即为直线PB 与平面ABCD 所成的角.由题意∠PBA=∠BPF,因为sin ∠PBA=PA ,sin ∠BPF=BF ,所以PA=BF .……………………9分B由∠DAB=∠ABC=90°知,AD ∥BC,又BG ∥CD.所以四边形BCDG 是平行四边形, 故GD=BC=3,于是AG=2.在RT △BAG 中,AB=4,AG=2,BG ⊥AF,所以也所以BF=2AB BG ==于是.…………………………………………11分 又梯形ABCD 的面积为S=12×(5+3)×4=16. 所以四棱锥P-ABCD 的体积为V=13×S ×PA=13×16.……………………12分 解法二:以A 为坐标原点,AB 、AD 、AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA=h,则相关各点的坐标为A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).……………2分 (Ⅰ)CD =(-4,2,0),AE =(2,4,0),AP =(0,0,h).因为CD AE ⋅=-8+8+0=0,CD AP ⋅=0.………………4分所以CD ⊥AE,CD ⊥AP,而AP,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE.………………………………………………………………………………6分(Ⅱ)由题设和第一问知,,CD PA 分别是平面PAE,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,………………………………7分 所以|cos <,CD PB >|=|cos <,PA PB >|,即||||||||||||CD PB PA PB CD PB PA PB ⋅⋅=⨯⨯………………9分由第一问知CD =(-4,2,0),(0,0,),PA h =-又(4,0,)PB h =-,故2|00|h h ++=,解得h =…………………………………………………11分又梯形ABCD 的面积为S=12×(5+3)×4=16. 所以四棱锥P-ABCD 的体积为V=13×S ×PA=13×16.……………………12分 〖点评〗本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.【解】(Ⅰ) 因为对任意n ∈N*三个数(),(),()A n B n C n 组成等差数列,所以()()()()B n A n C n B n -=-,………………………………………………………………1分即1122n n a a a a ++-=-,亦即21214n n aa a a ++-=-=.故数列{a n }是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-.………………4分 (Ⅱ)证明:(必要性)若数列{a n }是公比为q 的等比数列,对任意n ∈N*,有1n n a a q +=.由0n a >知,(),(),()A n B n C n 均大于0,于是………………………………………5分231121212()()()n n n n a a a q a a a B n q A n a a a a a a +++++++===++++++,…………………………………………6分 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++,………………………………………7分 即()()()()B nC n q A n B n ==,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列;………………8分 (充分性):若对任意n ∈N*,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==,于是()()[()()]C n B n q B n A n -=-,即2211()n n a a q a a ++-=-,亦即2121n n a qa a qa ++-=-……………………………………………………………………10分 由n=1时,(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.………………………………………………11分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个(),(),()A n B n C n 组成公比为q 的等比数列. ………………………………………………………12分20.【解】(Ⅰ)设完成A,B,C 三种部件生产需要的时间(单位:天)分别为123(),(),()T x T x T x 由题设有12323000100020001500(),(),()6200(1)T x T x T x x x kx k x⨯====-+, 其中,,200(1)x kx k x -+均为1到200之间的正整数.…………………………………………4分 (Ⅱ)完成订单任务的时间为123()max{(),(),()}f x T x T x T x =,其定义域为*200{|0,}1x x x N k<<∈+ 所以12(),()T x T x 为减函数,3()T x 为增函数,注意到*21()2()()T x k T x k=∈N①当k=2时,12()()T x T x =,此时10001500()max{,}2003f x x x =-,其中*2000,3x x N <<∈ 所以由函数1310001500,2003T T x x ==-的单调性及图象可知,当100015002003x x =-,即4009x =时, 函数()f x 有最小值.由于40044459<<,且*x N ∈.且13250300(44)(44),(45)(45)1113f T f T ====,且2503001113<, 所以x =44时,完成订单任务的时间最短,时间最短为250(44)11f =.……………………………8分②当2k >,即3k ≥时,12()()T x T x <,所以10001500()max{,}200(1)f x x k x=-+ 其中315001500375(,)200(1)200450T k x k x x x=≥=-+--,所以只须求1000375max{,}50x x -的最小值,其中*050,x x N <<∈. 同理可知当100037550x x =-,即400(36,37)11x =∈所以当36x =时,1000375250250max{,}50911x x =>-, 当37x =时,1000375375250max{,}501311x x =>-, 所以此时完成订单任务的最短时间大于25011.…………………………………………………11分③当2k <,即1k =时,12()()T x T x <,此时2000750()max{,}100f x x x=-,且*0100,x x N <<∈同理令2000750100x x=-,得800(72,73)11x =∈当72x =时,2000750250250(72)max{,}100911f x x ==>-, 当73x =时,2000750750250250(73)max{,}10027911f x x ===>- 所以此时完成订单任务的最短时间也大于25011.………………………………………………12分综上所述,当2k =时,完成订单任务的时间最短,此时,,A B C 三种部件的人数分别为44,88,68. …………………………………………………………………………………………………………13分 〖点评〗本题考查函数模型的构建,考查函数的单调性,分类讨论、数形结合(多想少算)的数学思想,解题的关键是确定分类标准,有难度.21.【解】(Ⅰ)解法一:设(,)M x y ,由已知得|2|3x +,…………………………2分由图可知,点M 在直线2x =-的右侧,故20x +>,5x +化简得曲线1C 的方程为220y x =.……………………………………………………………5分 解法二:由题设知,曲线1C 上任意一点M 到圆心2(5,0)C 的距离等于它到直线5x =-的距离.因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线. 故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,记(4,)(3)P t t -≠±,则过点P 且与圆2C 相切直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,如右图所示, 设两切线的统一方程为(4)y t k x -=+,即40kx y t k -++=,于是3=,整理得22721890k tk t ++-=(0∆>恒成立),又设过两切线,PA PC 的斜率为12,k k ,则212129,472t t k k k k -+=-=……①…………………8分又联立切线PA 与抛物线方程得11240,20k x y t k y x-++=⎧⎨=⎩得2112020(4)0k y y t k -++=设四点,,,A B C D 的纵坐标分别为1234,,,y y y y ,则易知1121120(4)8020t k ty y k k +==+ 同理可知3428020ty y k =+,……………………………………………………………………11分 所以21212123412124()16400(4)(4)400t t k k k k t ty y y y k k k k +++=++= 212124()1644006400tt t k k k k +-+==所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400.……………13分 〖点评〗本题考查轨迹方程,考查直线与圆相切、韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题.22.【解】(Ⅰ)若0a <,则对一切0x >,()1axf x e x =-<,这与题设矛盾.又0a ≠,故0a >.……1分而()1ax f x ae '=-,令()0f x '=,得11lnx a a=.当11ln x a a<时,()0f x '<,()f x 递减;当11ln x a a >时,()0f x '>,()f x 递增.故当11ln x a a =时,()f x 取最小值11111(ln )ln f a a a a a=-.………………………………………3分于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥.……①令()ln g t t t t =-,则()ln g t t '=-.当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=,即1a =时,①式成立.………………5分 综上所述,a 的取值集合为{1}.………………………………………………………………………6分(Ⅱ)由题知,21212121()()1ax ax f x f x e e k x x x x --==---, 令2121()()ax ax axe e xf x k ae x x ϕ-'=-=--,则121()12121()[()1],ax a x x e x e a x x x x ϕ-=----- 212()21221()[()1]ax a x x e x e a x x x x ϕ-=----…………………………………………………………8分 令()1,t F t e t =--则()1t F t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t ≠时,()(0),F t F >即10t e t -->.从而121()21210,()10ax a x x e e a x x x x ->--->-,212()12210,()10ax a x x e e a x x x x ->--->- 所以12()0,()0x x ϕϕ<>,………………………………………………………………………11分 因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在12(,)c x x ∈,使得()0c ϕ=,又2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln,)()ax ax e e x x a a x x -∈-,使()f x k '>.yzhgsb@ ·2012届高三◆数学试卷 第11页 共11页 综上所述,存在在012(,)x x x ∈,使0()f x k '>成立,且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --.……13分 〖点评〗本题考查导数知识的运用,考查函数的单调性与极值,构建新函数确定函数值的符号,从而使问题得解.。

高三数学(湖南文)2012年高考试题全解全析

高三数学(湖南文)2012年高考试题全解全析

y =0.85x-85.71 知 y 随 x 的增大而增大,所以 y 与 x 具有正的线性相关 【再解】由回归方程为
ˆ bx a bx y bx (a y bx ) ,所以 关系,由最小二乘法建立的回归方程得知 y
回归直线过样正确.
∴ b8 1;故 b2 b4 b6 b8 3;
(2)由上得: b1 1, b2 1, b3 0, b4 1, b5 0, b6 0, b7 1, b8 1, b9 0;…, 由二进制数的特征归纳推知 cm 的最大值是 2. 三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分 12 分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工 随机收集了在该超市购物的 100 位顾客的相关数据,如下表所示. 一次购物量 顾客数(人) 结算时间(分钟/人) 1至4件 x 1 5至8件 30 1.5 9 至 12 件 25 2 13 至 16 件 y 2.5 17 件及以上 10 3
解:由焦距为 10 得 2c 10 ,∴ c 5 ;点 P (2,1)在 C 的渐近线 y 则
b 1 ,检验答案知 A 对,故选 A.或 a 2b ,又 c 2 a 2 b 2 , a 2 5 , a 2
b 5 ,∴ C 的方程为
x2 y 2 1. 20 5


) D. 0
B. 0,1
C. 1
解:∵ x x x( x 1) 0 ,∴ N 0,1 ,则 M∩N={0,1},故选 B. 2.复数 z i (i 1) ( i 为虚数单位)的共轭复数是( A. 1 i B . 1 i A ) D. 1 i

2012年高考真题——数学(湖南卷)word版[文科理科两份]

2012年高考真题——数学(湖南卷)word版[文科理科两份]

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={-1,0,1},N={x|x2≤x},则M ∩N=A.{0}B.{0,1}C.{-1,1}D.{-1,0,0}2.命题“若α=4π,则tan α=1”的逆否命题是A.若α≠4π,则tan α≠1B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(xi ,yi )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg5. 已知双曲线C :22x a -22y b =1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为 A 220x -25y =1 B 25x -220y =1 C 280x -220y =1 D 220x -280y =1 6. 函数f (x )=sinx-cos(x+6π)的值域为7. 在△ABC 中,AB=2 AC=3 AB ·BC =8 ,已知两条直线l1 :y=m 和 l2 : y=821m +(m >0),l1与函数y=|log2x|的图像从左至右相交于点A ,B ,l2 与函数y= y=|log2x|的图像从左至右相交于C,D 记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,b a的最小值为 AB二 ,填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上(一)选做题(请考生在第9.10 11三题中人选两题作答案,如果全做,则按前两题记分)9. 在直角坐标系xOy 中,已知曲线C1:x=t+1 (t为参数)与曲线C2 :x=asin θY= 1-2t y=3cos θ(θ为参数,a>0 ) 有一个公共点在X轴上,则a 等于————10.不等式|2x+1|-2|x-1|>0的解集为_______.11.如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于_______(二)必做题(12~16题)12.已知复数z=(3+i)2(i为虚数单位),则|z|=_____.13.(的二项展开式中的常数项为。

2012年湖南省高考数学试卷(文科)教师版

2012年湖南省高考数学试卷(文科)教师版

2012年湖南省高考数学试卷(文科)一、选择题(共9小题,每小题5分,满分45分)1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2=x},则M∩N=()A.{﹣1,0,1}B.{0,1}C.{1}D.{0}【分析】集合M与集合N的公共元素,构成集合M∩N,由此利用集合M={﹣1,0,1},N={x|x2=x}={0,1},能求出M∩N.【解答】解:∵集合M={﹣1,0,1},N={x|x2=x}={0,1},∴M∩N={0,1},故选:B.2.(5分)(2012•湖南)复数z=i(i+1)(i为虚数单位)的共轭复数是()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【分析】由z=i(i+1)=i2+i=﹣1+i,能求出复数z=i(i+1)(i为虚数单位)的共轭复数.【解答】解:∵z=i(i+1)=i2+i=﹣1+i,∴复数z=i(i+1)(i为虚数单位)的共轭复数是﹣1﹣i.故选:A.3.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=【分析】原命题为:若a,则b.逆否命题为:若非b,则非a.【解答】解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选:C.4.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【分析】由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项【解答】解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选:C.5.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选:D.6.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.【分析】利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.【解答】解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.7.(5分)(2012•湖南)设a>b>1,c<0,给出下列三个结论:①>;②a c<b c;③log b(a﹣c)>log a(b﹣c).其中所有的正确结论的序()A.①B.①②C.②③D.①②③【分析】利用作差比较法可判定①的真假,利用幂函数y=x c的性质可判定②的真假,利用对数函数的性质可知③的真假.【解答】解:①﹣=,∵a>b>1,c<0∴﹣=>0,故>正确;②考查幂函数y=x c,∵c<0∴y=x c在(0,+∞)上是减函数,而a>b>0,则a c<b c正确;③当a>b>1时,有log b(a﹣c)>log b(b﹣c)>log a(b﹣c);正确.故选:D.8.(5分)(2012•湖南)在△ABC中,AC=,BC=2,B=60°则BC边上的高等于()A.B.C.D.【分析】在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB可求AB=3,作AD⊥BC,则在Rt△ABD中,AD=AB×sinB【解答】解:在△ABC中,由余弦定理可得,AC2=AB2+BC2﹣2AB•BCcosB把已知AC=,BC=2 B=60°代入可得,7=AB2+4﹣4AB×整理可得,AB2﹣2AB﹣3=0∴AB=3作AD⊥BC垂足为DRt△ABD中,AD=AB×sin60°=,即BC边上的高为故选:B.9.(5分)(2012•湖南)设定义在R上的函数f(x)是最小正周期2π的偶函数,f′(x)是函数f(x)的导函数,当x∈[0,π]时,0<f(x)<1;当x∈(0,π),且x≠时,(x﹣)f′(x)>0,则函数y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为()A.2B.4C.5D.8【分析】根据x∈(0,π),且x≠时,(x﹣)f′(x)>0,确定函数的单调性,利用函数的图形,即可得到结论.【解答】解:∵x∈(0,π),且x≠时,(x﹣)f′(x)>0,∴x∈(0,),函数单调减,x∈(,π),函数单调增,∵x∈[0,π]时,0<f(x)<1,在R上的函数f(x)是最小正周期为2π的偶函数,在同一坐标系中作出y=sinx 和y=f(x)草图象如下,由图知y=f(x)﹣sinx在[﹣2π,2π]上的零点个数为4个.故选:B.二、填空题(共7小题,满分30分)(10-11为选做题,两题任选一题,12-16为必做题)10.(5分)(2012•湖南)在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a=.【分析】根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2将极坐标方程化成普通方程,利用交点在极轴上进行建立等式关系,从而求出a的值.【解答】解:∵曲线C1的极坐标方程为:ρ(cosθ+sinθ)=1,∴曲线C1的普通方程是x+y﹣1=0,∵曲线C2的极坐标方程为ρ=a(a>0)∴曲线C2的普通方程是x2+y2=a2∵曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上∴令y=0则x=,点(,0)在圆x2+y2=a2上解得a=故答案为:11.(2012•湖南)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为7.【分析】由题知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点,由分数法的最优性定理可得结论.【解答】解:由已知试验范围为[29,63],可得区间长度为34,将其等分34段,共有33个分点由分数法的最优性定理可知F8=33,即通过7次试验可从这33个分点中找出最佳点.故答案为:7.12.(5分)(2012•湖南)不等式x2﹣5x+6≤0的解集为{x|2≤x≤3} .【分析】把不等式的左边分解因式后,根据两数相乘的取符法则:同得正,异得负,转化为两个一元一次不等式组,求出不等式组的解集即可得到原不等式的解集.【解答】解:不等式x2﹣5x+6≤0,因式分解得:(x﹣2)(x﹣3)≤0,可化为:或,解得:2≤x≤3,则原不等式的解集为{x|2≤x≤3}.故答案为:{x|2≤x≤3}.13.(5分)(2012•湖南)如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为 6.8.(注:方差+…+,其中为x1,x2,…,x n 的平均数)【分析】根据茎叶图所给的数据,做出这组数据的平均数,把所给的数据和平均数代入求方差的个数,求出五个数据与平均数的差的平方的平均数就是这组数据的方差.【解答】解:∵根据茎叶图可知这组数据的平均数是=11∴这组数据的方差是[(8﹣11)2+(9﹣11)2+(10﹣11)2+(13﹣11)2+(15﹣11)2]=[9+4+1+4+16]=6.8故答案为:6.8.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=4.【分析】计算循环中x,与i的值,当x<1时满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前x=3.5,不满足判断框条件,第1次循环,i=2,x=2.5,第2次判断后循环,i=3,x=1.5,第3次判断并循环i=4,x=0.5,满足判断框的条件退出循环,输出i=4.故答案为:4.15.(5分)(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=18.【分析】设AC与BD交于O,则AC=2AO,在RtAPO中,由三角函数可得AO与AP的关系,代入向量的数量积=||||cos∠PAO可求【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1816.(5分)(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.【分析】(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0),则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;2当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.【解答】解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0),则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,2c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011 =0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,前面有偶数个1时,b i+1b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.三、解答题(共6小题,满分75分)17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)【分析】(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,进而可求顾客一次购物的结算时间的平均值;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率求出相应的概率,利用互斥事件的概率公式即可得到结论.【解答】解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;顾客一次购物的结算时间的平均值为=1.9(分钟);(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率可得P(A1);P(A2)=;P(A3)=∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7∴一位顾客一次购物的结算时间不超过2分钟的概率为0.7.18.(12分)(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.(I)先利用函数图象求此函数的周期,从而计算得ω的值,再将点(,0)【分析】和(0,1)代入解析式,分别解得φ和A的值,最后写出函数解析式即可;(II)先利用三角变换公式将函数g(x)的解析式化为y=Asin(ωx+φ)型函数,再将内层函数看做整体,置于外层函数即正弦函数的单调增区间上,即可解得函数g(x)的单调增区间【解答】解:(I)由图象可知,周期T=2(﹣)=π,∴ω==2∵点(,0)在函数图象上,∴Asin(2×+φ)=0∴sin(+φ)=0,∴+φ=π+kπ,即φ=kπ+,k∈z∵0<φ<∴φ=∵点(0,1)在函数图象上,∴Asin=1,A=2∴函数f(x)的解析式为f(x)=2sin(2x+)(II)g(x)=2sin[2(x﹣)+]﹣2sin[2(x+)+]=2sin2x﹣2sin(2x+)=2sin2x﹣2(sin2x+cos2x)=sin2x﹣cos2x=2sin(2x﹣)由﹣+2kπ≤2x﹣≤+2kπ,k∈z得kπ﹣≤x≤kπ+∴函数g(x)=f(x﹣)﹣f(x+)的单调递增区间为[kπ﹣,kπ+]k∈z 19.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.(Ⅰ)证明:BD⊥PC;(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P﹣ABCD 的体积.【分析】(1)由PA⊥平面ABCD,AC⊥BD可证得BD⊥平面PAC,从而证得BD ⊥PC;(2)设AC∩BD=O,连接PO,由BD⊥平面PAC可得∠DPO是直线PD和平面PAC所成的角,于是∠DPO=30°,从而有PD=2OD,于是可证得△AOD,△BOC均为等腰直角三角形,从而可求得梯形ABCD的高,继而可求S ABCD,V P.﹣ABCD【解答】解:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD;又AC⊥BD,PA,AC是平面PAC内的两条相交直线,∴BD⊥平面PAC,而PC⊂平面PAC,∴BD⊥PC;(Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC,∴∠DPO是直线PD和平面PAC所成的角,∴∠DPO=30°,由BD⊥平面PAC,PO⊂平面PAC知,BD⊥PO.在Rt△POD中,由∠DPO=30°得PD=2OD.∵四边形ABCD是等腰梯形,AC⊥BD,∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为AD+BC=×(4+2)=3,于是S ABCD=×(4+2)×3=9.在等腰三角形AOD中,OD=AD=2,∴PD=2OD=4,PA==4,=S ABCD×PA=×9×4=12.∴V P﹣ABCD20.(13分)(2012•湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d万元,并将剩余资金全部投入下一年生产.设第n年年底企业上缴资金后的剩余资金为a n万元.(Ⅰ)用d表示a1,a2,并写出a n与a n的关系式;+1(Ⅱ)若公司希望经过m(m≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d的值(用m表示).【分析】(Ⅰ)由题意可求得a1=2000(1+50%)﹣d,a2=a1(1+50%)﹣d=,…从而归纳出a n=a n﹣d.+1(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=…=a1﹣d[1+++…+],利用等比数列的求和公式可求得a n=(3000﹣3d)+2d,再结合题意a m=4000,即可确定企业每年上缴资金d的值.【解答】解:(Ⅰ)由题意得:a1=2000(1+50%)﹣d=3000﹣d,a2=a1(1+50%)﹣d=a1﹣d=4500﹣d,…a n+1=a n(1+50%)﹣d=a n﹣d.(Ⅱ)由(Ⅰ)得a n=a n﹣1﹣d=(a n﹣2﹣d)﹣d=a n﹣2﹣d﹣d=…=a1﹣d[1+++…+]整理得:a n=(3000﹣d)﹣2d[﹣1]=(3000﹣3d)+2d.由题意,a m=4000,即(3000﹣3d)+2d=4000.解得d==,故该企业每年上缴资金d的值为时,经过m(m≥3)年企业的剩余资金为4000万元.21.(13分)(2012•湖南)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2﹣4x+2=0的圆心.(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为的直线l1,l2.当直线l1,l2都与圆C相切时,求P的坐标.【分析】(Ⅰ)确定x2+y2﹣4x+2=0的圆心C(2,0),设椭圆E的方程为:>>,其焦距为2c,则c=2,利用离心率为,即可求得椭圆E的方程;(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则k1k2=,由l1与圆C:x2+y2﹣4x+2=0相切,可得,同理可得,从而k1,k2是方程的两个实根,进而,利用,即可求得点P的坐标.【解答】解:(Ⅰ)由x2+y2﹣4x+2=0得(x﹣2)2+y2=2,∴圆心C(2,0)设椭圆E的方程为:>>,其焦距为2c,则c=2,∵,∴a=4,∴b2=a2﹣c2=12∴椭圆E的方程为:(Ⅱ)设P(x0,y0),l1,l2的斜率分别为k1,k2,则l1:y﹣y0=k1(x﹣x0)l2:y﹣y0=k2(x﹣x0),且k1k2=由l1与圆C:x2+y2﹣4x+2=0相切得∴同理可得从而k1,k2是方程的两个实根所以①,且>∵,∴,∴x0=﹣2或由x0=﹣2得y0=±3;由得满足①故点P的坐标为(﹣2,3)或(﹣2,﹣3),或(,)或(,)22.(13分)(2012•湖南)已知函数f(x)=e x﹣ax,其中a>0.(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合;(2)在函数f(x)的图象上取定点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为K,证明:存在x0∈(x1,x2),使f′(x0)=K恒成立.【分析】(1)根据题意,对f(x)求导可得f′(x)=0,令f′(x)=0,解可得x=lna,分x<lna与x>lna两种情况讨论可得f(x)取最小值为f(lna)=a﹣alna,令g(t)=t﹣tlnt,对其求导可得g′(t)=﹣lnt,分析可得当t=1时,g(t)取得最大值1,因此当且仅当a=1时,a﹣alna≥1成立,即可得答案;(2)根据题意,由直线的斜率公式可得k=﹣a,令φ(x)=f′(x)﹣k=e x ﹣,可以求出φ(x1)与φ(x2)的值,令F(t)=e t﹣t﹣1,求导可得F′(t)=e t﹣1,分t>0与t<0讨论可得F(t)的最小值为F(0)=0,则当t≠0时,F(t)>F (0)=0,即e t﹣t﹣1>0,进而讨论可得φ(x1)<0、φ(x2)>0,结合函数的连续性分析可得答案.【解答】解:(1)f′(x)=e x﹣a,令f′(x)=0,解可得x=lna;当x<lna,f′(x)<0,f(x)单调递减,当x>lna,f′(x)>0,f(x)单调递增,故当x=lna时,f(x)取最小值,f(lna)=a﹣alna,对一切x∈R,f(x)≥1恒成立,当且仅当a﹣alna≥1,①令g(t)=t﹣tlnt,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值,且g(1)=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.(2)根据题意,k==﹣a,令φ(x)=f′(x)﹣k=e x﹣,则φ(x1)=﹣[﹣(x2﹣x1)﹣1],φ(x2)=[﹣(x1﹣x2)﹣1],令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1,当t<0时,F′(t)<0,F(t)单调递减;当t>0时,F′(t)>0,F(t)单调递增,则F(t)的最小值为F(0)=0,故当t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0,从而﹣(x2﹣x1)﹣1>0,且>0,则φ(x1)<0,﹣(x1﹣x2)﹣1>0,>0,则φ(x2)>0,因为函数y=φ(x)在区间[x1,x2]上的图象是连续不断的一条曲线,所以存在x0∈(x1,x2),使φ(x0)=0,即f′(x0)=K成立.。

2012年高考湖南数学(理)试卷解析(学生版)

2012年高考湖南数学(理)试卷解析(学生版)

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类) 本试题卷包括选择题、填空题和解答题三部分,共6页,时量120分钟,满分150分。

试卷总评:总体来说2012湖南理科数学试题相对于2010,2011年有着很大的变化: 试题难度变大,体现于解答题的难度相对于前两年有显著提高。

着重体现在19题的内容更换为数列的充分必要性的证明,考数列解答题可能很多人都有预测到,但是靠充分必要性的证明可能预测到的少,另外函数应用问题较去年也有提高,着重了函数、不等式应用思想的考查应用。

而相对而言今年的选择题、填空题的布局与前两年吻合,注重对考生基础知识,基本技能的考查。

内容变换,将原有的三角解答题去掉,对立体集合问题不直接考查角度的计算,而考查几何体体积的计算。

突出了重点内容的考查,如函数与导数,圆锥曲线等。

一选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求的。

1. 设集合{1,0,1}M =-,2{|}N x x x =≤,则M N =( )A .{0} B. {0,1} C. {1,1}- D. {1,0,1}-3. 某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )4. 设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下列结论不正确的是( )A .y 与x 具有正的线性相关关系B. 回归直线过样本点的中心(,)x yC. 若该大学某女生身高增加1cmD. 若该大学某女生身高为170cm5. 已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -= B. 221520x y -= C. 2218020x y -= D. 2212080x y -= 8. 已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点,A B ,2l 与函数2|log |y x =的图象从左至右相交于点,C D ,记线段AC 和BD 在x 轴上的投影长度分别为,a b .当m 变化时,b a的最小值为( ) A .2 B. 82 C. 384 D.344二填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。

2012年高考理科数学湖南卷(含答案解析)

2012年高考理科数学湖南卷(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合21,0,1,{}{|}M N x x x =-=≤,则M N = ( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 ( )A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一 组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下 列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -= D .2212080x y -= 6.函数π()sin cos()6f x x x =-+的值域为 ( )A .[]2,2- B.[ C .[]1,1- D.[227.在ABC △中,2,3AB AC ==,AB BC =1,则BC =( )ABC.D8.已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点A B ,,2l 与函数2|log |y x =的图象从左至右相交于点C D ,.记线段AC 和BD 在x轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为 ( )A. B. C. D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线11,:12,x t C y t =+⎧⎨=-⎩(t 为参数)与曲线2sin :3cos x a C y θ,θ,=⎧⎨=⎩(θ为参数,0a >)有一个公共点在x 轴上,则a = . 10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若1,2,PA AB ==3PO =,则圆O 的半径等于 .12.已知复数2i)(3z =+(i 为虚数单位),则|z |= .13.6的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入1,3x n =-=,则输出的数S = . 15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,,A C 为图象与x 轴的两个交点,B 为图象的最低点. (1)若π6ϕ=,点P的坐标为,则ω= ;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC △内的概率 为 .16.设2(,2)n N n n =∈*≥N ,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n -≤≤时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置;(2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购 物的100位顾客的相关数据,如下表所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4,3,5,AB BC AD ===90,DAB ABC E ∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记()A n =12n a a a +++,()B n =231n a a a ++++,()C n =342n a a a ++++,=1,2,n .(Ⅰ)若121,5a a ==,且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个 数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件 的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6 件,或B 部件3 件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最 短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交 于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为 定值.22.(本小题满分13分)已知函数()e axf x x =-,其中0a ≠.(Ⅰ)若对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题CBDPE图5A1.【答案】B 【解析】{0,1}N =,{1,0,1}M =-,{0,1}M N ∴=.【提示】先求出{0,1}N =,再利用交集定义得出MN .【考点】集合的基本运算(交集) 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以“若π4α=,则t a n 1α=”的逆否命题是“若tan 1,α≠则π4α≠”.【提示】根据命题“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,即可求它的逆否命题. 【考点】四种命题及其之间的关系 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C ,都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【提示】根据已知的平面图形的正视图和侧视图,即可求出它的俯视图. 【考点】平面图形的直观图与三视图 4.【答案】D【解析】由回归方程为0.85571ˆ8.x y-=知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程的过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(,)x y ,利用回归方程可以预测估计总体,所以D 不正确.【提示】根据两变量之间的回归方程,即可判断两者之间的关系. 【考点】线性回归分析 5.【答案】A【解析】设双曲线22221x a C yb -=:的半焦距为c ,则210c =,5c =, 又C 的渐近线为by x a=±,点P (2,1)在C 的渐近线上,12ba∴=⨯,即2a b =,又222c a b =+,a ∴=b =C ∴的方程为221205x y -=.【提示】根据给出的双曲线的焦距及其渐近线上一点,即可求出双曲线的标准方程.【考点】双曲线的标准方程 6.【答案】B【解析】π1π()sin cos sin sin 626f x x x x x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪⎝⎭⎝⎭, πsin [1,1]6x ⎛⎫-∈- ⎪⎝⎭,()f x ∴值域为[.【提示】根据给出的三角函数表达式,结合两角差的正弦即可求出其值域. 【考点】两角差的正弦,三角函数的值域 7.【答案】A【解析】由图知,||||cos(π)2||(cos )1AB BC AB BC B BC B =-=⨯⨯-=,1cos 2B BC∴=-,又由余弦定理知222cos 2AB BC AC B AB BC +-=,解得BC =.【提示】根据给出的三角形两边及数量积,结合数量积运算及余弦定理即可求解另一边. 【考点】平面向量的数量积运算,余弦定理8.【答案】B【解析】在同一坐标系中作出y m =,8(0)21y m m =>+,2|log |y x =图象如图, 由2|log |x m =,得12m x -=,22mx =,由28|log |21x m =+,得82132m x -+=,82142m x +=,依照题意得82122mm a --+=-,82122m mb +=-,8218218218212222222m m mm mm m m b a++++--+-===-,8141114312122222m m m m +=++-≥-=++,minb a ⎛⎫∴= ⎪⎝⎭【提示】根据给出的三个函数表达式,画出函数图象,结合图象与不等式即可判断b a最小值.【考点】函数图象的应用,基本不等式 二、填空题 9.【答案】32【解析】曲线1112x t C y t=+⎧⎨=-⎩:,直角坐标方程为32y x =-,与x 轴交点为3,02⎛⎫ ⎪⎝⎭;曲线2sin 3cos x a C y θθ=⎧⎨=⎩:,直角坐标方程为22219x y a +=,其与x 轴交点为(,0)a -,(,0)a , 由0a >,曲线1C 与曲线2C有一个公共点在x 轴上,知32a =. 【提示】根据给出的两条直线的参数方程与极坐标方程,分别转化成直角坐标方程,根据题意设交点求解.【考点】参数方程与普通方程的转化,极坐标方程与普通方程的转化10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()|21|2|1|f x x x =+--,则由13,()21()41,(1)23,(1)x f x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩,得()0f x >的解集为14x x ⎧⎫>⎨⎬⎩⎭.【提示】设函数表达式,求其等价的分段函数,再分段求其大于零时的解集即可. 【考点】绝对值不等式 11.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为r ,由割线定理知PA PB PC PD =, 即1(12)(3)(3)r r ⨯+=-+,r ∴=.【提示】根据给出的线段长,由切割线定理PA PB PC PD =,即可求出圆的半径. 【考点】切割线定理 12.【答案】10【解析】22(3i)96i i 86i z =+=++=+,||10z ==. 【提示】根据给出的复数表达式,进行四则运算,即可求出其模. 【考点】复数代数形式的四则运算 13.【答案】160-【解析】6⎛ ⎝的展开式项公式是6631662(1)rr r r r r rr T C C x ---+⎛==- ⎝, 由题意知30r -=,3r =,所以二项展开式中的常数项为333462(1)160T C =-=-. 【提示】根据给出的二项式,即可求出其展开式的常数项.【考点】二项式定理 14.【答案】4-【解析】输入1x =-,3n =,执行过程如下:2i =,6233S =-++=-;1i =,3(1)115S =--++=;0i =,5(1)014S =-++=-,所以输出的是4-.【提示】根据程序框图的逻辑关系,并根据程序框图即可求出S 的值. 【考点】循环结构的程序框图 15.【答案】3π4【解析】①()cos()y f x x ωωϕ'==+,当π6ϕ=,点P的坐标为⎛ ⎝⎭时,πcos 6ω= 3ω∴=;②由图知2ππ22T AC ωω===,1π22ABC S AC ω==△, 设A ,B 的横坐标分别为a ,b ,设曲线段弧ABC 与x 轴所围成的区域的面积为S , 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为π2π24ABC S P S ===△. 【提示】根据给出的函数导数的图象判断ω的大小,由定积分求面积,并结合概率求解即可.【考点】函数图象的应用,定积分的几何意义,几何概型 16.【答案】643211n -⨯+【解析】①当16N =时,0123456P x x x x x x x =…,可设为(1,2,3,4,5,6,…,113571524616P x x x x x x x x x =……,即为(1,3,5……,2159133711152616P x x x x x x x x x x x =…,即(1,5,9,13,3,7,11,15,2,6,,16)…,7x 位于2P 中的第6个位置;②方法同①,归纳推理知173x 位于4P 中的第43211n -⨯+个位置.【提示】根据题意归纳推理求解即可. 【考点】归纳推理 三、解答题17.【答案】(Ⅰ)由已知,得251055y ++=,35x y +=,所以15x =,20y =,该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率,得:153(1)10020P X ===, 303( 1.5)10010P X ===,251(2)1004P X ===,X 的数学期望为()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=;(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且,由于顾客的结算相互独立,且1X ,2X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X PX P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【提示】根据给出的数据求分布列与期望,判断事件之间互斥关系,从而求得对立事件的概率即可.【考点】用样本数字特征估计总体数字特征,对立事件的概率18.【答案】(Ⅰ)如图,连接AC ,由4AB =,3BC =,90ABC ∠=,得5AC =, 又5AD =,E 是CD 的中点,所以CD AE ⊥,PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,而PA ,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE ;(Ⅱ)过点B 作BG CD ∥,分别与AE ,AD 相交于F ,G 连结PF , 由(Ⅰ)CD ⊥平面PAE 知,BG ⊥平面PAE ,于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥,由PA ⊥平面ABCD 知,PBA ∠为直线PB 与平面ABCD 所成的角,4AB =,2AG =,BG AF ⊥由题意,知PBA BPF ∠=∠,因为sin PA PBA PB ∠=,sin BFBPF PB∠=,所以PA BF =,由90DAB ABC ∠=∠=, 知,AD BC ∥,又BG CD ∥,所以四边形BCDG 是平行四边形,故3GD BC ==,于是2AG =,在Rt BAG △中,4AB =,2AG =,BG AF ⊥,所以BG =,2AB BF BG ===于是PA BF ==, 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=【解析二】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA h =,则相关的各点坐标为:(0,0,0)A ,(4,0,0)B ,(4,3,0)C ,(0,5,0)D ,(2,4,0)E ,(0,0,)P h ;(Ⅰ)易知(4,2,0)CD =-,(2,4,0)AE =,(0,0,)AP h =,8800CD AE =-++=,0CD AP =,所以CD AE ⊥,CD AP ⊥,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE ;(Ⅱ)由题设和(Ⅰ)知,CD ,AP 分别是平面PAE ,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以cos ,cos ,CD PB PA PB <>=<>,即||||||||C D P BP A P BC D P B P A P B =,由(Ⅰ)知,(4,2,0)CD =-,(0,0,)AP h=-由(4,0,)PB h =-,故2216516h hh++,解得5h =,又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1112851633V S PA =⨯⨯=⨯=【提示】根据定理判定线面垂直;找出四棱锥的高求其体积. 【考点】直线与平面垂直的判定,四棱锥的体积19.【答案】(Ⅰ)对任意n *∈N ,三个数()A n ,()B n ,()C n 是等差数列,所以()()()()B n A n C n B n -=-,即1122n n a a a a ++-=-,亦即21214n n a a a a +--=-=,故数列{}n a 是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-; (Ⅱ)①必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=, 由0n a >知,()A n ,()B n ,()C n 均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==, 所以三个数()A n ,()B n ,()C n 组成公比为q 的等比数列;②充分性:若对于任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列, 则()()B n qA n =,()()C n qB n =,于是()()[()()]C n B n q B n A n -=-, 得2211()n n a a q a a ++-=-,即2121n n a qa a a ++-=-, 由1n =有(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=, 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列.【提示】根据给出的三个关系式,根据三者之间的关系结合等差、等比性质求解即可. 【考点】等差数列的通项公式,等比数列的性质20.【答案】(Ⅰ)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为1()T x ,2()T x ,3()T x 由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+,其中x ,kx ,200(1)k x -+均为1到200之间的正整数;(Ⅱ)完成订单任务的时间为{}123()max (),(),()f x T x T x T x =,其定义域为2000,1x x x k *⎧⎫<<∈⎨⎬+⎩⎭N , 易知,1()T x ,2()T x 为减函数,3()T x 为增函数,注意到212()()T x T x k=,于是:①当2k =时,12()()T x T x =,此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数1()T x ,3()T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得4009x =,由于40044459<<,而1250(44)(44)11f T ==,3300(45)(45)13f T ==,(44)(45)f f <, 故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =;②当2k >时,12()()T x T x >,由于k 为正整数,故3k ≥,此时375()50T x x=-,{}1()max (),()x T x T x ϕ=易知()T x 为增函数,则{}{}1311000375()max (),()max (),()()max ,50f x T x T x T x T x x x x ϕ⎧⎫=≥==⎨⎬-⎩⎭,由函数1()T x ,()T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =,由于400363711<<而1250250(36)(36)911T ϕ==>,375250(37)(37)1311T ϕ==>,此时完成订单任务的最短时间大于25011;③当2k <时,12()()T x T x <,由于k 为正整数,故1k =,此时{}232000750()max (),()max ,100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数2()T x ,3()T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =, 类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A ,B ,C 三种部件的人数分别为44,88,68.【提示】根据题意建立模型,判断单调性求最值即可.【考点】分段函数模型,函数单调性的判断,利用函数单调性求最值21.【答案】(Ⅰ)解法一:设M 的坐标为(,)x y,由已知得|2|3x +,易知圆2C 上的点位于直线2x =-的右侧,于是20x +>,5x =+,化简得曲线1C 的方程为220y x =;解法二:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =;(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4)y y k x -=+,即040kx y y k -++=,于是3=,整理得2200721890k y k y ++-=①,设过P 所作的两条切线PA ,PC 的斜率分别为1k ,2k ,则1y ,2y 是方程①的两个实根,故001218724y y k k +=-=-②,由10124020k x y y k y x -++=⎧⎨=⎩,得21012020(4)0k y y y k -++=③,设四点A ,B ,C ,D 的纵坐标分别为1y ,2y ,3y ,4y ,则1k ,2k 是方程③的两个实根,所以0112120(4)y k y y k +=④,同理可得0234220(4)y k y y k +=⑤,于是由②,④,⑤三式,得0102123412400(4)(4)y k y k y y y y k k ++= 2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦==.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【提示】根据给出的圆的方程及两曲线之间的关系,联立方程由韦达定理即可求解. 【考点】曲线与方程,直线与曲线的位置关系 22.【答案】(Ⅰ){1}(Ⅱ)0x 的取值范围为212211e e ln,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦【解析】(Ⅰ)若0a <,则对一切0x >,()f x e 1ax x =-<,这与题设矛盾,又0a ≠,故0a >,而()e 1ax f x a '=-,令()0f x '=,得11lnx aa =,当11ln x a a<时,()0f x '<,()f x 单调递减;当11ln x a a >时,()0f x '>,()f x 单调递增.故当11ln x a a=时,()f x 取最小值11111ln ln f a a a a a⎛⎫=- ⎪⎝⎭,于是对一切x ∈R ,()1f x ≥恒成立,当且仅当111ln 1a a a-≥,令()ln g t t t t =-,则()ln g t t '=-,当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 单调递减.故当1t =时,()g t 取最大值(1)1g =,因此,当且仅当11a=即1a =时,a 的取值集合为{1}; (Ⅱ)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---,令2121e e ()()e ax ax axx f x k a x x ϕ-'=-=--,则121()12121e ()[e ()1]ax a x x x a x x x x ϕ-=-----,212()21221e ()[e ()1]ax a x x x a x x x x ϕ-=----, 令()e 1tF t t =--,则()e 1tF t '=-.当0t <时,()0F t '<,()F t 单调递减;当0t >时,()0F t '>,()F t 单调递增. 故当0t =,()(0)0F t F >=,即e 10t t -->, 从而21()21e()10a x x a x x ---->,12()12e()10a x x a x x ---->,又121e 0ax x x >-,221e 0ax x x >-, 所以1()0x ϕ<,2()0x ϕ>,因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0x ϕ=,2()e 0axx a ϕ'=>,()x ϕ单调递增,故这样的c 是唯一的,且21211e e ln ()ax ax c a a x x -=-,故当且仅当212211e e ln ,()ax ax x x a a x x ⎡⎤-∈⎢⎥-⎣⎦时,0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立,且0x 的取值范围为212211e e ln ,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦. 【提示】给出函数解析式,利用导数判断函数单调性求参数的取值范围;利用导数判断段单调性并求不等式.【考点】利用导数判断或求函数的单调区间,利用导数解决不等式问题。

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}考点:交集及其运算.专题:计算题.分析:求出集合N,然后直接求解M∩N即可.解答:解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.点评:本题考查集合的基本运算,考查计算能力,送分题.2.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.3.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题4.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.5.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.6.(5分)(2012•湖南)函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2]B.[﹣,]C.[﹣1,1]D.[﹣,]考点:三角函数中的恒等变换应用;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.解答:解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.点评:本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.7.(5分)(2012•湖南)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.考点:解三角形;向量在几何中的应用.专题:计算题;压轴题.分析:设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.解答:解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.8.(5分)(2012•湖南)已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在X轴上的投影长度分别为a,b,当m变化时,的最小值为()A.16B.8C.8D.4考点:基本不等式在最值问题中的应用;对数函数图象与性质的综合应用;平行投影及平行投影作图法.专题:计算题;综合题;压轴题.分析:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,依题意可求得为x A,x B,x C,x D的值,a=|x A﹣x C|,b=|x B﹣x D|,利用基本不等式可求得当m变化时,的最小值.解答:解:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,则﹣log2x A=m,log2x B=m;﹣log2x C=,log2x D=;∴x A=2﹣m,x B=2m,x C=,x D=.∴a=|x A﹣x C|,b=|x B﹣x D|,∴==||=2m•=.又m>0,∴m+=(2m+1)+﹣≥2﹣=(当且仅当m=时取“=”)∴≥=8.故选B.点评:本题考查对数函数图象与性质的综合应用,理解平行投影的概念,得到=是关键,考查转化与数形结合的思想,考查分析与运算能力,属于难题.二、填空题(共8小题,考生作答7小题,每小题0分,满分35分,9,10,11三题任选两题作答;12~16必做题)9.(2012•湖南)在直角坐标系xoy 中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0 )有一个公共点在X轴上,则a等于.考点:椭圆的参数方程;直线的参数方程.专题:计算题.分析:化参数方程为普通方程,利用两曲线有一个公共点在x轴上,可得方程,即可求得结论.解答:解:曲线C1:(t为参数)化为普通方程:2x+y﹣3=0,令y=0,可得x=曲线C2:(θ为参数,a>0 )化为普通方程:∵两曲线有一个公共点在x轴上,∴∴a=故答案为:点评:本题考查参数方程化为普通方程,考查曲线的交点,属于基础题.10.(5分)(2012•湖南)不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:由不等式|2x+1|﹣2|x﹣1|>0⇔不等式|2x+1|>2|x﹣1|⇔(2x+1)2>4(x﹣1)2即可求得答案.解答:解:∵|2x+1|﹣2|x﹣1|>0,∴|2x+1|>2|x﹣1|≥0,∴(2x+1)2>4(x﹣1)2,∴x>.∴不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.故答案为:{x|x>}.点评:本题考查绝对值不等式的解法,将不等式|2x+1|﹣2|x﹣1|>0转化为(2x+1)2>4(x ﹣1)2是关键,着重考查转化思想与运算能力,属于中档题.11.(5分)(2012•湖南)如图,过点P的直线与圆⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于.考点:与圆有关的比例线段.专题:计算题.分析:设出圆的半径,根据切割线定理推出PA•PB=PC•PD,代入求出半径即可.解答:解:设圆的半径为r,且PO与圆交于C,D两点∵PAB、PCD是圆O的割线,∴PA•PB=PC•PD,∵PA=1,PB=PA+AB=3;PC=3﹣r,PD=3+r,∴1×3=(3﹣r)×(3+r),r2=6∴r=,故答案为:.点评:本题主要考查切割线定理等知识点,熟练地运用性质进行计算是解此题的关键.12.(5分)(2012•湖南)已知复数z=(3+i)2(i为虚数单位),则|z|=10.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.13.(5分)(2012•湖南)()6的二项展开式中的常数项为﹣160(用数字作答).考点:二项式定理.专题:计算题.分析:根据题意,利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.解答:解:()6展开式的通项为T r+1=C6r•(2)6﹣r•(﹣)r=(﹣1)r•C6r•26﹣r•x3﹣r,令3﹣r=0,可得r=3,其常数项为T4=(﹣1)r•C6r•26﹣r=﹣160;故答案为﹣160.点评:本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=﹣1,n=3,则输出的数S=﹣4.考点:循环结构.专题:计算题.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:判断前x=﹣1,n=3,i=2,第1次判断后循环,S=﹣6+2+1=﹣3,i=1,第2次判断后S=5,i=0,第3次判断后S=﹣4,i=﹣1,第4次判断后﹣1≥0,不满足判断框的条件,结束循环,输出结果:﹣4.故答案为:﹣4.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.15.(5分)(2012•湖南)函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若φ=,点P的坐标为(0,),则ω=3;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为.考点:导数的运算;几何概型;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;压轴题.分析:(1)先利用导数的运算性质,求函数f(x)的导函数f′(x),再将φ=,f′(0)=代入导函数解析式,即可解得ω的值;(2)先利用定积分的几何意义,求曲线段与x轴所围成的区域面积,再求三角形ABC的面积,最后利用几何概型概率计算公式求面积之比即可得所求概率.解答:解:(1)∵函数f(x)=sin (ωx+φ)的导函数y=f′(x)=ωcos(ωx+φ),其中φ=,过点P(0,),∴ωcos=∴ω=3.故答案为:3.(2)∵f′(x)=ωcos(ωx+φ),∴曲线段与x轴所围成的区域面积为[﹣f′(x)]dx=﹣f(x)=﹣sin﹣(﹣sin)=2,三角形ABC的面积为=,∴在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为P==.故答案为:.点评:本题主要考查了f(x)=Asin (ωx+φ)型函数的图象和性质,导数运算及导函数与原函数的关系,定积分的几何意义,几何概型概率的计算方法,属基础题.16.(5分)(2012•湖南)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,x N依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…x N.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…x N﹣1x2x4…x N,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2,当2≤i≤n ﹣2时,将P i分成2i段,每段个数,并对每段作C变换,得到P i+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第6个位置;(2)当N=2n(n≥8)时,x173位于P4中的第3×2n﹣4+11个位置.考点:演绎推理的基本方法;进行简单的演绎推理.专题:压轴题.分析:(1)由题意,可按照C变换的定义把N=16时P2列举出,从中查出x7的位置即可;(2)根据C变换的定义及归纳(1)中的规律可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16,再173=16×10+13,即可确定出x173位于P4中的位置.解答:解:(1)当N=16时,P0=x1x2…x16.由C变换的定义可得P1=x1x3…x15x2x4…x16,又将P1分成两段,每段个数,并对每段作C变换,得到P2,故P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,由此知x7位于P2中的第6个位置;(2)考察C变换的定义及(1)计算可发现,第一次C变换后,所有的数分为两段,每段的序号组成公差为2的等差数列,且第一段序号以1为首项,第二段序号以2为首项;第二次C变换后,所有的数据分为四段,每段的数字序号组成以4公差的等差数列,且第一段的序号以1为首项,第二段序号以3为首项,第三段序号以2为首项,第四段序号以4为首项,依此类推可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,9,5,13,…,由于173=16×10+13,故x173位于以13为首项的那一段的第11个数,由于N=2n(n≥8)故每段的数字有2n﹣4个,以13为首项的是第四段,故x173位于第3×2n﹣4+11=3×2n﹣4+11个位置.故答案为3×2n﹣4+11点评:本题考查演绎推理及归纳推理,解题的关键是理解新定义,找出其规律,本题是探究型题,运算量大,极易出错,解题进要严谨认真,避免马虎出错三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次性购物量1至4件 5 至8件9至12件13至16件17件及以上顾客数(人)x 30 25 y 10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:应用题.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,故可得结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;将频率视为概率可得P(X=1)==0.15;P(X=1.5)==0.3;P(X=2)==0.25;P(X=2.5)==0.2;P(X=3)==0.1X的分布列X 1 1.5 2 2.5 3P 0.15 0.3 0.25 0.2 0.1X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,所以P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.点评:本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;证明题.分析:解法一:(Ⅰ)先根据条件得到CD⊥AE;再结合PA⊥平面ABCD即可得到结论的证明;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA=BF,进而得到四边形BCDG是平行四边形,在下底面内求出BF的长以及下底面的面积,最后代入体积计算公式即可.法二:(Ⅰ)先建立空间直角坐标系,求出各点的坐标,进而得到=0以及•=0.即可证明结论;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA 的长,再求出下底面面积,最后代入体积计算公式即可.解答:解法一:(Ⅰ)连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,又AD=5,E是CD得中点,所以CD⊥AE,PA⊥平面ABCD,CD⊂平面ABCD.所以PA⊥CD,而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,由CD⊥平面PAE知,BG⊥平面PAE,于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.由题意∠PBA=∠BPF,因为sin∠PBA=,sin∠BPF=,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD.所以四边形BCDG是平行四边形,故GD=BC=3,于是AG=2.在RT△BAG中,AB=4,AG=2,BG⊥AF,所以BG==2,BF===.于是PA=BF=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.解法二:以A为坐标原点,AB,AD,AP所在直线分别为X轴,Y轴,Z轴建立空间直角坐标系,设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).(Ⅰ)=(﹣4,2,0),=(2,4,0),=(0,0,h).因为=﹣8+8+0=0,•=0.所以CD⊥AE,CD⊥AP,而AP,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)由题设和第一问知,,分别是平面PAE,平面ABCD的法向量,而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以:|cos<,>|=|cos<,>|,即||=||.由第一问知=(﹣4,2,0),=((0,0,﹣h),又=(4,0,﹣h).故||=||.解得h=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.点评:本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.(12分)(2012•湖南)已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式.(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.考点:等差数列的性质;充要条件;等比关系的确定.专题:计算题;证明题.分析:(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,整理即可得数列{a n}是首项为1,公差为4的等差数列,从而可得a n.(2)必要性:由数列{a n}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0,即充分性成立,于是结论得证.解答:解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,∴B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,亦即a n+2﹣a n+1=a2﹣a1=4.故数列{a n}是首项为1,公差为4的等差数列,于是a n=1+(n﹣1)×4=4n﹣3.(2)证明:(必要性):若数列{a n}是公比为q的等比数列,对任意n∈N*,有a n+1=a n q.由a n>0知,A(n),B(n),C(n)均大于0,于是===q,===q,即==q,∴三个数A(n),B(n),C(n)组成公比为q的等比数列;(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则B(n)=qA(n),C(n)=qB(n),于是C(n)﹣B(n)=q[B(n)﹣A(n)],即a n+2﹣a2=q(a n+1﹣a1),亦即a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0.∵a n>0,∴==q.故数列{a n}是首项为a1,公比为q的等比数列.综上所述,数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.点评:本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.20.(13分)(2012•湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.考点:函数模型的选择与应用.专题:综合题.分析:(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,;(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解.解答:解:(1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x)∴,,其中x,kx,200﹣(1+k)x均为1到200之间的正整数(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x)①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{}∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x=∵,,,f(44)<f(45)∴x=44时,完成订单任务的时间最短,时间最短为②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{}∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x=∵,,∴完成订单任务的时间大于③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{}∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x=类似①的讨论,此时完成订单任务的时间为,大于综上所述,当k=2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68. 点评:本题考查函数模型的构建,考查函数的单调性,考查分类讨论的数学思想,解题的关键是确定分类标准,有难度. 21.(13分)(2012•湖南)在直角坐标系xoy 中,曲线C 1上的点均在C 2:(x ﹣5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程 (Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别于曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.考点:直线与圆锥曲线的综合问题;轨迹方程. 专题:综合题;压轴题. 分析:(Ⅰ)设M 的坐标为(x ,y ),根据对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值,可得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧,从而可得曲线C 1的方程;(Ⅱ)当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),设切线方程为kx ﹣y+y 0+4k=0,利用直线与圆相切可得,从而可得过P 所作的两条切线PA ,PC 的斜率k 1,k 2是方程的两个实根,设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,从而可得;同理可得,由此可得当P 在直线x=﹣4上运动时,四点A ,B ,C ,D的纵坐标之积为定值为6400.解答:(Ⅰ)解:设M 的坐标为(x ,y ),由已知得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C 1的方程为y 2=20x(Ⅱ)证明:当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),∵y 0≠±3,∴过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y ﹣y 0=k (x+4),即kx ﹣y+y 0+4k=0, ∴,整理得①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根 ∴②由,消元可得③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4, ∴y 1,y 2是方程③的两个实根 ∴④同理可得⑤由①②④⑤可得==6400∴当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值为6400. 点评: 本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题. 22.(13分)(2012•湖南)已知函数f (x )=e ax ﹣x ,其中a ≠0. (1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合.(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2)(x 1<x 2),记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.考点: 导数在最大值、最小值问题中的应用;函数恒成立问题. 专题: 压轴题. 分析:(1)先确定a >0,再求导函数,确定函数的单调性,可得时,f (x )取最小值故对一切x ∈R ,f (x )≥1恒成立,则,构建新函数g (t )=t ﹣tlnt ,则g ′(t )=﹣lnt ,确定函数的单调性,求出函数的最大值,由此即可求得a 的取值集合;(2)由题意知,,构建新函数φ(x)=f′(x)﹣k=,则,,构建函数F(t)=e t﹣t﹣1,从而可证明φ(x1)<0,φ(x2)>0,由此即可得到存在x0∈(x1,x2),使f′(x0)>k成立.解答:解:(1)若a<0,则对一切x>0,函数f(x)=e ax﹣x<1,这与题设矛盾,∵a≠0,∴a>0∵f′(x)=ae ax﹣1,令f′(x)=0,可得令f′(x)<0,可得,函数单调减;令f′(x)>0,可得,函数单调增,∴时,f(x)取最小值∴对一切x∈R,f(x)≥1恒成立,则①令g(t)=t﹣tlnt,则g′(t)=﹣lnt当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减∴t=1时,g(t)取最大值g(1)=1∴当且仅当=1,即a=1时,①成立综上所述,a的取值集合为{1};(2)由题意知,令φ(x)=f′(x)﹣k=,则令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;∴t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0∴,∵>0,∴φ(x1)<0,φ(x2)>0∴存在c∈(x1,x2),φ(c)=0∵φ(x)单调递增,故这样的c是唯一的,且当且仅当x∈(,x2)时,f′(x)>k综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为(,x2)点评:本题考查导数知识的运用,考查函数的单调性与极值,考查构建新函数确定函数值的符号,从而使问题得解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医
类)
一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={-1,0,1},N={x|x2≤x},则M∩N=
A.{0}
B.{0,1}
C.{-1,1}
D.{-1,0,0}
2.命题“若α=,则tanα=1”的逆否命题是
A.若α≠,则tanα≠1
B. 若α=,则tanα≠1
C. 若tanα≠1,则α≠
D. 若tanα≠1,则α=
4
3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是
4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(xi ,yi )(i=1,2,…,n ),用最小二乘法建立的回归方程为=0.85x-8
5.71,则下列结论中不正确的是
A.y 与x 具有正的线性相关关系
B.回归直线过样本点的中心(x ,y )
C.若该大学某女生身高增加1cm ,则其体重约增加0.85kg
D.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg
5. 已知双曲线C :22
x a
-
22
y b
=1的焦距为10 ,点P (2,1)在C 的渐
近线上,则C 的方程为 A
2
20
x
-
2
5
y
=1 B
2
5
x
-
2
20
y
=1 C
2
80
x
-
2
20
y
=1 D
2
20
x
-
2
80
y
=1
6. 函数f (x )=sinx-cos(x+6
)的值域为
A [ -2 ,2]
B [-,]
C [-1,1 ]
D 2
2
]
7. 在△ABC 中,AB=2 AC=3 ·=
8 ,已知两条直线l1 :y=m 和 l2 : y=(m >0),l1与函数y=|log2x|的图像从左至右相交于点A ,B ,l2 与函数y=
y=|log2x|的图像从左至右相交于C,D 记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为
B
A
二,填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号后的横线上
(一)选做题(请考生在第9.10 11三题中人选两题作答案,如果全做,则按前两题记分)
9. 在直角坐标系xOy 中,已知曲线C1:x=t+1 (t为参数)与曲线C2 :x=asin θ
Y= 1-2t y=3cos
(θ为参数,a>0 ) 有一个公共点在X轴上,则a 等于————
10.不等式|2x+1|-2|x-1|>0的解集为_______.
11.如图2,过点P的直线与圆O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于_______
(二)必做题(12~16题)
12.已知复数z=(3+i)2(i为虚数单位),则|z|=_____.
13.(
6的二项展开式中的常数项为-------- 。

(用数字作
答)
14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S=
15.函数f(x)=sin ( )的导函数y=f(x)的比分图像如图4所示,其中,P为图像与轴的交点,A,C为图像与图像与x轴的两个交点,B为图像的最低点。

),则 ABC内的概(1)若,点P的坐标为(0,
2
率为-------
(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC 内的概率为。

16.设N=2n (n ∈N *,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,得到排列P 0=x 1x 2…x N 。

将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前
2
N 个数和后
2
N 个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,
将此操作称为C 变换,将P 1分成两段,每段2
N 个数,并对每段作C
变换,得到P 2当2≤i ≤n-2时,将P i 分成2i 段,每段个数,并对每段C 变换,得到P i+1,例如,当N=8时,P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置。

(1)当N=16时,x 7位于P 2中的第___个位置; (2)当N=2n (n ≥8)时,x 173位于P 4中的第___个位置。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

已知这100位顾客中的一次购物量超过8件的顾客占55%。

(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率。

(注:将频率视为概率)
18.(本小题满分12分)
如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点。

(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积。

19.(本小题满分12分)
已知数列{an的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……。

若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C (n)组成等差数列,求数列{an}的通项公式。

证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N﹡,三个数A(n),B(n),C(n)组成公比为q的等比数列。

20.(本小题满分13分)
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件)。

已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件。

该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数)。

(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案。

21.(本小题满分13分)
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值。

(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交于点A,B和C,D。

证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值。

22.(本小题满分13分)
已知函数f(x)=eax-x,其中a≠0。

若对一切x∈R,f(x)≥1恒成立,求a的取值集合。

(2)在函数f(x)的图像上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由。

相关文档
最新文档