数字电路与逻辑设计复习要点

合集下载

数字电路与逻辑设计

数字电路与逻辑设计

数字电路与逻辑设计数字电路与逻辑设计1. 概述数字电路与逻辑设计指的是使用电子元件,如晶体管和集成电路,来设计电路,实现所需的数字电路逻辑功能。

这项技术是电路设计的基础,延伸到微处理器设计,功能实现以及控制系统的设计等领域。

它的核心目的是将某种逻辑功能模型所需的电路电路元件和元件组件,在尽可能小的控制要求下设计出来。

2. 技术和工具为了实现数字电路作为一种逻辑模型必须用到一系列的技术和工具,这类技术主要包括模拟信号处理、数字逻辑设计、多级逻辑组态设计、微程序控制、系统控制等,通过这些技术可以让电路系统更具功能、可靠性。

此外,在进行数字电路与逻辑设计时,还需要使用的设计工具,如电路设计工具、多级逻辑和控制系统设计工具、条件控制语言、功能描述语言等等。

3. 技术难点在实际的数字电路设计与逻辑设计中,面临着许多技术挑战。

在电路设计的时候,数字电路的设计者需要考虑仪器的数量、分布、功能、可靠性、保险设计以及可靠性测试等要素,而在进行多级逻辑组态的设计的过程中,还需要考虑项目组态、项目之间的关联性、信号的处理多样性等。

另外,在微程序控制、系统控制的设计过程中,有许多工程技术概念、技术原理和程序控制理论、工程武器思想和技术抽象原理要考虑,还有波形布局和数字运算,所以整个数字电路和应用的实现都非常复杂,里面的技术难点一大堆。

4. 应用数字电路与逻辑设计技术在电子工程和控制系统等多个应用领域中得到了深入应用,如家用电器、汽车系统、航空航天技术、信号处理技术、运动控制技术、智能仪表和自动制造等。

数字电路和逻辑设计技术日趋复杂,正逐步深入到计算机网络、信息处理、图像处理、自动化和网络安全等诸多领域,数字电路和逻辑设计的综合应用,极大地丰富了信息技术的应用领域,从而使国家才能得到提升。

数字电路与逻辑设计复习

数字电路与逻辑设计复习
(4)给定F的或与表达式求F的标准与非-与非表达式: 由F的或与表达式→卡诺图→得到F的与或表达式→两次求反→ F的标准或非-或非表达式
第二章 逻辑函数及其简化 公式法化简
① F=(A⊕B)(B⊕C) ●A+B+A+C
解: F=[(A⊕B)(B⊕C) +A+B] ●(A+C) =[(AB+AB)(BC+BC)+A+B) ●(A+C)
第二章 逻辑函数及其简化 1 若A、B、C、D、E为某逻辑函数输入变量,函数的最大项表达式 所包含的最大项的个数不可能是: A 32 B 15 C 31 D 632 2 以下表达式中符合逻辑运算规则的是: A. C●C=C2 B. 1+1=10 C. 0﹤1 D. A+1=1 3 符合逻辑运算规则的是: A. 1×1=1 B. 1+1=10 C. 1+1=1 D. 1+1=2 4 逻辑函数F=AB+CD+BC的反函数F是:_____;对偶函数F﹡是:____; 5 逻辑代数的三个重要规则是:_________,__________,_________ 当逻辑函数有n个变量时,共有____种变量取值组合。 6 异或与同或在逻辑上正好相反,互为反函数,对吗? 7 逻辑变量的取值,1比0大,对吗? 8 F=A⊕B⊕C=A⊙B⊙C,对吗? 答案:1. D 2. D 3. C 4. ___ 5. ____ ____ 6. √ 7. × 8. √
第一章 绪论 1.数制的转换 (1)任意进制→十进制(按位权展开相加) (2)十进制→任意进制(除R取余,乘R取整) (3) 二进制--八进制--十六进制(中介法) (4)精度要求(1/Ri<精度要求值) 2.常用的BCD码 有权码(8421码、2421码、5121码、631-1码) 无权码(余3码,移存码、余3循环码)。

数字逻辑与电路设计

数字逻辑与电路设计

数字逻辑与电路设计数字逻辑与电路设计是计算机科学与工程领域中的重要基础学科,它涉及到计算机中数字信号的处理与传输,以及数字电路的设计与实现。

在如今信息技术高速发展的时代,数字逻辑与电路设计的知识变得尤为重要。

本文将介绍数字逻辑与电路设计的基本概念、应用领域以及设计流程。

一、数字逻辑的基本概念数字逻辑是计算机中用来处理和运算二进制信号的逻辑系统。

它以0和1来表示逻辑状态,通过与、或、非等逻辑门实现逻辑运算。

这些逻辑门可以组合成复杂的逻辑电路,实现各种数字运算、逻辑运算和控制功能。

数字逻辑中的基本元素包括逻辑门、触发器、计数器等。

逻辑门用来进行逻辑运算,包括与门、或门、非门等;触发器用来存储和传输数据,包括D触发器、JK触发器等;计数器用来计数和产生时序信号。

二、数字电路的应用领域数字电路广泛应用于计算机、通信、控制等领域,它是现代电子设备中的核心组成部分。

以下是数字电路在不同领域的几个典型应用:1. 计算机:数字电路在计算机中起到控制和运算的作用。

计算机的中央处理器、存储器、输入输出接口等都是由数字电路组成的。

2. 通信:数字电路在通信系统中负责信号的编码、解码和传输。

例如调制解调器、数字信号处理器等都是数字电路的应用。

3. 控制:数字电路用于各种自动控制系统。

例如数字控制器、工业自动化设备等都需要数字电路进行控制。

4. 显示:数字电路在显示技术中起到关键作用。

例如数码管、液晶显示屏等都是数字电路驱动的。

三、数字电路的设计流程数字电路的设计包括设计规格、逻辑设计、电路设计和验证等步骤。

下面是一个典型的数字电路设计流程:1. 设计规格:明确设计的需求和规范,包括功能要求、性能要求等。

2. 逻辑设计:根据设计规格,利用逻辑门和触发器等基本元件进行逻辑电路的设计。

可以使用逻辑图、真值表、状态转换图等进行描述和分析。

3. 电路设计:在逻辑设计的基础上,将逻辑电路转换为电路图。

选择适当的电子元件,进行连线和布局等。

数字电路考试精要点

数字电路考试精要点

数字电路考试精要点
数字电路考试的重点主要包括以下几个方面:
1.逻辑门及其应用:熟练掌握与门、或门、非门、异或门等常
用逻辑门的真值表、逻辑关系和逻辑电路图,了解它们的应用场景和逻辑功能。

2.真值表和布尔代数:熟练掌握构建逻辑门真值表的方法,能
够使用布尔代数进行逻辑运算、化简和最小化。

3.编码器和解码器:理解编码器和解码器的概念、应用和原理,掌握常见编码器如BCD编码器、十进制-二进制编码器等的工
作原理和电路结构。

4.时序逻辑电路:了解触发器、计数器等时序逻辑电路的原理
及工作方式,能够通过状态转换图和状态转移表描述和分析时序逻辑电路。

5.组合逻辑电路设计:掌握组合逻辑电路的设计方法,熟悉常
见组合逻辑电路如加法器、减法器、多路选择器等的设计原理和电路结构。

6.时钟信号和时序逻辑电路设计:了解时钟信号的基本概念和
特点,掌握时钟信号的产生和分频技术,能够设计基于时钟信号的时序逻辑电路。

7.存储器和寄存器:理解存储器和寄存器的概念、结构和工作
原理,了解常见存储器如RAM、ROM、闪存等的特点和应用。

8.数字信号处理器(DSP):了解DSP的基本概念、特点和应用,掌握DSP的基本组成和工作原理。

9.故障诊断与纠错:了解数字电路故障的常见原因和诊断方法,熟悉纠错码的原理和应用。

10.数字信号传输和调制:理解数字信号传输和调制的基本原
理和方法,了解常见的调制技术如非归零码、曼彻斯特编码等。

通过对以上重点内容的学习,能够掌握数字电路的基本原理和设计方法,提高解决数字电路问题的能力。

数字电路复习提纲

数字电路复习提纲

数字电路复习提纲
数字电路与逻辑设计复习提纲
掌握真值、原码、反码及补码之间的相互转换。

掌握二进制、十进制、十六进制之间的相互转换。

掌握8421bcd码、余3码之间的相互转换。

掌控逻辑代数的基本运算及复合运算。

掌控逻辑代数的基本公式及常用公式。

掌控三个基本定理:代入、反演和对偶。

介绍逻辑函数的概念及常用的则表示方法。

了解逻辑函数的两种标准形式,掌握最小项的定义及性质。

掌握公式化简法、卡诺图化简法。

介绍毫无关系项的概念及利用毫无关系项化简逻辑函数。

了解mos管的结构和工作原理。

介绍cmos反相器的结构和工作原理。

掌握od门、cmos传输门、三态门的逻辑功能及用途。

掌控女团逻辑电路的通常分析方法和设计方法。

掌握常用中规模组合逻辑电路的逻辑功能及使用方法。

(编码器,译码器,数据选择器,加法器,数值比较器)
介绍sr门锁存器的逻辑功能。

掌控三种引爆方式的动作特点。

(电平引爆、脉冲引爆、边沿引爆)掌控jk、sr、t、d触发器的逻辑功能。

(特性表中、特性方程)
了解驱动方程、状态方程和输出方程的概念。

了解状态转换表、状态转换图、时序图的概念。

掌握同步时序逻辑电路的一般分析方法。

*了解同步计数器的工作原理、构成方法。

掌控中规模时序逻辑电路74161、74160的逻辑功能及采用方法。

掌控任一十进制计数器的形成方法。

数字电路与逻辑设计复习资料(含答案)

数字电路与逻辑设计复习资料(含答案)

数字电路与逻辑设计复习资料(含答案)数字电路与逻辑设计复习资料一、单项选择题1. 十进制数53转换成八进制数应为( B )。

A. 64B.65C. 66D. 1101012.将十进制数(18)10 转换成八进制数是(B )。

A. 20B.22C. 21D. 233. 十进制数53转换成八进制数应为( D )。

A. 62B.63C. 64D. 654. 当逻辑函数有n 个变量时,共有( D )种取值组合。

A. nB. 2nC. 2nD. 2n5. 为了避免干扰,MOS 与门的多余输入端不能( A )处理。

A. 悬空B. 接低电平C. 与有用输入端并接D. 以上都不正确6. 以下电路中可以实现“线与”功能的有( C )。

A. TTL 与非门B. TTL 或非门C. OC 门D. TTL 异或门7. 用6264型RAM 构成一个328K ⨯位的存储器,需要( D )根地址线。

A. 12B. 13C. 14D. 158. 同步时序电路和异步时序电路比较,其差异在于后者( B )。

A. 没有触发器B. 没有统一的时钟脉冲控制C. 没有稳定状态D. 输出只与内部状态有关9. 用6264型RAM 构成3232K ⨯位的存储器,需要( D )片进行扩展。

A. 4B.8C. 14D.1610. 逻辑函数()F A A B =⊕⊕ =( D )。

A. A BB. AC. A B ⊕D. B11. 函数F ABC ABCD =+的反函数为( C )。

A. ()()F A B C A B C D =+++++ B. ()()F ABC ABCD =C. ()()F A B C A B C D =+++++D. F A B C A B C D =++++++12.在图1所示的T T L 电路中,输出应为( B )。

A . F =0 B. F =1 C. F =A D. F =A图113. 将F ABC A CD CD =++展开成最小项表达式应为( A )。

数字逻辑复习知识点

数字逻辑复习知识点

数字逻辑课程知识点第一章数字逻辑概论1.计算机中常见的几种数制及其转换方法(十进制、二进制、十六进制)2.有符号数的补码表示方法(要求会求符号数的补码或从补码求实际的有符号数)3.掌握ASCII码概念。

知道常用字符(空格、数字0-9和字母A – Z,a- z等)的ASCII 码。

4.掌握8421BCD码的概念,会用BCD码表示十进制数5.掌握基本逻辑运算(“与”、“或”、“非”、“与非”、“或非”、“异或”以及“同或”等运算)及其逻辑符号。

6.掌握逻辑函数的5种表示方法(真值表表示法、逻辑表达式表示法、逻辑图表示法、波形图表示法、卡诺图表示法)第二章逻辑代数1.逻辑代数的基本定律和恒等式(摩根定理)2.逻辑代数的基本规则(代入规则、反演规则、对偶规则)3.把“与---或”表达式变换为“与非---与非”和“或非---或非”表达式的方法4.逻辑函数的代数化简方法:并项法(A+/A=1)吸收法(A+AB=A)消去法(A+/AB=A+B)配项法(A=A*(B+/B))5.卡诺图的特点:每个小方格都惟一对应于一个不同的变量组合(一个最小项),而且,上、下、左、右在几何上相邻的方格内只有一个因子有差别。

任何一个函数都等于其卡诺图中为1的方格所对应的最小项之和。

6.掌握用卡诺图化简逻辑函数的方法7.理解无关项的概念:即实际应用中,在真值表内对应于变量的某些取值,函数的值是可以任意的,或者这些变量的取值根本不会出现,这些变量取值对应的最小项即称为无关项或任意项,每个无关项的值既可以取0,也可以取1,具体的取值以得到最简的函数表达式为准。

第三章MOS逻辑门电路1.数字集成电路的分类:从集成度方面分:小规模(SSI)、中规模(MSI)、大规模(LSI)、超大规模(VLSI)和甚大规模(ULSI)。

从制造工艺方面分:CMOS、TTL、ECL以及BiCMOS等2.CMOS的特点:(功耗低、抗干扰能力强、电源范围宽)3.理解集成电路各种参数的意义:(1)V IL(max)、V IH(min)、V OH(min)、V OL(max)、I IH(max)、I IL(max)、I OH(max)、I OL(max)(2)高电平噪声容限期VNH = V OH(min) —V IH(min)(3)低电平噪声容限期VNL = V IL(max)—V OL(max)(4)传输延迟时间t PLH、t pHL以及tpd = (t PLH + t pHL)/2(5)功耗(动态功耗和静态功耗)。

数字电路课程重点总结含习题

数字电路课程重点总结含习题

数电课程各章重点项目一:1、什么是数字信号2、数制、BCD码的转换3、与门、或门、非门及各种复合门逻辑功能和符号4、OC门和三态门的符号、特点及应用5、卡诺图、代数法的化简6、组合逻辑电路的定义7、逻辑函数的一般表示形式8、组合逻辑电路的分析9、组合逻辑电路的设计(例如:全加器、三人表决器)项目二:1、译码器74LS138的功能和应用(尤其是构成函数发生器)2、数据选择器74LS151的功能和应用(尤其是构成函数发生器)3、编码器、全加器、数值比较器的功能;4、抢答器电路的理解;项目三项目五:1、触发器的特性和分类2、掌握RS、JK、D、T触发器的逻辑功能和特性方程3、掌握同步式、维持阻塞式、边沿式触发器的触发方式4、会根据给定触发器类型,分析画出触发器输出波形5、时序逻辑电路的定义和分类6、时序逻辑电路的分析7、计数器74LS161的功能和应用(反馈复位法CR和反馈预置法LD构成任意进制计数器)8、CD4520的功能和应用(构成任意进制计数器)9、CD4518的功能和应用(构成任意进制计数器)第一章逻辑代数基础知识要点一、在时间和数值上均做断续变化的信号,称为数字信号二、二进制、十进制、十六进制数之间的转换;A、R进制转换成十进制:按权展开,求和。

(1101.101)2=1×23+1×22+0×21+1×2+1×2-1+0×2-2+1×2-3(4E6)H= 4´162+14 ´161+6 ´160=(1254)DB、十进制转换成R进制:整数部分除R取余法,小数部分乘R取整法。

C、二进制转换八进制:三位并一位,八进制转换二进制:一位拆三位D、二进制转换十六进制:四位并一位,十六进制转换二进制:一位拆四位( 38)10=( 10 0110 )2 =( 26 )16=( 46 )8=( 0011 1000 ) 8421BCD =( 0110 1011)余3BCD 三、8421BCD、5421BCD、余3BCD码、格雷码8421BCD码①特点:每位十进制用四位二进制表示,并从高位到低位8 4 2 1即23、 22、 21、2属于有权码.②注意:不允许出现1010~1111这六个代码,十进制没有相应数码,称作伪码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、数制(二进制、八进制、十进制、十六进制)之间的转换。

2、编码:8421BCD码、余3码、格雷码、ASCII码。

3、二进制数的原码、反码和补码表示及运算。

4、基本逻辑运算,逻辑门。

5、了解:三态门三种状态。

6、了解:TTL集成电路和CMOS集成电路。

7、逻辑代数运算规则。

8、逻辑函数表达式的变换、化简(重点:卡诺图化简法)、真值表、逻辑图。

9、组合电路分析与设计:
(1)根据逻辑电路图写出逻辑式并化简为最简与或形式,或列出真值表,指出电路的逻辑功能。

(2)给出逻辑电路的功能描述,用给定的逻辑门设计电路。

(3)利用74138和门电路产生逻辑函数,或者根据74LS138组成的电路写出输出函数表达式并化简。

(4)利用数据选择器和门电路产生逻辑函数,或者根据数据选择器组成的电路写出输出函数表达式并化简。

10、PLD、PROM、PLA、PAL、GAL、CPLD、FPGA的中文含义。

11、时序逻辑电路与组合逻辑电路的主要区别。

12、触发器具有的稳定状态数。

13、触发器的状态转换图、特性方程、状态方程。

14、不同类型触发器的相互转换。

15、时序电路的分析与设计:
(1)分析:时序电路的驱动方程、状态方程、输出方程、状态转换图、逻辑功能、能否自启动。

(2)使用JK触发器或D触发器设计指定进制的计数器。

(3)利用74161、74160设计任意进制的计数器。

16、ROM、RAM的功能。

17、ROM、RAM存储器的字数、位数、存储容量、地址代码位数。

18、了解:D/A转换器、A/D转换器的相关概念,如电路结构、分辨率等。

相关文档
最新文档