2019两电平和三电平脉冲整流器的比较
单相三电平PWM整流器关键技术研究

单相三电平PWM整流器关键技术研究摘要:随着电力系统的迅速发展和电力负荷的快速增长,传统的整流器无法满足对电力质量和效率的要求。
单相三电平PWM整流器作为一种新型的电力电子装置,具有较低的谐波含量、较高的功率因数和较高的效率等优点,成为了当前研究的热点之一。
本文主要研究了单相三电平PWM整流器的关键技术,包括拓扑结构、控制策略和谐波抑制等方面。
1. 引言单相三电平PWM整流器是一种将交流电转换为直流电的电力电子装置,广泛应用于电力系统中。
它通过控制开关器件的开关状态和占空比,实现对输出电压的调整和控制。
传统的整流器存在谐波较多、功率因数较低等问题,而单相三电平PWM整流器具有较低的谐波含量、较高的功率因数和较高的效率等优点。
2. 拓扑结构单相三电平PWM整流器主要由两个H桥逆变器组成,其中一个H桥逆变器与输入交流电源相连,另一个H桥逆变器与电容并联。
该结构可以实现三个输出电平,从而减小了输出电压的谐波含量。
3. 控制策略单相三电平PWM整流器的控制策略是实现其优良性能的关键。
常见的控制策略包括基于三角载波的PWM控制和基于空间矢量调制的PWM控制。
前者通过在每个半周期内对比较器输出进行调整,实现对输出电压的控制;后者通过改变矢量图形的形状和位置,实现对输出电压和电流的精确控制。
4. 谐波抑制谐波抑制是单相三电平PWM整流器关键技术中的一个重要方面。
为了减小输出电压的谐波含量,可以采用谐波抑制技术,如添加滤波电感、采用多级拓扑结构等。
5. 结论单相三电平PWM整流器作为一种新型的电力电子装置,在电力系统中具有广泛的应用前景。
本文研究了单相三电平PWM 整流器的关键技术,包括拓扑结构、控制策略和谐波抑制等方面。
研究结果表明,采用适当的拓扑结构和控制策略,能够实现较低的谐波含量、较高的功率因数和较高的效率。
然而,由于单相三电平PWM整流器的复杂性,还需要进一步研究和改进,以满足电力系统对电力质量和效率的要求。
两电平脉冲整流器的工作原理

T3 on,T4 off T4 on,T3 off
4
工作模式1 (Sa=1,Sb=1):
T1
T3 D1
i2 i1 D3
Ls Rs a
us
is uab
L2
b
Cd Udc
T2
T4 D2
D4 C2
i1
1
i2
Ls Rs a Sa
us
is
0 uab
L2
b
ቤተ መጻሕፍቲ ባይዱ
1 Sb
Cd Udc
0
C2
Load Load
开关管T1 (或D1) 和T3 (或D3)导通,T2 (或D2)和T4 (或D4) 关断,uab=0。如果网侧电压 us>0,则网流 is 增大,网侧 电源us给电感Ls充电,直流侧电容Cd 将对负载放电.
7
工作模式4 (Sa=0,Sb=0):
T1
D1 T3
i2 i1 D3
Ls Rs
us
is
a uab
L2
b
Cd Udc
T2
T4
C2
D2
D4
i2 i1
1
us
Ls Rs a Sa
is
0
L2
uab
b
1 Sb
Cd Udc
0
C2
Load Load
开关管T2(或D2) 和T4 (或D4)导通,T1 (或D1)和T3 (或D3) 关断,uab=0。如果网侧电压 us>0,则网流 is 增大,网侧 电源us给电感Ls充电,直流侧电容Cd 将对负载放电。
一 二 牵引逆变器工作原理及其控制 3三 异步牵引电机控制
1.1 脉冲整流器概述 1.2 两电平脉冲整流器的工作原理分析
三相两电平的整流

三相两电平的整流三相两电平整流是一种常用的电力电子转换技术,广泛应用于工业和家庭电气设备中。
本文将对三相两电平整流的原理、特点和应用进行详细介绍。
一、三相两电平整流原理三相两电平整流是指通过将三相交流电转换为两个固定电平的直流电。
其原理是利用三相桥式整流电路对三相交流电进行整流,通过控制开关管的导通和截止,使得输出电压在两个电平之间切换。
在正半周,三相桥整流电路的两个开关管导通,交流电通过,输出电压为正电平;在负半周,另外两个开关管导通,交流电通过,输出电压为负电平。
通过不断切换,整流电路输出的电压在两个电平之间变化,实现了对交流电的整流。
二、三相两电平整流特点1. 输出电压稳定:三相两电平整流输出电压为两个固定电平,在电源电压和负载电流变化时,输出电压仍能保持稳定。
2. 效率高:由于整流电路中开关管的导通和截止控制,能够减少功率损耗,提高整流效率。
3. 适用范围广:三相两电平整流技术适用于各种功率和频率的交流电源,并且可以满足不同负载的需求。
4. 控制灵活:通过控制开关管的导通和截止,可以实现对输出电压的调节和控制,满足不同应用的需求。
5. 结构简单:三相两电平整流电路结构简单,可靠性高,维护成本低。
三、三相两电平整流应用1. 工业领域:三相两电平整流广泛应用于工业领域的电力电子设备中,如电机驱动、变频器、电焊机等。
由于整流电路输出电压稳定,能够提供稳定的电源给工业设备,保证其正常运行。
2. 家庭电器:三相两电平整流技术也应用于家庭电器中,如电视机、空调等。
通过整流电路将交流电转换为直流电,保证电器的正常工作。
3. 可再生能源:随着可再生能源的发展,如风能、太阳能等,三相两电平整流技术也得到了广泛应用。
通过整流电路将可再生能源转换为直流电,进一步储存和利用。
三相两电平整流是一种常用的电力电子转换技术,具有输出电压稳定、效率高、适用范围广等特点。
它在工业和家庭电气设备中有着广泛的应用,为各行各业提供稳定可靠的电源。
三电平PWM整流器研究

关键词:三电平 PWM 整流器 中点控制方法
数学模型空间矢量 双闭环控制
PWM 中点平衡问题 复合控制
I
ABSTRACT
In recent years, high- voltage and high-power power electronics devices have been widely used.
Compound control
III
独创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的 研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个 人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和集体, 均已在文中以明确方式标明。本人完全意识到本声明的法律效果由本人承担。
6.两电平脉冲整流器的工作原理

i1
Load
Cd D4 C2
Udc
D2 T4
0
C2
主电路 Uab的取值有Udc 、0和 -Udc三种电平.
1, T3 on,T4 off Sa 0, T4 on,T3 off
等效电路
电路有22 = 4 个开关状态,对应着四种工作模式.
1, T3 on,T4 off Sb 0, T4 on,T3 off
6
Load
us
is
Cd
工作模式3 (Sa=0,Sb=1):
T1 Ls us is Rs uab T2 D1 a D2 T3 i2 D3 L2 i1
Ls Rs uab a 1 0 b 1 Sb 0 i2 Sa L2 Cd C2 Udc i1
Load
b T4 D4
C2
开关管T2(或D2) 和T3 (或D3)导通,T1 (或D1)和T4 (或D4) 关断, uab=-Udc. 在这种状态下,当电流 is<0,反向电流 给直流侧电容Cd充电.
一
二
牵引逆变器工作原理及其控制
三 3
异步牵引电机控制
1.1 脉冲整流器概述
1.2 两电平脉冲整流器的工作原理分析
1.3 三电平脉冲整流器的工作原理分析 1.4 四象限脉冲整流器的控制与调制技术
创新、自主研发
3
T1 Ls us is Rs uab 2
D1 a
T3
i2 D3 L2 b
i1
Ls Rs uab a 1 0 b 1 i2 Sa L2 Sb
4
Load
us
is
Cd
Udc
工作模式1 (Sa=1,Sb=1):
T1 Ls us is Rs uab T2 a T4 D1 T3 i2 D3 L2 b D2 D4 i1
三电平PWM整流器几个关键问题的分析

t e- vlvlg pc etrp l i h m d lin S P h el e oae sae vc us wd ou ̄ o ( V WM)tcnq e sm e i da a s sgtaotte r e t o e t eh iu ,o edt l nl i i o b u ae ys h
Ab t a t T r e 1v l W M r ci e tp lg i a ay e u i g t e v l g n c re t o b e ls do p c n r l s r c : h e .e e P e t i r o o o y s n lz d, s h o t e a d u r n d u l co e lo o to f n a
d tr i e pa a ee s o he e ltr a e prv d, n t i b ss, sn e em ne t r m tr f t rg a o r o e o h s a i u ig TM S3 0F h u 2 281 DSP S t e ma n e pb s d, 2 a h i hi a e p ooyp e eo r tt e d v lpme t s c m pe e a b an a s tsa tr e u t. n i o lt d, nd o t i a if co y r s ls
两电平和三电平脉冲整流器的比较

两电平与三电平的脉冲波形比较电牵二班组员:杨洋20121550曾绍桓20121543徐刚堂20121544代思瑶20121565黄异彩20121569赵杰20121571两电平与三电平的脉冲波形比较我国引进的时速200公里动力分散型交流传动动车组中,CRHI 、CRHS 动车组主电路均采用了两电平全桥整流电路。
为了降低开关管的电压应力和改善PWM 整流器网侧输出波形,CRHZ 动车组采用了二极管箱位三电平PWM 整流器电路结构。
下面主要对这两种电路拓扑的工作原理及数学模型进行分析和研究。
1.1两电平整流器原理与数学模型单相电压型两电平Pwm 整流器主电路如图2一1所示,网侧漏感L 二起传递和储存能量,抑制高次谐波的作用;支撑电容Cd 起抑制高次谐波,减少直流电压纹波的作用;电感LZ 和电容CZ 形成串联谐振电路,用于滤除电网的2次谐波分量。
把开关器件(这里采用IGBT)视为理想开关元件,定义理想开关函数S,和S,,从而得到如图2一2所示简化等效电路。
两电平PWM 脉冲整流电路 两电平PWM 整流器等效电路由于上桥臂与下桥臂不能够出现直通,则a 1S 与a 2S 、b 1S 与b 2S 不能同时导通和关断,驱动信号应该互补。
PWM 整流器网侧输入端电压ab U 取值有dc U 、0、-dc U 三种电平,有效的开关组合有22=4种,即S,S,=00、01、10、11四种逻辑,则PWM 整流器输入端电压ab U 有如下关系:ab U =(B A S S -)dc U则由式(2一2),系统的瞬时等值电路如图2一3所示瞬时等值电路由图2- 3可见,通过不同的控制方法适当调节“ab U 的大小和相位,就能控制输入电流的相位以控制系统功率因数;同时控制输入电流的大小以控制传入功率变换的能量,也就控制了直流侧输出电压。
因此,通常采用电压外环和电流内环相结合的双闭环控制方式。
此等值电路的电压矢量平衡方程为:ab tiN i d d U R L U N N N N ++= 对应于四个开关的不同工作状态,电路共有以下三种工作模式:工作模式1:B A S S =00或11,即下桥臂开关或上桥臂开关全部导通,则此时“ab U =0,电容d C 向负载供电,直流电压通过负载形成回路释放能量,直流电压下降,因此,为了保证直流侧电压的稳定,工作模式1的导通时间比较短,这也是在空间电压矢量调制中,两个零矢量的作用时间要比其他六个矢量的作用时间短的原因。
7.三电平脉冲整流器的工作原理

a 1 Sb 0 -1
u2
in n
开关管Ta3,Ta4,Tb3和Tb4导通,Ta1,Ta2,Tb1和Tb2关断
网侧端电压uao=-u2,ubo=-u2,uab=0。如果网侧电源电 压us>0,则正向网侧电流is增大,电容C1和C2通过负载 电流放电。
13
Load
U dc
us
Udc
9种工作模式与对应的电压
4
Load
Udc
us
is
o
Udc
工作模式 1 (Sa=1,Sb=1):
开关管Ta1,Ta2,Tb1和Tb2导通,Ta3,Ta4,Tb3和Tb4关断,网侧 端电压uao=u1,ubo=u1, uab=0。如果网侧电源电压 us>0, 网侧电源给电感 Ls充电,网侧电流 is增大,电感储能,电 容C1和C2通过负载电流放电。
5
工作模式 2 (Sa=1,Sb=0):
Ta1 Ta2 Tb1 Tb2 a Tb3 Tb4 b o
ip
p
ip
C1
u1
p C1 o io C2
u1
1 Ls is
Load
Rs uab
Sa -1 0 b
a 1 Sb 0 -1
Ls us is
Rs
uab Ta3 Ta4
io
C2
u2
u2
in n
in n
开关管Ta1,Ta2,Tb2和Tb3导通,Ta3,Ta4,Tb1和Tb4关断。 网侧端电压 uao=u1, ubo=0, uab=u1。如果正向电源电压 us大于(或小于)直流侧电压Udc的一半,则网侧电流is 增大(或减小),网侧电流is对电容 C1进行充电,而电 容C1和C2都对负载放电。( 电容电压不平衡)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两电平与三电平的脉冲波形比较
电牵二班
徐刚堂
代思瑶
两电平与三电平的脉冲波形比较
我国引进的时速200公里动力分散型交流传动动车组中,CRHI 、CRHS 动车组主电路均采用了两电平全桥整流电路。
为了降低开关管的电压应力和改善PWM 整流器网侧输出波形,CRHZ 动车组采用了二极管箱位三电平PWM 整流器电路结构。
下面主要对这两种电路拓扑的工作原理及数学模型进行分析和研究。
1.1两电平整流器原理与数学模型
单相电压型两电平Pwm 整流器主电路如图2一1所示,网侧漏感L 二起传递和储存能量,抑制高次谐波的作用;支撑电容Cd 起抑制高次谐波,减少直流电压纹波的作用;电感LZ 和电容CZ 形成串联谐振电路,用于滤除电网的2次谐波分量。
把开关器件(这里采用IGBT)视为理想开关元件,定义理想开关函数S,和S,,从而得到如图2一2所示简化等效电路。
两电平PWM 脉冲整流电路 两电平PWM 整流器等效电路
由于上桥臂与下桥臂不能够出现直通,则a 1S 与a 2S 、b 1S 与b 2S 不能同时导通和关断,驱动信号应该互补。
PWM 整流器网侧输入端电压ab U 取值有dc U 、0、-dc U 三种电平,有效的开关组合有22=4种,即S,S,=00、01、10、11四种逻辑,则PWM 整流器输入端电压ab U 有如下关系:
ab U =(B A S S )dc U
则由式(2一2),系统的瞬时等值电路如图2一3所示
瞬时等值电路
由图2- 3可见,通过不同的控制方法适当调节“ab U 的大小和相位,就能控制输入电流的相位以控制系统功率因数;同时控制输入电流的大小以控制传入功率变换的能量,也就控制了直流侧输出电压。
因此,通常采用电压外环和电流内环相结合的双闭环控制方式。
此等值电路的电压矢量平衡方程为:
对应于四个开关的不同工作状态,电路共有以下三种工作模式:
工作模式1:B A S S =00或11,即下桥臂开关或上桥臂开关全部导通,则此时“ab U =0,电容d C 向负载供电,直流电压通过负载形成回路释放能量,直流电压下降,因此,为了保证直流侧电压的稳定,工作模式1的导通时间比较短,这也是在空间电压矢量调制中,两个零矢量的作用时间要比其他六个矢量的作用时间短的原因。
另一方面,网侧电压N U 二两端电压直接加在电感N L 上,对电感N L 充、放电。
此时对应的电压矢量平衡方程如下(忽略等效电阻的影响):
N U =N
L t
i d d N
工作模式3: B A S S =10,等效电路如图2- 4(b)所示,则ab U =dc U 。
N U >0,储存在电感中的能量向负载
L R 和电容d C 释放,电感电流N i 下降,一方面给电容充电,使得直流电压上升,保证直流电压稳定,同时高次谐波电流通过电容形成低阻抗回路;另一方面给负载提供恒定的电流。
此时对应的电压矢量平衡方程如下:
N
L t
i d d N
=N U -dc U B A S S =01时的电路 B A S S =10时的电路
在任意时刻,PWM 整流器只能工作在上述三种模式中的一种状态下,在不同的时区,通过对上述3种开关模式的切换,保持直流侧负载电压的稳定和负载电流i 。
的双向流动,也即实现能量的双向流通。
由图2-1所示主电路结构可知,网侧串入一电感元件形成Boost 电路的拓扑结构,使得直流侧输出电压大于网侧电压峰值。
假设开关管为理想模型,在换相过程中没有功率损失和能量储存,则交流侧与直流侧瞬时功率应当相等。
即:
ab U N i =dc U 0i
又由等效电路的拓扑结构可得:
N
L t
i d d N
=N U -N i N R -ab U d
C t dc d dU =0i -L
R U
dc -2i 将式(2-7)、(2-8)代入式(2-9),得式(2-10)所示两电平PWM 整流器的主电路数学模型,其中2U 为二次滤波电容上的电压。
N
L t
i d d N
=N U -N i N R -(B A S S -)dc U d
C t dc d dU =(B A S S -)N i -L
R U
dc -2i 2.2三电平整流器原理
三电平二极管箱位PWM 整流器拓扑如图2-5所示,它采用8个功率开关器件(这里采用IGBT)构成两
组对称的桥臂。
每一桥臂有4个开关管,其中直接连到正负直流母线上的2个开关管称之为主开关管,中间的2个开关管称之为辅助开关管。
两组桥臂各带2个箱位二极管,以防止电容L C 或Z C 因开关操作而发生直通。
直流侧支撑电容由2个同样的电容串联组成,这样就可以提供一个中性点,连接到中性点上的2个箱位二极管可以把PWM 整流器的电压箱位到中性点电位,因此该整流器也称为中点箱位PWM 整流器.
为了便于分析电路,首先根据开关管不同的工作状态,定义电路的三种工作状态:1态、O 态、-1态(假设两电容上的电压相等),以左半桥为例: 根据每种不同情况我们可以等效电路为:
二电平二极管箱位PWM 整流器开关等效电路图
由开关等效电路可知,每组桥臂可以等效为一个开关,该开关具有1、0、一1三种等效状态,两组桥臂有 23 9种开关关组合,主电路有9种工作模式。
工作模式0:(B A S S ,)=(1,1),开关管a 1S 与a 2S 、
b 1S 与b 2S 导通,整流器交流侧被短路,网侧输入电压a U 等于0,电容L C 、 Z C 通过直流侧负载放电,网侧电流N i 的大小随网侧电压N U 的变化而增大或减小。
工作模式1:( B A S S ,)=(1,0),开关管a 1S 与a 2S ,a 3S 和b 3S 导通,网侧输入电压a U 等于1U 网侧漏感电压等于N U -N U 电容q 上的电压被正向(或反向),电流充电(或放电),电容CZ 通过直流侧负载放电。
在此举两个工作模式,剩下见开关表
根据A S 、B S 的不同组合,可以得到不同的五个电平:
根据以上的原理分析可知,三电平PwM 整流器与两电平PWM 整流器相比,具有很多优点:
1.每个功率开关器件所承受的电压峰值只有两电平PWM 整流器的一半,降低了功率开关管的电压应力,较好的解决了开关器件耐压不够高的问题。
2.在相同的开关频率及控制方式下,由于电平数的增加,三电平PwM 整流器的网侧电流波形比两电平中的正弦性要好,且电平数越多,电流越接近正弦,可以获得更好的频谱特性和动态性能。
3.输出电压为5个电平的阶梯波,相对于两电平的3个电平,输出波形阶梯增多,各级间的幅值变化降低,可更加接近正弦波;电压脉动小,降低了输出电压的跳变,减小对负载和本身的损害;输出电压谐波含量减少,对外围电路的干扰减小。
但是这种三电平结构也有它固有的不足之处:
1.因为不同管子的开关时间不同,器件所需额定电流不同。
2.电容均压问题:这是制约其应用的最大障碍之一。
直流侧电容由于一个周期内电流的流入和流出可能不同,使某些电容总在放电,而另一部分总在充电,使得电容电压不均衡,对整个系统工作不利。
3.需要较多的箱位二极管.
两电平仿真模型 两电平Un 、In 波形 两电平Ud 、Id 波形 两电平Uab 两电平Udc
三电平仿真模型 三电平Un 、In 波形 三电平Ud 、Id 波形 三电平Uab。