滑模变结构控制概述
滑模变结构控制理论及其算法研究与进展

滑模变结构控制理论及其算法研究与进展一、本文概述滑模变结构控制理论,作为一种独特的非线性控制方法,自其诞生以来,就因其对系统参数变化和外部干扰的强鲁棒性,以及易于实现的优点,在控制工程领域引起了广泛的关注和研究。
本文旨在对滑模变结构控制理论及其算法的研究进展进行综述,分析其基本原理、特性、设计方法以及在实际应用中的表现,以期为后续研究提供有益的参考。
文章首先回顾了滑模变结构控制理论的发展历程,从最初的滑动模态概念提出,到后来的各种改进和优化算法的出现,展示了该理论在理论和实践上的不断进步。
接着,文章将详细介绍滑模变结构控制的基本原理和特性,包括滑动模态的存在条件、滑动模态的稳定性分析、以及滑模面的设计等。
在此基础上,文章将重点探讨滑模变结构控制算法的研究进展,包括各种新型滑模面设计、滑动模态优化方法、以及与其他控制策略的融合等。
文章还将对滑模变结构控制在各类实际系统中的应用进行案例分析,以展示其在实际工程中的有效性和潜力。
文章将总结滑模变结构控制理论及其算法的研究现状,分析当前研究中存在的问题和挑战,并对未来的研究方向进行展望。
希望通过本文的综述,能为滑模变结构控制理论的发展和应用提供有益的启示和参考。
二、滑模变结构控制理论基础滑模变结构控制(Sliding Mode Variable Structure Control,简称SMVSC)是一种特殊的非线性控制方法,其理论基础主要包括滑模面的设计、滑模运动的稳定性分析以及控制算法的实现。
滑模变结构控制的核心思想是在系统状态空间中构建一个滑动模态区(即滑模面),并设计控制策略使得系统状态在受到扰动或参数摄动时,能够在有限时间内到达并维持在滑模面上滑动,从而实现对系统的有效控制。
滑模面的设计是滑模变结构控制的关键。
滑模面需要满足一定的条件,如可达性、存在性和稳定性等,以确保系统状态能够到达滑模面并在其上滑动。
一般来说,滑模面的设计需要综合考虑系统的动态特性、控制目标以及约束条件等因素。
第5章_滑模变结构控制

航天器控制、电力系统等。
5.2 滑模变结构控制的理论基础
• 5.2.1 滑模变结构控制的定义
用二阶线性系统的相平面分析方法来说明 为了阐明变结构控制系统的基本概念,考虑下列简单的二阶系统,
u, 0 x x
( 0) 。 设状态反馈为 u x ,其中 的值可取为 或 , 当 时,系统的微分方程为
其中 s x cx ,c 2
xs 0 xs 0
2
4
则直线两侧的轨线都最终落在此直线并收敛到原点,因此相应的系统是渐进稳 定的。上述切换线直接由系统的参数 和切换参数 决定,因而当参数 未 知或存在扰动时,这种参数方法就显得相当困难。为此,我们再考虑选取切换 线为 2 c (0, ) cx , x=0及 s x 2 4
的解是否存在及如何描述系统在 S(t,x) =0的运动等问题。 许多学者研究了各种类型的具有不连续右端函数的微分方
程解的存在唯一性,其中概念上直观的方法由费里波夫
(Filipov)给出。下面作一简单介绍。
5.2 滑模变结构控制的理论基础
当系统(5-4)为单输入系统时,控制规律(5-5)变为 u ( t, x), s ( t , x) 0 u ( t , x) _ (5-6) s ( t , x) 0 u ( t, x),
2 (1) 当0< < 4 微分方程有一对不相等的正实根,相平 面坐标原点是不稳定的节点。
2 (1) 当 > 4 微分方程有一对共轭复特征值,其实部为正 数,相平面坐标原点是不稳定的焦点。
1,2
2
2
4
5.2 滑模变结构控制的理论基础
控制理论-滑模变结构控制

控制理论-滑模变结构控制1、滑模变结构控制简介变结构控制( Variable Structure Control,VSC)本质上是⼀类特殊的⾮线性控制,其⾮线性表现为控制的不连续性;这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,⽽是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等),有⽬的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动,所以⼜常称变结构控制为滑动模态控制( Sliding Mode Control,SMC),即滑模变结构控制。
由于滑动模态可以进⾏设计且与对象参数及扰动⽆关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、⽆须系统在线辦识,物理实现简单等优点。
该⽅法的缺点在于当状态轨迹到达滑模⾯后,难于严格地沿着滑⾯向着平衡点滑动,⽽是在滑模⾯两侧来回穿越,从⽽产⽣颤动。
总之,抖振产⽣的原因在于:当系统的轨迹到达切换⾯时,其速度是有限⼤,惯性使运动点穿越切换⾯,从⽽最终形成抖振,叠加在理想的滑动模态上。
对于实际的计算机采样系统⽽⾔,计算机的⾼速逻辑转换及⾼精度的数值运算使得切换开关本⾝的时间及空间滞后影响⼏乎不存在;因此,开关的切换动作所造成控制的不连续性是抖振发⽣的本质原因。
2、未建模动态按照我的理解,在控制系统中,我们往往⾯对的是⾼阶的系统,⽽我们的分析和设计常常⾯对的是低阶的系统,即所谓的⽤低阶系统来近似模拟⾼阶系统的特性。
通常我们能通过低阶系统获得与⾼阶系统相近似的动态性能。
注意这⾥说的是近似的,也就是说⾼阶系统还有⼀部分动态性能我们⽤低阶系统来分析时会忽略掉。
⽽忽略的这部分就是未建模动态。
3、滑模变结构控制基本原理滑模变结构控制是变结构控制系统的⼀种控制策略。
这种控制策略与常规控制的根本区别在于控制的不连续性,即⼀种使系统“结构”随时间变化的开关特性。
该控制特性可以迫使系统在⼀定特性下沿规定的状态轨迹作⼩幅度、⾼频率的上下运动,即所谓的滑动模态或“滑模”运动。
滑模控制和滑膜变结构控制

滑模控制和滑膜变结构控制1. 引言滑模控制和滑膜变结构控制是现代控制理论中重要的控制策略,广泛应用于各个领域的控制系统中。
滑模控制通过引入一个滑模面来实现系统的稳定性和鲁棒性;滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动。
2. 滑模控制滑模控制最早由俄罗斯科学家阿莫斯特芬于1968年提出,并在1974年得到了进一步的发展。
滑模控制通过引入一个滑模面,将系统状态从非线性区域滑到线性区域,从而实现系统的稳定性和鲁棒性。
2.1 滑模面滑模面是滑模控制的核心概念之一,它通常由一个超平面表示,可以用数学方程描述为:s=Sx其中,s为滑模面,S为一个可逆矩阵,x为系统的状态变量。
2.2 滑模控制律滑模控制律用于调节系统状态,以使系统状态滑到滑模面上。
滑模控制律的一般形式可以表示为:u=−S−1B Tλ(s)其中,u为控制输入,B为输入矩阵,λ(s)为滑模曲线。
2.3 滑模控制的优点滑模控制具有以下几个优点:•鲁棒性强:滑模控制能够在面对参数扰动和外部干扰时保持系统的稳定性。
•快速响应:由于滑模面能够将系统状态快速滑到线性区域,使得系统具有快速响应的特性。
•无需精确模型:滑模控制不需要系统的精确模型,因此对于复杂系统的控制较为便捷。
3. 滑膜变结构控制滑膜变结构控制(SMC)由美国科学家丹尼尔·尤斯托曼在20世纪90年代末提出,是一种基于滑模控制的新型控制策略。
滑膜变结构控制通过在线调整系统的结构以适应不确定性和外部扰动,从而提高系统的鲁棒性和性能。
3.1 滑膜设计滑膜变结构控制的关键是设计一个合适的滑膜来响应系统的不确定性和扰动。
滑膜通常由一个或多个滑模面组成,通过在线调整滑膜的参数,可以适应不同的工作条件和控制要求。
3.2 滑膜变结构控制律滑膜变结构控制律的一般形式可以表示为:u=−K(θ)s−δ(θ)sign(s)其中,u为控制输入,K(θ)和δ(θ)分别为滑膜参数和输出增益,θ为参数向量,s为滑模曲线。
滑模变结构控制及应用

滑模变结构控制及应用滑模变结构控制(Sliding Mode Control,SMC)是一种具有强鲁棒性和抗扰动能力的非线性控制方法。
它是20世纪80年代发展起来的一种控制方法,它通过在滑模面上引入一个不连续函数来实现对系统状态的高频率的转换控制,从而将控制系统的性能提高到一个新的水平。
滑模变结构控制在自动控制领域中得到了广泛的研究与应用,下面我将就其基本原理、设计方法以及应用领域进行详细介绍。
滑模变结构控制的基本原理:滑模变结构控制的基本原理是引入一个滑模面,通过使系统状态在滑模面上进行快速的滑动,从而达到控制系统的稳定性和鲁棒性。
在滑模面上,系统状态由于受到控制输入和系统的非线性特性的影响而发生快速切换,从而使系统状态的滑动速度不断变化,最终达到滑动面的稳定状态。
滑模控制器利用滑模面上的控制输入来驱动系统状态沿着滑模面滑动,以实现状态的稳定和跟踪。
滑模变结构控制的设计方法:滑模变结构控制一般包括滑模面的设计和滑模控制器的设计两个步骤。
滑模面的设计要求其具有可实现性、稳定性和鲁棒性等特性,常用的滑模面设计方法包括等效控制、非线性控制、线性控制等。
滑模控制器的设计包括产生控制输入和产生滑模面两个部分,常用的滑模控制器设计方法包括理想滑模控制器、改进滑模控制器、自适应滑模控制器等。
滑模变结构控制的应用领域:滑模变结构控制在各个领域中都有广泛的应用,下面我将就几个典型的应用领域进行介绍。
1. 机械控制系统:滑模变结构控制在机械控制系统中应用广泛,例如机械臂控制、机械手控制等。
滑模变结构控制可以提供强鲁棒性和抗扰动能力,可以保证机械系统在复杂环境下的精确运动和稳定控制。
2. 电力系统:滑模变结构控制在电力系统中的应用主要包括电力系统稳定控制、电力系统调度控制等。
滑模变结构控制可以有效地处理电力系统中的不确定性和扰动,提高电力系统的稳态和动态性能。
3. 交通运输系统:滑模变结构控制在交通运输系统中的应用包括车辆控制、交通信号控制等。
滑模变结构控制基本理论课件

图6 控制器u(t)局部轨迹
8
滑模变结构控制基本理论
例2 滑模观测器设计
系统模型如下同例1,但增加了一项故障项 fa (t)
x1 x2
x2
25x2
为状态变量,u为输入,y为输出,
fa (t)为未知非线性函数,代表故障。
设计任务:利用可测输入u和可测输出y对状态变量 x2 进行观测,对
滑模变结构控制基本理论
图9 故障及其重构值
图10 故障及其重构值局部图
滑模变结构控制基本理论
请大家指正
(CB)1[CAx ( sgn(s) ks)]
即 s 0, s 0,
u (t) (CB)1[CAx ks] u (t) (CB)1[CAx ks]
取
A
0 0
1 25
,
B
0 133
,C
c1
c2 15
1, 5, k 10
s Cx c1x1 x2 c1x1 x1
ui (x) ≠ ui (x)
(1) 存在滑动模态;
(2) 满足到达条件:即在切换面以外的相轨迹将于有限时间内到达
切换面;
(3) 滑模运动渐近稳定并具有良好的动态品质。
3
滑模变结构控制基本理论
滑模面设计:
滑模面的选取影响到变结构控制的性能, 线性结构的滑模面使系统处于滑动模态时, 稳定性分析简洁,参数设计容易,工程实现方便。
到达滑模面后: s 0,
c1x1 x1 0
x1(t) x1(0)ec1t
因为,c1 15 ,0所以上式收敛到零,且仅与c1有关,而与对象参数无关[不变性]。
6
滑模变结构控制基本理论
图1 滑模面运动相轨迹
图2 X1运动轨迹
滑模变结构控制理论及其在机器人中的应用研究共3篇

滑模变结构控制理论及其在机器人中的应用研究共3篇滑模变结构控制理论及其在机器人中的应用研究1滑模变结构控制(Sliding Mode Control,SMC)是一种非线性控制方法,具有高精度、强适应性、鲁棒性好等优点,因此被广泛应用于机器人控制领域。
其基本思想是构造一个滑模面,使系统状态到达该面后就会保持在该面上运动,在保证系统稳定性的同时达到控制目的。
本文将阐述滑模变结构控制的理论基础以及在机器人控制中的应用研究。
一、滑模变结构控制的理论基础1. 滑模面滑模面是滑模控制的核心概念,它是一个虚拟平面,将控制系统的状态分为两个区域:滑模面上和滑模面下。
在滑模面上,系统状态变化很小,具有惯性;而在滑模面下,系统状态变化很大,具有灵敏性。
在滑模控制中,系统状态必须追踪滑模面运动,并保持在滑模面上,进而实现控制目的。
2. 滑模控制定律滑模控制定律是滑模变结构控制的核心之一,主要由滑模控制器和滑模面组成。
滑模控制器将系统状态误差与滑模面上的虚拟控制输入之间做差,生成实际控制输入。
而滑模面则是根据控制目的和系统性质,通过手动选择滑模面的形状和大小来合理地设计。
例如,对于已知模型的系统,可使用小扰动理论来设计滑模面;而对于未知模型的系统,可使用自适应滑模控制来自动调节滑模面。
总体来说,滑模控制定律是一种强鲁棒控制方法,在快速响应、鲁棒性和适应性等方面都表现出色。
3. 滑模变结构控制滑模变结构控制是将滑模控制定律与变结构控制相结合形成的一种新型控制方法。
在滑模变结构控制中,滑模面被用来描述整个系统状态,而滑模控制定律则用来保证系统状态追踪滑模面的过程中,系统特征不会发生大的变化。
换句话说,滑模控制定律的目的是在系统状态到达滑模面后,控制系统能够迅速且平稳地滑过该面,进而保持在滑模面上稳定运动。
二、滑模变结构控制在机器人中的应用研究滑模变结构控制广泛应用于机器人控制领域,例如:机器臂控制、移动机器人控制、人形机器人控制等。
滑模变结构控制基本理论课件

04
CATALOGUE
滑模变结构控制的实现与仿真
滑模控制器的MATLAB/Simulink实现
控制器设计
根据滑模变结构控制原理,利用 MATLAB/Simulink进行控制器设计,
包括滑模面函数、控制律等。
控制器参数调整
根据仿真结果,调整控制器参数,优 化控制性能。
模型建立
根据被控对象模型,在Simulink中建 立相应的仿真模型。
基于模拟退火算法的滑模控制器优化
模拟退火算法是一种基于物理退火原 理的优化算法,通过模拟金属退火过 程,寻找最优解。
模拟退火算法具有全局搜索能力强、 能够处理离散和连续问题等优点,适 用于滑模变结构控制的优化问题。
在滑模控制器优化中,模拟退火算法 可以用于优化滑模面的设计、滑模控 制器的参数等,提高滑模控制器的性 能和鲁棒性。
滑模控制器稳定性的分析方法
滑模控制器稳定性的分析方法包括基于 Lyapunov函数的方法、基于Razumikhin函数的 方法等。
滑模控制器稳定性的判定准则
滑模控制器稳定性的判定准则包括Lyapunov稳 定性定理、Razumikhin稳定性定理等。
03
CATALOGUE
滑模变结构控制的优化方法
基于遗传算法的滑模控制器优化
1
遗传算法是一种基于生物进化原理的优化算法, 通过模拟基因突变、交叉和选择等过程,寻找最 优解。
2
在滑模控制器优化中,遗传算法可以用于优化滑 模面的设计、滑模控制器的参数等,提高滑模控 制器的性能和鲁棒性。
3
遗传算法具有全局搜索能力强、能够处理多变量 和非线性问题等优点,适用于滑模变结构控制的 优化问题。
案例分析
通过具体案例分析,深入了解滑模控制器在 实际应用中的优势和不足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑模变结构控制概述
1滑模变结构控制的定义 (1)
2滑动模态的存在及到达条件 (2)
3滑动模态运动方程 (3)
变结构控制是前苏联学者Emeleyanov 、Utkin 、Itkin 在20世纪60年代初提出的一种控制方法。
该方法最初研究的主要是二阶线性系统和单输入高阶系统。
1977年,V.I.Utkin 提出了滑模变结构控制的方法,推动了变结构控制的研究和发展。
后来许多学者也提出了多种变结构控制的设计方法,但只有带滑动模态的变结构控制被认为是最有发展前途的,滑模变结构控制也成为变结构控制的主要内容,有时也简称滑模控制。
滑模变结构控制本质上是一类特殊的非线性控制,与常规控制的根本区别在于控制的不连续性,即一种使控制系统结构随时间变化的开关特性。
该控制特性可以迫使系统的状态被限制在某一子流形上运动,即所谓的“滑动模态”运动。
这种滑动模态是可以设计的,并且当系统运行在滑动模态时,系统状态与系统的参数摄动和外界扰动完全无关,这种性质称为滑动模态的不变性。
这样,处于滑动模态的系统就具有很好的鲁棒性。
但是滑模变结构控制存在一个严重的缺点就是抖振。
由于抖振很容易激发系统的未建模特性,从而影响了系统的控制性能,给滑模变结构控制的实际应用带来了困难。
1滑模变结构控制的定义
对于任一非线性系统,可以表示为:
(),, ,,n n n x f x u t x R u R t R =∈∈∈ (1) 如果存在一个滑动流形()0s x =,并且在该流形的某一区域对于非线性系统的运动是“吸引”区,即系统一旦运动到该区域附近就会被“吸引”并保留在该区域内运动,此时称在该区域为滑动模态区,简称为滑模区。
系统在滑模区中的运动就叫做滑模运动。
此流形()0s x =称为滑模面或者切换面。
滑模变结构控制的基本问题是需要确定滑模面函数或切换函数:
()0s x = s n R ∈ (2)
并且设计控制函数或者控制律
()()()() s 0 s 0
u x x u u x x +-⎧>⎪=⎨<⎪⎩ (3) 其中,()()u x u x +-≠,使得
(1)滑动模态存在。
(2)满足可达性条件,在切换面()0s x =以外的运动点都将于有限时间内到达切换面。
(3)保证滑模运动的稳定性。
(4)达到控制系统的动态品质要求。
上面的前三点是滑模变结构控制的三个基本问题,只有满足了这三个条件的控制才叫滑模变结构控制。
而这三个基本问题可以归纳为两个设计问题:选择滑模面()s x 和设计控制u 。
2滑动模态的存在及到达条件
为了实现滑模控制,必须使滑动模态存在。
按照滑动模态的定义,当系统运动到滑模面()0s x =附近时,必有
00
lim 0,lim 0s s s s +-→→<> (4) 式(4)也可以写成
lim 0s ss →< (5) 式(4)和(5)称为滑动模态存在的条件。
当系统满足滑动模态存在条件时,在滑模面的邻域内,系统的运动轨迹将在有限时间内到达滑模面。
所以该条件也称为局部到达条件。
如果系统的初始点不在滑模面附近,而是在状态空间的任意位置,此时要求滑模面必须在整个系统状态空间内具有“吸引”能力,则滑动模态的全局到达条
件是
0ss < (6)
为了保证在有限时间内到达滑模面,避免渐近趋近,一般对式(6)修改为
ss δ<- (7)
其中0δδ>,可以取任意小的实数。
通常将式(3-6)表示成李亚普诺夫函数型的到达条件:
21,02
v s v ss ==< (8) 3滑动模态运动方程
对于式(3-1)的非线性系统,如果能够达到理想的滑动模态运动,那么应该满足s=0和s =0。
此时系统的运动方程为:
()()()0,,0 s 0s 0s x s s f x u t x t
x x x ∂∂∂⎧⎧===⎪⎪∂∂∂⎨⎨⎪⎪==⎩⎩
或 (9) 解方程(9)就可以得到系统滑模运动时的运动轨迹,系统将沿滑模面()0s x =到达平衡点。
此时系统的运动与系统的建模误差和外界干扰完全无关,这种性质称为滑动模态的不变性,这也是滑模控制受到重视的重要原因。
当系统保持滑模运动时,如果系统的数学模型已知,则系统需要的控制律满足方程0s =,即:
()0 ,,0s x s s f x u t x t x
∂∂∂===∂∂∂或 (10) 如果式(10)的解存在,则将式(3-10)的解u 称为系统在滑动模态区的等效控制。
等效控制往往是针对确定性系统在无外加干扰情况下进行设计的。
但这是理想情况,实际上是不可能的。
当系统存在不确定性和外加干扰时,一般采用的控制律为等效控制加切换控制,即:
eq vss u u u =+ (11)
其中,切换控制vss u 实现对不确定性和外加干扰的鲁棒控制,所设计的控制律需要满足滑模控制的到达条件。
理论上,当系统的控制律满足到达条件时,系统将保持滑模运动。
但这是对一个滑模变结构控制系统的理想化,是假设控制系统具有以下理想特性:
(1)控制系统的输出开关具有无时间滞后的理想特性。
(2)对系统状态的测量准确无误。
(3)控制量没有限制。
实际上,由于以下原因,滑模变结构控制在滑动模态下将产生抖振:
(1)滑模控制律的不连续性。
(2)系统测量环节的时间滞后和不连续性:由于任何测量电路都存在“死区”,所以对滑模面的测量会出现不连续。
另外,对于实际的计算机采样系统来说,对采样数据的滤波、分析也会使计算得到的测量值产生时间滞后。
(3)输出开关的滞后作用:由于输出开关的时间滞后,控制作用对状态的准确变化被延迟一定的时间,也使光滑的滑模面叠加上杂波。
(4)系统惯性的影响:由于任何物理系统的能量都不可能无限大,因此系统的控制力也不能无限大,这就使系统的加速度有限。
另外,系统惯性总是存在的,所以使得控制输出具有滞后作用。
(5)离散系统本身造成的抖振:由于实际的计算机控制系统本身是一个离散系统,其切换动作不可能正好发生在切换面上,所以离散系统的滑动模态本身是一种“准滑动模态”。
抖振不仅影响控制的精确性,增加能量消耗,而且系统中的高频未建模动态特性很容易被激发起来,破坏系统的性能,甚至使系统不稳定,损毁控制器。
因此,关于滑模变结构控制信号抖振消除的研究成为滑模变结构控制研究的首要问题。