利用导数解不等式考点与题型归纳

合集下载

导数与不等式证明大题归纳

导数与不等式证明大题归纳

导数与不等式证明大题归纳1. 导言嘿,朋友们,今天我们来聊聊一个看似严肃但其实挺有趣的话题,那就是导数与不等式。

说到导数,很多人可能会觉得这是一道数学题,就像一块让人心生畏惧的黑暗魔法。

但其实,导数就像是一把钥匙,打开了理解变化的门,让我们能更好地认识周围的世界。

好比你在观察一辆车的速度,导数就是告诉你这车在某一瞬间开得多快、转弯多急的那个“神秘力量”。

现在,咱们就从最基础的地方入手,逐步深入,最终达到一个终极目标:掌握导数与不等式的关系。

2. 导数的基本概念2.1 什么是导数?首先,咱们得搞清楚什么是导数。

简而言之,导数是一个函数在某一点的瞬时变化率。

想象一下你在玩过山车,当你正准备冲下来的那一刻,导数就能告诉你那一瞬间的速度有多快。

它就像是个侦探,帮助我们揭开函数变化的秘密。

2.2 导数的几何意义然后,咱们得看看导数的几何意义。

导数不仅仅是个数字,它还是切线的斜率。

就像你在爬山,山坡越陡,切线的斜率就越大,反之则越小。

这种感觉其实就像是在说,人生的起伏就像山路,时而陡峭,时而平缓,而导数就是我们脚下那条看不见的切线,带领我们找到方向。

3. 不等式的魅力3.1 不等式的定义接下来,我们来说说不等式。

不等式其实就是一种数学关系,告诉我们一个量比另一个量大或者小。

这就像是两个人比拼,谁的分数高,谁就赢了。

简单来说,不等式为我们提供了判断和比较的工具,让我们能更好地理解各种事物之间的关系。

3.2 不等式的应用而不等式的应用就广泛得多了,咱们可以用它来解决生活中的很多问题。

比如,想知道你的储蓄能否在一年后达到某个目标金额?不等式就可以帮你轻松判断。

生活中有太多时候,我们需要比较和判断,这时候不等式就像是老天送来的法宝,真是不可或缺啊。

4. 导数与不等式的结合4.1 如何利用导数证明不等式?说到这儿,咱们就得把导数和不等式这两个好伙伴串联起来了。

利用导数来证明不等式,听起来有点高深,但其实没那么复杂。

咱们可以通过分析函数的导数,判断函数的单调性,从而得出不等式。

高中数学:利用导数证明不等式的常见题型

高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数 设,证明:分析:主要考查利用导数证明不等式的能力。

证明:,设 当时 ,当时 ,即在上为减函数,在上为增函数∴,又 ∴,即 设 当时,,因此在区间上为减函数;因为,又 ∴,即 故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。

技巧精髓一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个x x x g ln )(=b a <<02ln )(2(2)()(0a b b a b g a g -<+-+<1ln )(+='x x g )2(2)()()(x a g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-='a x <<00)(<'x F a x >0)(>'x F )(x F ),0(a x ∈),(+∞∈a x 0)()(min ==a F x F a b >0)()(=>a F b F 0)2(2)()(>+-+b a g b g a g 2ln )(2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴0>x 0)('<x G )(x G ),0(+∞0)(=a G a b >0)()(=<a G b G 02ln )()2(2)()(<--+-+a x x a g x g a g 2ln )()2(2)()(a x x a g x g a g -<+-+b a <<02ln )()2(2)()(0a b b a b g a g -<+-+<可导函数是用导数证明不等式的关键。

利用导数证明不等式的常见题型及解题技巧(附经典详解)

利用导数证明不等式的常见题型及解题技巧(附经典详解)

利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+<分析:主要考查利用导数证明不等式的能力。

分析:主要考查利用导数证明不等式的能力。

证明:1ln )(+=¢x x g ,设)2(2)()()(xa g x g a g x F +-+=2ln ln )2()(21)2(2)()(''''x a x x a g x g xa g x g x F +-=+-=´+-=¢当a x <<0时0)(<¢x F ,当a x >时 0)(>¢x F , 即)(x F 在),0(a x Î上为减函数,在),(+¥Îa x 上为增函数上为增函数 ∴0)()(min==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+ba gb g a g设2ln )()2(2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2ln ln )(x a x xa x x G +-=-+-=¢\当0>x 时,0)('<x G ,因此)(x G 在区间),0(+¥上为减函数;上为减函数; 因为0)(=a G ,又a b > ∴0)()(=<a G b G , 即 02ln )()2(2)()(<--+-+a x x a g x g a g故2ln )()2(2)()(a x xa g x g a g -<+-+ 综上可知,当综上可知,当b a <<0时,2ln )()2(2)()(0a b ba b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。

导数与数列不等式结合解题技巧

导数与数列不等式结合解题技巧

导数与数列不等式结合是数学中一个重要的解题技巧,它涉及到函数的单调性、极值、最值等概念,以及数列的单调性、不等式性质等知识。

下面是一些导数与数列不等式结合解题的技巧:
1. 构造函数:根据题目条件,通过构造适当的函数,将问题转化为求函数的极值或最值问题。

2. 求导数:对构造的函数求导数,利用导数的性质判断函数的单调性。

3. 利用单调性:根据函数的单调性,结合数列不等式的性质,推导出不等式的结论。

4. 寻找临界点:在求解过程中,寻找函数的临界点,这些点可能是极值点或拐点,对于解决问题至关重要。

5. 转化问题:在解决问题时,有时需要将问题转化为其他形式,例如将不等式问题转化为函数问题,以便更好地利用已知条件和解题技巧。

6. 综合分析:在解题过程中,需要综合运用数学知识,如函数、导数、数列、不等式等,进行全面的分析和推理。

7. 检验结论:在得出结论后,需要进行检验,以确保结论的正确性和合理性。

总之,导数与数列不等式结合解题需要灵活运用各种数学知识和技巧,通过构造函数、求导数、利用单调性等方法,逐步推导出问题的结论。

同时需要注意检验结论的正确性和合理性。

高考利用导数证明不等式的常见题型及解题技巧

高考利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧不等式的证明问题是高中数学的一个难点,证明不等式的方法技巧性强,并且各类不等式的证明没有通性解法。

一、简单作差(商)法方法:.要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最大值为0即可.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题 例1、证明下列不等式:①1+≥x e x ②1ln -≤x x ③xx 1-1ln ≥ ④1x 1)-2(x ln +≥x )1(≥x ⑤)2,0(,2sin ππ∈>x x x例2已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;二、换元后作差构造函数证明【例3】(山东卷)证明:对任意的正整数n ,不等式3211)11ln(nn n ->+ 都成立.提示:令则,1nt =构造0)1ln()(32>+-+=t t t x f例4已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(换元:设x x t 1+=)三、利用max min )()(x g x f ≥证明不等式 例1、已知函数.22)(),,(,ln )1(1)(ex e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值;(2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.例2:证明:对一切),0(+∞∈x ,都有exe x x 21ln ->成立.含有两个变量的不等式常有两种题型,即根据两个变量是否能分离将题型分为可分离变量式和不可分离变量式,对于这两种采用不同的方法,请注意区别。

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型(新高考版

考点20利用导数证明不等式(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】导数中的不等式证明是高考的常考题型,常与函数的性质、函数的零点与极值、数列等相结合,虽然题目难度较大,但是解题方法多种多样,如构造函数法、放缩法等,针对不同的题目,灵活采用不同的解题方法,可以达到事半功倍的效果【核心题型】题型一 将不等式转化为函数的最值问题待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.【例题1】(2024·陕西咸阳·模拟预测)已知1201x x <<<,下列不等式恒成立的是( )A .1221e e x xx x <B .2112ln ln x x x x >C .1122ln ln x x x x <D .11e ln x x >【变式1】(2024·全国·模拟预测)下列正确结论的个数为( )①13sin1010π> ②141sin sin 334< ③16tan 16> ④()tan π3sin 3->A .1B .2C .3D .4【变式2】(2024·四川成都·三模)已知函数2()ln ,f x ax x a =-ÎR .(1)讨论函数()f x 的单调性;(2)设0,()()a g x f x bx >=+,且1x =是()g x 的极值点,证明:2+ln 12ln 2b a £-.【变式3】(2024·四川成都·三模)已知函数()()()e sin 1,0,πxf x ax x x x =---Î.(1)若12a =,证明:()0f x >;(2)若函数()f x 在()0,π内有唯一零点,求实数a 的取值范围.题型二 将不等式转化为两个函数的最值进行比较若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.【例题2】(2023·河南开封·模拟预测)已知13a =,13e 1b =-,4ln 3c =,则( )A .a b c <<B .a c b <<C .c<a<bD .b<c<a【变式1】(2024·全国·模拟预测)已知1e 1ln ,0aa b =+>,则下列结论正确的是( )A .e 2a b<-B .1lna b<C .1a b<-D .1e lnba<【变式2】(2024·浙江杭州·模拟预测)已知函数()()1122e ,e e e 1xxx x f x m m g x -=+-=++.(1)当0m =时,证明:()e xf x -<;(2)当0x <时,()g x t ³,求t 的最大值;(3)若()f x 在区间()0,¥+存在零点,求m 的取值范围.【变式3】(2024·贵州黔西·一模)已知函数29()ln 22f x x x x x =--.(1)判断()f x 的单调性;(2)证明:1352193ln(21)35721n n n n -æö++++>-+ç÷+èøL .题型三 适当放缩证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号;(2)ln x ≤x -1,当且仅当x =1时取等号.【例题1】(2024·河北沧州·一模)已知等比数列{}n a 的前n 项和为413,1,e Sn S a S >=,则数列{}n a 的公比q 满足( )A .01q <£B .10q -<<C .1q >D .1q £-【变式1】(2024·广东·模拟预测)令()sin 0.5cos1cos 2cos ,N n a n n °°°°+=+++ÎL .则n a 的最大值在如下哪个区间中( )A .(0.49,0.495)B .(0.495,0.5)C .(0.5,0.505)D .(0.505,0.51)【变式2】(2024·全国·模拟预测)设整数1p >,1x >-且0x ¹,函数()(1)1p f x x px =+--.(1)证明:()0f x >;(2)设0x >,证明:ln(1)x x +<;(3)设*n ÎN ,证明:111321232ln(1)n n n n ++++<-+L .【变式3】(23-24高三下·河南·阶段练习)已知函数()(1)1(1)r f x x rx x =+-->-,0r >且1r ¹.(1)讨论()f x 的单调性;(2)6332的大小,并说明理由;(3)当*n ÎN时,证明:2sin 176n kk n =<+å.【课后强化】基础保分练一、单选题1.(22-23高三上·四川绵阳·开学考试)若1201x x <<<,则( )A .2121e e ln ln x xx x ->-B .2121e e ln ln x xx x -<-C .1221e e x xx x >D .1221e e x xx x <2.(2023·陕西咸阳·三模)已知12023a =,20222023eb -=,1cos 20232023c =,则( )A .a b c >>B .b a c >>C .b c a>>D .a c b>>3.(23-24高三上·云南保山·期末)已知16a =,7ln 6b =,1tan 6c =,则( )A .b a c <<B .a b c <<C .a c b<<D .c<a<b4.(2024·全国·模拟预测)设13ln4,tan tan1,22a b c ==+=,则( )A .a b c <<B .b c a<<C .c<a<bD .a c b<<二、多选题5.(23-24高三上·广西百色·阶段练习)函数()21ln 2f x x ax a x =-+的两个极值点分别是12,x x ,则下列结论正确的是( )A .4a >B .22128x x +<C .1212x x x x +=D .()()()221212164f x f x x x +<+-6.(2023·福建·模拟预测)机械制图中经常用到渐开线函数inv tan x x x =-,其中x 的单位为弧度,则下列说法正确的是( )A .inv x x ×是偶函数B .inv x 在ππ(π,π)22k k --+上恰有21k +个零点(N k Î)C .inv x 在ππ(π,π)22k k --+上恰有41k +个极值点(N k Î)D .当π02x -<<时,inv sin x x x <-三、填空题7.(2023·海南·模拟预测)已知函数()1ln e x x af x --=,()1x a g x x--=,若对任意[)1,x ¥Î+,()()f x g x £恒成立,则实数a 的取值范围是 .8.(2023·河南开封·模拟预测)实数x ,y 满足()23e 31e x y x y -£--,则3xy -的值为 .四、解答题9.(2023·吉林长春·模拟预测)已知函数()21()1ln 2f x x x =--.(1)求()f x 的最小值;(2)证明:47ln332>.10.(2024·广东佛山·二模)已知()21e 4e 52x xf x ax =-+--.(1)当3a =时,求()f x 的单调区间;(2)若()f x 有两个极值点1x ,2x ,证明:()()12120f x f x x x +++<.11.(2023·四川成都·二模)已知函数()e sin xf x x -=.(1)求()f x 在()()0,0f 处的切线方程;(2)若0x 是()f x 的最大的极大值点,求证:()01f x <<综合提升练一、单选题1.(22-23高三上·河南·阶段练习)若32e 3ln 22x yx y +-=+,其中2,2x y >>,则( )A .e x y<B .2x y>C .24e xy>D .2e x y>2.(2023·福建·模拟预测)已知ln 2a =,1e b a=-,2a c a =-,则( )A .b c a>>B .b a>C .c a b>>D.c b a>>3.(2023·河北衡水·三模)若a =1b =-,c =则( )A .c a b <<B .c b a <<C .b c a<<D .a c b<<4.(2023·新疆·三模)已知数列{}n a 中,11a =,若1nn nna a n a +=+(N n *Î),则下列结论中错误的是( )A .325a =B .1111n na a +-£C .1ln 1nn a <-(2,N n n *³Î)D .2111112n n a a ++-<5.(2023·河南·模拟预测)设a ,b 为正数,且2ln ab a b=-,则( ).A .112a b<<B .12a b<<C .112ab <<D .12ab <<6.(2024·上海虹口·二模)已知定义在R 上的函数()(),f x g x 的导数满足()()f x g x ¢£¢,给出两个命题:①对任意12,x x ÎR ,都有()()()()1212f x f x g x g x -£-;②若()g x 的值域为[]()(),,1,1m M f m f M -==,则对任意x ÎR 都有()()f x g x =.则下列判断正确的是( )A .①②都是假命题B .①②都是真命题C .①是假命题,②是真命题D .①是真命题,②是假命题7.(2024·四川泸州·三模)已知0x >,e ln 1x y +=,给出下列不等式①ln 0x y +<;②e 2x y +>;③ln e 0y x +<;④1x y +>其中一定成立的个数为( )A .1B .2C .3D .48.(2024·四川攀枝花·三模)已知正数,,a b c 满足ln e c a b b ca ==,则( )A .a b c >>B .a c b>>C .b a c>>D .b c a>>二、多选题9.(2023·福建龙岩·二模)已知函数()ln n f x x n x =-(*n ÎN )有两个零点,分别记为n x ,n y (<n n x y );对于0a b <<,存在q 使)()()(()n n n f f f a q b a b -=-¢,则( )A .()n f x 在()1,+¥上单调递增B .e n >(其中e 2.71828=L 是自然对数的底数)C .11n n n n x x y y ++-<-D .2q a b<+10.(2023·河南信阳·模拟预测)已知,,,a b c d ÎR ,满足0a b c d >>>>,则( )A .sin sin a b >B .sin sin a a b b ->-C .a bd c>D .ad bc ab cd+>+11.(2024·河北沧州·一模)已知函数()e xf x =与函数()211g x x =+-的图象相交于()()1122,,,A x y B x y 两点,且12x x <,则( )A .121y y =B .211exy =C .21211y y x x ->-D .221x y =三、填空题12.(2023·四川成都·三模)已知函数()2()2ln 32f x x a x x =+-+,a ÎR .当1x >时,()0f x >,则实数a 的取值范围为.13.(23-24高三下·广东云浮·阶段练习)若实数a ,b 满足()()221ln 2ln 1a b a b -³+-,则a b += .14.(2024·全国·模拟预测)若实数a ,b ,c 满足条件:()2e e 2e 1a b ca b c a -++-+=-,则444abca b c ++的最大值是 .四、解答题15.(2024·青海西宁·二模)已知函数()()()2222ln R f x x a x a x a =+--Î.(1)若2a =,求()f x 的极值;(2)若()()2222ln g x f x a x x =+-+,求证:()12g x ³.16.(2024·山东济南·二模)已知函数()()()22l ,n 1e x f x ax x g x x ax a =--=-ÎR .(1)讨论()f x 的单调性;(2)证明:()()f x g x x +³.17.(2024·上海松江·二模)已知函数ln y x x a =×+(a 为常数),记()()y f x x g x ==×.(1)若函数()y g x =在1x =处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:()()()ln 2f x f t x f t t a +-³-+;(3)当1a =时,求证:e ()cos x g x x x+<.18.(2024·上海嘉定·二模)已知常数m ÎR ,设()ln mf x x x=+,(1)若1m =,求函数()y f x =的最小值;(2)是否存在1230x x x <<<,且1x ,2x ,3x 依次成等比数列,使得()1f x 、()2f x 、()3f x 依次成等差数列?请说明理由.(3)求证:“0m £”是“对任意()12,0,x x Î+¥,12x x <,都有()()()()1212122f x f x f x f x x x ¢¢+->-”的充要条件.19.(2024·全国·模拟预测)已知函数()()2e ln 1xf x a x =-+.(1)若2a =,讨论()f x 的单调性.(2)若0x >,1a >,求证:()1ln 2f x a a >-.拓展冲刺练一、单选题1.(2023·上海奉贤·二模)设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列,有下列3个命题:①若对任意的正整数n 均有1n n a a +<,则{}n a 为和谐数列;②若等差数列{}n a 是和谐数列,则n S 一定存在最小值;③若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列是和谐数列.以上3个命题中真命题的个数有( )个A .0B .1C .2D .32.(2023·新疆乌鲁木齐·三模)已知0.19e a -=,0.9b =,2ln0.91c =+,则( )A .b c a>>B .a c b>>C .c b a>>D .b a c>>3.(2023·湖南长沙·一模)已知()e 0.1e 0.1a +=-,e e b =,()e 0.1e 0.1c -=+,则a ,b ,c 的大小关系是( )A .a b c <<B .c a b <<C .b a c<<D .a c b<<4.(2024·青海·二模)定义在R 上的函数()f x 满足()()2231218f x f x x x --=-+,()f x ¢是函数()f x 的导函数,以下选项错误的是( )A .()()000f f ¢+=B .曲线()y f x =在点()()1,1f 处的切线方程为210x y --=C .()()f x f x m -¢³在R 上恒成立,则2m £-D .()()74ee xf x f x -³-¢-二、多选题5.(2024·全国·模拟预测)已知n S 为正项数列{}n a 的前n 项和,且221n n n a S a -=,则( )A .=n aB .1n na a +>C .1ln n nS n S -³D .212n n n S S S +++>6.(2024·全国·模拟预测)已知1e 1ln ,0aa b=+>,则下列结论正确的是( )A .e 2a b >-B .1lna b<C .1e lnb a<D .1a b>-三、填空题7.(2023·浙江温州·二模)已知函数e e()ln ln f x x x x x=++-,则()f x 的最小值是 ;若关于x 的方程()22f x ax =+有1个实数解,则实数a 的取值范围是.8.(2023·福建福州·模拟预测)已知定义在()0,¥+上函数()f x 满足:()()ln 1x f x x +<<,写出一个满足上述条件的函数()f x = .四、解答题9.(2024·辽宁·模拟预测)已知函数()()sin ln sin f x x x =-,()1,2x Î(1)求()f x 的最小值;(2)证明:()sin sin eln sin 1x xx x -×->.10.(2024·四川攀枝花·三模)已知函数()()ln 1R af x x a x=+-Î.(1)当2a =时,求函数()f x 在1x =处的切线方程;(2)设函数()f x 的导函数为()f x ¢,若()()()1212f x f x x x ¢¢=¹,证明:()()1211f x f x a++>.11.(2024·山西晋城·二模)已知函数()()e x f x x a x a =-++(a ÎR ).(1)若4a =,求()f x 的图象在0x =处的切线方程;(2)若()0f x ³对于任意的[)0,x Î+¥恒成立,求a 的取值范围;(3)若数列{}n a 满足11a =且122nn n a a a +=+(*n ÎN ),记数列{}n a 的前n 项和为n S ,求证:[]1ln (1)(2)3n S n n +<++.。

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧利用导数证明不等式的常见题型及解题技巧趣题引入已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2(2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。

证明:1ln )(+='x x g ,设)2(2)()()(x a g x g a g x F +-+= 2ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=⨯+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F ,即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2(2)()(>+-+b a g b g a g 设2ln )()2(2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)('<x G ,因此)(x G 在区间),0(+∞上为减函数;因为0)(=a G ,又a b > ∴0)()(=<a G b G ,即 02ln )()2(2)()(<--+-+a x x a g x g a g 故2ln )()2(2)()(a x x a g x g a g -<+-+ 综上可知,当 b a <<0时,2ln )()2(2)()(0a b b a b g a g -<+-+< 本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数解不等式考点与题型归纳考点一 f (x )与f ′(x )共存的不等式问题[典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (lg x )>lg x +12的解集为__________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________.[解析] (1)由题意构造函数g (x )=f (x )-12x ,则g ′(x )=f ′(x )-12<0,所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=12,由f (lg x )>lg x +12,得f (lg x )-12lg x >12.即g (lg x )=f (lg x )-12lg x >12=g (1),所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).[答案] (1)(0,10) (2)(-∞,-3)∪(0,3)[解题技法](1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0).[典例] (1)设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0, 当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2.由题意知,当x >0时,g ′(x )<0, ∴g (x )在(0,+∞)上是减函数. ∵f (x )是奇函数,f (-1)=0, ∴f (1)=-f (-1)=0, ∴g (1)=f (1)=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2].当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0.综上可知,f (x )>0. [答案] (1)A (2)A [解题技法](1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n-1的符号进行讨论),特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ),则F ′(x )=xf ′(x )+f (x )>0.(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )xn +1(注意对x n +1的符号进行讨论),特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x,则F ′(x )=xf ′(x )-f (x )x 2>0. [典例] (1)已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0) B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0) C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0) D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)(2)已知定义在R 上的函数f (x )满足f (x )+2f ′(x )>0恒成立,且f (2)=1e (e 为自然对数的底数),则不等式e xf (x )-e 2x >0的解集为________.[解析] (1)构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e -2 019>f (0)e 0⇒e 2 019f (-2 019)>f (0);同理,h (2 019)<h (0),即f (2 019)<e 2 019f (0),故选D.(2)由f (x )+2f ′(x )>0得2⎣⎡⎦⎤12f (x )+f ′(x )>0,可构造函数h (x )=e 2xf (x ),则h ′(x )=12e 2x[f (x )+2f ′(x )]>0,所以函数h (x )=e 2x f (x )在R 上单调递增,且h (2)=e f (2)=1.不等式e x f (x )-e 2x >0等价于e 2x f (x )>1,即h (x )>h (2)⇒x >2,所以不等式e x f (x )-e 2x >0的解集为(2,+∞).[答案] (1)D (2)(2,+∞) [解题技法](1)对于不等式f ′(x )+f (x )>0(或<0),构造函数F (x )=e x f (x ).(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.考点二不等式恒成立问题不等式恒成立问题的基本类型类型1:任意x,使得f(x)>0,只需f(x)min>0.类型2:任意x,使得f(x)<0,只需f(x)max<0.类型3:任意x,使得f(x)>k,只需f(x)min>k.类型4:任意x,使得f(x)<k,只需f(x)max<k.类型5:任意x,使得f(x)>g(x),只需h(x)min=[f(x)-g(x)]min>0.类型6:任意x,使得f(x)<g(x),只需h(x)max=[f(x)-g(x)]max<0.[典例]已知函数f(x)=ax+ln x+1,若对任意的x>0,f(x)≤x e2x恒成立,求实数a的取值范围.[解]法一:构造函数法设g(x)=x e2x-ax-ln x-1(x>0),对任意的x>0,f(x)≤x e2x恒成立,等价于g(x)≥0在(0,+∞)上恒成立,则只需g(x)min≥0即可.因为g′(x)=(2x+1)e2x-a-1x,令h(x)=(2x+1)e2x-a-1x(x>0),则h′(x)=4(x+1)e2x+1x2>0,所以h(x)=g′(x)在(0,+∞)上单调递增,因为当x―→0时,h(x)―→-∞,当x―→+∞时,h(x)―→+∞,所以h(x)=g′(x)在(0,+∞)上存在唯一的零点x0,满足(2x0+1)e2x0-a-1x0=0,所以a=(2x0+1)e2x0-1x0,且g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以g(x)min=g(x0)=x0e2x0-ax0-ln x0-1=-2x20e2x0-ln x0,则由g(x)min≥0,得2x20e2x0+ln x0≤0,此时0<x0<1,e2x0≤-ln x02x20,所以2x0+ln(2x0)≤ln(-ln x0)+(-ln x0),设S (x )=x +ln x (x >0),则S ′(x )=1+1x >0,所以函数S (x )在(0,+∞)上单调递增, 因为S (2x 0)≤S (-ln x 0), 所以2x 0≤-ln x 0即e2x 0≤1x 0,所以a =(2x 0+1)e2x 0-1x 0≤(2x 0+1)·1x 0-1x 0=2,所以实数a 的取值范围为(-∞,2]. 法二:分离参数法因为f (x )=ax +ln x +1,所以对任意的x >0,f (x )≤x e 2x 恒成立,等价于a ≤e 2x -ln x +1x 在(0,+∞)上恒成立.令m (x )=e 2x -ln x +1x (x >0),则只需a ≤m (x )min 即可,则m ′(x )=2x 2e 2x +ln xx 2, 再令g (x )=2x 2e 2x +ln x (x >0),则g ′(x )=4(x 2+x )e 2x +1x >0,所以g (x )在(0,+∞)上单调递增,因为g ⎝⎛⎭⎫14=e 8-2ln 2<0,g (1)=2e 2>0, 所以g (x )有唯一的零点x 0,且14<x 0<1,所以当0<x <x 0时,m ′(x )<0,当x >x 0时,m ′(x )>0, 所以m (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,因为2x 20e2x 0+ln x 0=0, 所以ln 2+2ln x 0+2x 0=ln(-ln x 0), 即ln(2x 0)+2x 0=ln(-ln x 0)+(-ln x 0), 设s (x )=ln x +x (x >0),则s ′(x )=1x +1>0,所以函数s (x )在(0,+∞)上单调递增, 因为s (2x 0)=s (-ln x 0), 所以2x 0=-ln x 0,即e2x 0=1x 0,所以m (x )≥m (x 0)=e2x 0-ln x 0+1x 0=1x 0-ln x 0x 0-1x 0=2,则有a ≤2,所以实数a 的取值范围为(-∞,2]. [解题技法]求解不等式恒成立问题的方法(1)构造函数分类讨论:遇到f (x )≥g (x )型的不等式恒成立问题时,一般采用作差法,构造“左减右”的函数h (x )=f (x )-g (x ) 或“右减左”的函数u (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或u (x )max ≤0,将比较法的思想融入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对参数进行分类讨论.(2)分离函数法:分离参数法的主要思想是将不等式变形成一个一端是参数a ,另一端是变量表达式v (x )的不等式后,应用数形结合思想把不等式恒成立问题转化为水平直线y =a 与函数y =v (x )图象的交点个数问题来解决.[题组训练](2019·陕西教学质量检测)设函数f (x )=ln x +kx,k ∈R.(1)若曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围. 解:(1)由条件得f ′(x )=1x -kx2(x >0),∵曲线y =f (x )在点(e ,f (e))处的切线与直线x -2=0垂直, ∴f ′(e)=0,即1e -ke 2=0,得k =e ,∴f ′(x )=1x -e x 2=x -ex2(x >0),由f ′(x )<0得0<x <e ,由f ′(x )>0得x >e , ∴f (x )在(0,e)上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e)=ln e +ee =2.∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx -x (x >0),则h (x )在(0,+∞)上单调递减,∴h ′(x )=1x -kx 2-1≤0在(0,+∞)上恒成立,即当x >0时,k ≥-x 2+x =-⎝⎛⎭⎫x -122+14恒成立, ∴k ≥14.故k 的取值范围是⎣⎡⎭⎫14,+∞. 考点三 可化为不等式恒成立问题可化为不等式恒成立问题的基本类型类型1:函数f (x )在区间D 上单调递增,只需f ′(x )≥0.类型2:函数f (x )在区间D 上单调递减,只需f ′(x )≤0.类型3:∀x 1,x 2∈D ,f (x 1)>g (x 2),只需f (x )min >g (x )max .类型4:∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),只需f (x )min >g (x )min .类型5:∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),只需f (x )max <g (x )max .[典例] 已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.[解] (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.∵f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增, ∴f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1,∴g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.∴当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,∴实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. [解题技法](1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.[题组训练]已知函数f (x )=3x -3x +1,g (x )=-x 3+32(a +1)x 2-3ax -1,其中a 为常数.(1)当a =1时,求曲线g (x )在x =0处的切线方程;(2)若a <0,对于任意的x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2),求实数a 的取值范围.解:(1)当a =1时,g (x )=-x 3+3x 2-3x -1,所以g ′(x )=-3x 2+6x -3,g ′(0)=-3,又因为g (0)=-1, 所以曲线g (x )在x =0处的切线方程为y +1=-3x ,即3x +y +1=0. (2)f (x )=3x -3x +1=3(x +1)-6x +1=3-6x +1,当x ∈[1,2]时,1x +1∈⎣⎡⎦⎤13,12, 所以-6x +1∈[-3,-2], 所以3-6x +1∈[0,1],故f (x )在[1,2]上的值域为[0,1].由g (x )=-x 3+32(a +1)x 2-3ax -1,可得g ′(x )=-3x 2+3(a +1)x -3a =-3(x -1)(x -a ). 因为a <0,所以当x ∈[1,2]时,g ′(x )<0, 所以g (x )在[1,2]上单调递减, 故当x ∈[1,2]时,g (x )max =g (1)=-1+32(a +1)-3a -1=-32a -12,g (x )min =g (2)=-8+6(a +1)-6a -1=-3, 即g (x )在[1,2]上的值域为⎣⎡⎦⎤-3,-32a -12. 因为对于任意的x 1∈[1,2] ,总存在x 2∈[1,2], 使得f (x 1)=g (x 2),所以[0,1]⊆⎣⎡⎦⎤-3,-32a -12, 所以-32a -12≥1,解得a ≤-1,故a 的取值范围为(-∞,-1].[课时跟踪检测]1.(2019·南昌调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意的x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)解析:选A 根据题意,令g (x )=x 2f (x ),其导函数g ′(x )=2xf (x )+x 2f ′(x ),又对任意的x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x [2f (x )+xf ′(x )]>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).2.f (x )在(0,+∞)上的导函数为f ′(x ),xf ′(x )>2f (x ),则下列不等式成立的是( ) A .2 0182f (2 019)>2 0192f (2 018) B .2 0182f (2 019)<2 0192f (2 018)C .2 018f (2 019)>2 019f (2 018)D .2 018f (2 019)<2 019f (2 018)解析:选A 令g (x )=f (x )x 2,x ∈(0,+∞),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,则g (x )在(0,+∞)上为增函数, 即f (2 019)2 0192>f (2 018)2 0182, ∴2 0182f (2 019)>2 0192f (2 018).3.(2019·郑州质检)若对于任意的正实数x ,y 都有⎝⎛⎭⎫2x -y e ln y x ≤xm e 成立,则实数m 的取值范围为( )A.⎝⎛⎭⎫1e ,1 B.⎝⎛⎦⎤1e 2,1 C.⎝⎛⎦⎤1e 2,eD.⎝⎛⎦⎤0,1e 解析:选D 由⎝⎛⎭⎫2x -y e ln y x ≤xm e , 可得⎝⎛⎭⎫2e -y x ln y x ≤1m . 设yx=t ,令f (t )=(2e -t )·ln t ,t >0, 则f ′(t )=-ln t +2e t -1,令g (t )=-ln t +2e t -1,t >0,则g ′(t )=-1t -2et 2<0,∴g (t )在(0,+∞)上单调递减,即f ′(t )在(0,+∞)上单调递减. ∵f ′(e)=0,∴f (t )在(0,e)上单调递增,在(e ,+∞)上单调递减, ∴f (t )max =f (e)=e ,∴e ≤1m ,∴实数m 的取值范围为⎝⎛⎦⎤0,1e . 4.设函数f (x )=e x ⎝⎛⎭⎫x +3x -3-ax (e 为自然对数的底数),若不等式f (x )≤0有正实数解,则实数a 的最小值为________.解析:原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min .而g ′(x )=e x (x 2-x ),由g ′(x )>0可得 x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1),∴函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e.答案:e5.(2018·武汉质检)已知f (x )=x ln x ,g (x )=x 3+ax 2-x +2.(1)求函数f (x )的单调区间;(2)若对任意x ∈(0,+∞),2f (x )≤g ′(x )+2恒成立,求实数a 的取值范围.解:(1)∵函数f (x )=x ln x 的定义域是(0,+∞),∴f ′(x )=ln x +1.令f ′(x )<0,得ln x +1<0,解得0<x <1e, ∴f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 令f ′(x )>0,得ln x +1>0,解得x >1e, ∴f (x )的单调递增区间是⎝⎛⎭⎫1e ,+∞. 综上,f (x )的单调递减区间是⎝⎛⎭⎫0,1e ,单调递增区间是⎝⎛⎭⎫1e ,+∞. (2)∵g ′(x )=3x 2+2ax -1,2f (x )≤g ′(x )+2恒成立,∴2x ln x ≤3x 2+2ax +1恒成立.∵x >0,∴a ≥ln x -32x -12x 在x ∈(0,+∞)上恒成立.设h (x )=ln x -32x -12x (x >0),则h ′(x )=1x-32+12x 2=-(x -1)(3x +1)2x 2.令h ′(x )=0,得x 1=1,x 2=-13(舍去). 当x 变化时,h ′(x ),h (x )的变化情况如下表:∴当x =1时,h (x )取得极大值,也是最大值,且h (x )max =h (1)=-2,∴若a ≥h (x )在x ∈(0,+∞)上恒成立,则a ≥h (x )max =-2,故实数a 的取值范围是[-2,+∞).6.(2019·郑州质检)已知函数f (x )=ln x -a (x +1),a ∈R ,在点(1,f (1))处的切线与x 轴平行.(1)求f (x )的单调区间;(2)若存在x 0>1,当x ∈(1,x 0)时,恒有f (x )-x 22+2x +12>k (x -1)成立,求k 的取值范围.解:(1)由已知可得f (x )的定义域为(0,+∞).∵f ′(x )=1x-a ,∴f ′(1)=1-a =0,∴a =1, ∴f ′(x )=1x -1=1-x x, 令f ′(x )>0,得0<x <1,令f ′(x )<0,得x >1,∴f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f (x )-x 22+2x +12>k (x -1)可化为ln x -x 22+x -12>k (x -1). 令g (x )=ln x -x 22+x -12-k (x -1)(x >1), 则g ′(x )=1x -x +1-k =-x 2+(1-k )x +1x, 令h (x )=-x 2+(1-k )x +1(x >1),则h (x )的对称轴为x =1-k 2. ①当1-k 2≤1,即k ≥-1时,易知h (x )在(1,x 0)上单调递减, ∴h (x )<h (1)=1-k .若k ≥1,则h (x )<0,∴g ′(x )<0,∴g (x )在(1,x 0)上单调递减,∴g (x )<g (1)=0,不合题意;若-1≤k <1,则h (1)>0,∴必存在x 0使得x ∈(1,x 0)时g ′(x )>0,∴g (x )在(1,x 0)上单调递增,∴g (x )>g (1)=0恒成立,符合题意.②当1-k 2>1,即k <-1时,易知必存在x ,使得h (x )在(1,x 0)上单调递增.∴h (x )>h (1)=1-k >0,∴g ′(x )>0,∴g (x )在(1,x 0)上单调递增.∴g (x )>g (1)=0恒成立,符合题意.综上,k 的取值范围为(-∞,1).7.已知函数f (x )=x e x +ln x x(e 为自然对数的底数). (1)求证:函数f (x )有唯一零点;(2)若对任意x ∈(0,+∞),x e x -ln x ≥1+kx 恒成立,求实数k 的取值范围.解:(1)证明:f ′(x )=(x +1)e x+1-ln x x 2,x ∈(0,+∞), 易知当0<x <1时,f ′(x )>0,所以f (x )在区间(0,1)上为增函数,又因为f ⎝⎛⎭⎫1e =e 1e -e 2e <0,f (1)=e >0,所以f ⎝⎛⎭⎫1e f (1)<0,即f (x )在区间(0,1)上恰有一个零点,由题可知f (x )>0在(1,+∞)上恒成立,即在(1,+∞)上无零点, 所以f (x )在(0,+∞)上有唯一零点.(2)设f (x )的零点为x 0,即x 0e x 0+ln x 0x 0=0. 原不等式可化为x e x -ln x -1x≥k , 令g (x )=x e x-ln x -1x ,则g ′(x )=x e x +ln x x x , 由(1)可知g (x )在(0,x 0) 上单调递减,在(x 0,+∞)上单调递增, 故g (x 0) 为g (x )的最小值.下面分析x 0e x 0+ln x 0x 0=0, 设x 0e x 0=t ,则ln x 0x 0=-t , 可得⎩⎪⎨⎪⎧ ln x 0=-tx 0,ln x 0+x 0=ln t ,即x 0(1-t )=ln t , 若t >1,等式左负右正不相等;若t <1,等式左正右负不相等,只能t =1.因此g (x 0)=x 0e x 0-ln x 0-1x 0=-ln x 0x 0=1,所以k ≤1. 即实数k 的取值范围为(-∞,1].。

相关文档
最新文档