第三章单元检测题 【北师版】七年级上册数学

合集下载

北师大版七年级上册数学第三章测试卷及答案

北师大版七年级上册数学第三章测试卷及答案

北师大版七年级上册数学第三章测试卷及答案考生作答时要沉着冷静,规范书写,确保字迹清楚、卷面整洁。

按照要求在指定位置正确填写信息、在与题号相对应的答题区域内答题一、选择题1.“x与y两数的平方差”可以用代数式表示为( )A. x²-y²B. x-y²C. (x-y)²D. x²-y2. 不一定相等的一组是( )A. a+b与b+aB. 3a与a+a+aC. a³与a·a·aD. 3(a+b)与3a+b3.下列代数式中多项式的个数有( )2a m−n63π+a5a−b2(x2−4).A. 2B. 3C. 4D. 54. 如果3aᵐ⁺³b⁴与a²b":是同类项,则mn的值为( )A. 4B. -4C. 8D. 125. 如图,长为4a的长方形,沿图中虚线裁剪成四个形状大小完全相同的小长方形,那么每个小长方形的周长为( )(用含a的式子表示)A. 4aB. 5aC. 6aD. 8a6. 已知a-2b=-1, 则代数式1-2a+4b的值是( )A. -3B. -1C. 2D. 37.某种商品进价为a元,在销售旺季,提价30%销售,旺季过后,商品以7折价格开展促销活动,这时一件商品的售价为( )A. aB. 0.7aC. 1.03aD.0.91a8. 下列说法正确的是( )A.1x +1是多项式B.3x+y3是单项式C. -mn⁵是五次单项式D. -x²y-2x³y是四次多项式9. 下列运算正确的是( )A. 2⁴=8B. 2x²-x²=2C. 2a+3b=5abD. 2x²y-x²y=x²y第1页共 10页10.如图,各网格中四个数之间都有相同的规律,则第7个网格中右下角的数为( )第1个第2个第3个A. 62B. 79C. 88D. 98二、填空题11. 有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为 .12. 如果a²+a=1,那么代数式3a²+3a+2的值为 .13. 多项式4x²y-3xy+1 的次数是 .14. 如果单项式−xyᵇ⁺¹与单项式12x a−2y3是同类项,那么代数式((a−b)²⁰²³=.三、计算题15. 计算:(1) -2⁴+(4-9)²-5×(-1)⁶;(2)(2a²b-ab²)-2(ab²+3a²b).四、解答题16.判断一个正整数能被3 整除的方法是:把这个正整数各个数位上的数字相加,如果所得的和能够被3整除,则这个正整数就能被3整除.请证明对于任意两位正整数,这个判断方法都是正确的.17. 已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求(a+b+cd)x²-cd.18. 先化简, 再求值: (3a²+6a-1)-2(a²+2a-3). 其中a=-2.19. 观察下列三行数并按规律填空:-1, 2, -3, 4, -5, ▲ ,▲ , …;1,4,9, 16,25, ▲ , ▲ , …;0,3,8, 15, 24, ▲ ,▲ , …(1)第一行数按什么规律排列?(2)第二行数、第三行数分别与第一行数有什么关系?(3) 取每行数的第10个数,计算这三个数的和.五、综合题20. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、 10元/本.(1)现购进a本甲种书和b本乙种书.请用含a, b的代数式表示,共付款元;第2页共 10页(2)若花费5×10⁴元购进甲种书、花费3×10³元购进乙种书,用科学记数法表示共花费元.21. 某商场计划投入一笔资金(即本金)采购一批商品,经过市场调查发现,有两种销售方式:方式A:若月末出售,可获利30%,但要支付仓储费用600元;方式B:若月初出售,可获利20%,并可用本金和利润再投资其他商品,到月末又可获利5%. 若商场投资本金x元.(1)分别用含x的最简代数式表示出按方式A,B出售所获得的利润;(2)若商场投资本金30000元,选择哪种销售方式获利较多?并求出此时获利金额.22. 已知x, y, z, m, n满足①5(x-y+3)²+2|m-2|=0;n³a²⁻ʸb⁵⁺ᶻ是一个关于a、b三次单项式且系数为-1:(1)求m, n的值;(2)求代数式(x−y)ᵐ⁺¹+(y−z)¹⁻ⁿ+(z−x)⁵的值.23.如图,用同样长的火柴棒按规律搭建图形,图①需要6根火柴棒,图②需要11根火柴棒,图③需要 16根火柴棒, ……(1)图⑥需要根火柴棒;(2)按照这个规律,图n需要火柴棒的根数为 .(用含a的式子表示)第3页共10页参考答案与解析1. 【答案】A【解析】【解答】解:“x与y两数的平方差”可以用代数式表示为:x²-y²,故A符合题意.故答案为: A.【分析】根据题意直接列出代数式即可。

北师大版七年级数学上册第三章测试题(含答案)

北师大版七年级数学上册第三章测试题(含答案)

北师大版七年级数学上册第三章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -1;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分) 7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 .11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1, 当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a 3b n +2+ab 3+6是一个六次多项式,单项式x 3n y 7-m 的次数与该多项式相同,求m ,n 的值.解:因为a 3b n +2+ab 3+6是一个六次多项式, 所以3+n +2=6, 解得n =1,所以3n +7-m =6, 即3+7-m =6, 所以m =4,即m ,n 的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2合并同类项后不含x 3,x 2项,求2a +3b 的值.解:原式=x 4+(ax 3+5x 3)+(3x 2-7x 2-bx 2)+6x -2 =x 4+(a +5)x 3+(-4-b)x 2+6x -2. 由题意,得a +5=0,-4-b =0, 解得a =-5,b =-4,所以2a +3b =2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆. (1)求花坛的周长l ; (2)求花坛的面积S ;(3)若a =8 m ,r =5 m ,求此时花坛的周长及面积(π取3.14).解:(1)l =2πr +2a. (2)S =πr 2+2ar.(3)当a =8 m ,r =5 m 时,l =2π×5+2×8=10π+16≈47.4 m ,S =π×52+2×8×5=25π+80≈158.5 m 2.20.已知A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,当a =1,b =2时,求A -2B +3C 的值.解:∵A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,∴A -2B +3C =(5a +3b)-2(3a 2-2a 2b)+3(a 2+7a 2b -2) =5a +3b -6a 2+4a 2b +3a 2+21a 2b -6 =-3a 2+25a 2b +5a +3b -6. 当a =1,b =2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分) 23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________. (2)其中某一行最后一个数字可能是2 017吗?若不可能,请说明理由;若可能,请求出是第几行?解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3.所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 017,因为由3n -2=2 017, 解得n =2 0193=673,∴最后一个数字可能是2 017,是第673行.。

北师大版七年级上册数学第三章测试题附答案

北师大版七年级上册数学第三章测试题附答案

北师大版七年级上册数学第三章测试题附答案(时间:120分钟 满分:120分)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列说法中正确的是( B ) A .7+1a是多项式B .3x 2-5x 2y 2-6y 4-2是四次四项式C .x 6-1的项数和次数都是6 D.a +b 3不是多项式2.下列计算中正确的是( D ) A .3a -2a =1 B .3x 2y -2xy 2=xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 3.下列各式的运算:(1)-(-a -b)=a -b ;(2)5x -(2x -1)-x 2=5x -2x -1+x 2;(3)3xy -12(xy -y 2)=3xy -12xy+y 2;(4)(a 3+b 3)-3(2a 3-3b 3)=a 3+b 3-6a 3+9b 3.其中去括号不正确的有( B )A .(1)(2)B .(1)(2)(3)C .(2)(3)(4)D .(1)(2)(3)(4)4.有一条长为l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t ,则所围成园子的面积为( A )A .(l -2t)tB .(l -t)t C.⎝⎛⎭⎫l 2-t t D.⎝⎛⎭⎫l -t 2t 5.如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x 的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x 的值多大,输出y 的值总不变,则a 的值为( B )A .2B .-2C .3D .-36.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是( D )A .71B .78C .85D .89二、填空题(本大题共6小题,每小题3分,共18分)7.一个单项式只含a,b两个字母,并且它的系数为-1,次数为4.试写出这个单项式:答案不唯一,如-a3b,-a2b2,-ab3 .8.对于有理数a,b,定义a⊙b=3a+2b,则(x+y)⊙(x-y)化简后得5x+y .9.已知a+b=4,ab=-2,则代数式(4a-3b-2ab)-(a-6b-ab)的值为14 .10.若5x2y|m|-14(m+1)y2-3是三次三项式,则m等于 1 .11.规定=ad-bc,若=4,则-11x2+6= 5 .12.如果一个多项式中各个单项式的次数都相等,则称该多项式为齐次多项式.若-x|m|y +3x2y3+5x2y n+y5是齐次多项式,则m n的值为64或-64 .选择、填空题答题卡一、选择题(每小题3分,共18分)题号 1 2 3 4 5 6 得分答案 B D B A B D二、填空题(每小题3分,共18分) 得分:______7.答案不唯一,如-a3b,-a2b2,-ab38.5x+y 9. 14 10. 111. 5 12.64或-6413.化简下列各式:(1)2(2x-3y)-(3x+2y+1);解:原式=4x-6y-3x-2y-1=x-8y-1.(2)-(3a2-4ab)+[a2-2(2a+2ab)].解:原式=-3a2+4ab+a2-4a-4ab=-2a2-4a.14.先化简,再求值:3(x2-2xy)-[(-2xy+y2)+(x2-2y2)],其中x,y的值如图所示.解:原式=3x2-6xy-(-2xy+y2+x2-2y2)=3x2-6xy+2xy-y2-x2+2y2=2x2-4xy+y2.当x=2,y=-1时,原式=2×22-4×2×(-1)+(-1)2=8+8+1=17.15.若单项式3x2y5与-2x1-a y3b-1是同类项,求下面代数式的值:5ab2-[6a2b-3(ab2+2a2b)].解:因为3x2y5与-2x1-a y3b-1是同类项,所以1-a=2且3b-1=5,解得a=-1,b=2,原式=5ab2-(6a2b-3ab2-6a2b)=5ab2-6a2b+3ab2+6a2b=8ab2.当a=-1,b=2时,原式=8×(-1)×22=-8×4=-32.16.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示这两个月公司应付给商店的钱数;(2)假设代销费为每月200 元,每件产品的提成为2 元,该商店一月份销售了200 件,二月份销售了250 件,求该商店这两个月销售此种产品的收益.解:(1)这两个月公司应付给商店的钱数为[2a+(m+n)b]元.(2)当a=200,b=2,m=200,n=250时,2a+(m+n)b=2×200+(200+250)×2=1 300(元).答:该商店这两个月销售此种产品的收益为1 300 元.17.已知一个多项式A减去多项式2x2+5x-3,某同学将减号写成了加号,运算结果得-x2+3x-7.求多项式A及它们的差.解:因为A+2x2+5x-3=-x2+3x-7,所以A=-(2x2+5x-3)+(-x2+3x-7)=-3x2-2x-4.它们的差为-3x2-2x-4-(2x2+5x-3)=-5x2-7x-1.四、(本大题共3小题,每小题8分,共24分)18.当式子(2x+4)2+5取得最小值时,求式子5x-[-2x2-(-5x+2)]的值.解:当2x+4=0即x=-2时,式子(2x+4)2+5取得最小值.5x-[-2x2-(-5x+2)]=5x-(-2x2+5x-2)=5x+2x2-5x+2=2x2+2.当x=-2时,原式=2×(-2)2+2=10.19.先化简,再求值:5(3a2b-ab2)-4(-ab2+3a2b),且|a+2|+(b-3)2=0.解:5(3a2b-ab2)-4(-ab2+3a2b)=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.因为|a+2|+(b-3)2=0,所以a=-2,b=3,所以原式=3×(-2)2×3-(-2)×32=36+18=54.20.如果单项式2mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)求(7a-22)2 020的值;(2)若2mx a y+5nx2a-3y=0,求(2m+5n)2 020的值.解:(1)因为单项式是同类项,所以2a-3=a,所以a=3,所以(7a -22)2 020=1.(2)因为2mx a y +5nx 2a -3y =0,2mx a y 与5nx 2a -3y 是关于x ,y 的单项式, 且它们是同类项, 所以2m +5n =0,所以(2m +5n )2 020=0.五、(本大题共2小题,每小题9分,共18分)21.代数式2x 2+ax -y +6与2bx 2-3x +5y -1的差与字母x 的取值无关,求下列代数式的值:13a 3-3b 2-⎝⎛⎭⎫14a 3-2b 2. 解:由题意,得2x 2+ax -y +6-2bx 2+3x -5y +1 =(2-2b )x 2+(a +3)x -6y +7.因为与字母x 的取值无关, 所以a +3=0,2-2b =0, 所以a =-3,b =1, 所以13a 3-3b 2-⎝⎛⎭⎫14a 3-2b 2 =13×(-3)3-3×12-⎣⎡⎦⎤14×(-3)3-2×12 =-9-3+354=-134.22. 如图所示是小明家的住房结构平面图(单位:米),装修房子时,他打算将卧室以外的部分都铺上地砖.(1)若铺地砖的价格为80 元/平方米,那么购买地砖需要花多少钱?(用代数式表示) (2)已知房屋的高度为3 米,现在想要在客厅和卧室的墙壁上贴上壁纸,那么需要多少平方米的壁纸(门窗所占面积忽略不计)?(用代数式表示)(3)若x =4,y =5,且每平方米地砖的价格是90 元,每平方米壁纸的价格是15元,那么,在这两项装修中,小明共要花费多少钱?(各种小的损耗不计)解:(1)客厅的面积是2x ·4y ,厨房的面积是x (4y -2y ),卫生间的面积是y·(4x -3x ),所以共需要地砖的面积为2x ·4y +x (4y -2y )+y·(4x -3x )=11xy ,因为每平方米的价格为80 元,故共需要80×11xy =880xy (元). 答:购买地砖需要花880xy 元钱.(2)根据题意得3×[2×(2x +4y )+2×(2y +2x )], 化简得24x +36y.答:需要(24x +36y )平方米的壁纸. (3)共需地砖11xy 平方米,共需壁纸(24x+36y)平方米.将x=4,y=5代入,得共需地砖11×4×5=220(平方米),共需壁纸24×4+36×5=276(平方米).因为每平方米地砖的价格是90 元,每平方米壁纸的价格是15 元,所以共需钱数为220×90+276×15=23 940(元).答:在这两项装修中,小明共要花费23 940元.六、(本大题共12分)23.点A,B,C在数轴上表示数a,b,c,满足(b+2)2+(c-24)2=0,多项式x|a+3|y2-ax3y+xy2-1是关于字母x,y的五次多项式.(1)a的值为0或-6 ,b的值为-2 ,c的值为24 ;(2)已知蚂蚁从A点出发,途经B,C两点,以3 m/s的速度爬行,需要多长时间到达终点C?(3)求a2b-bc的值.解:(2)当点A为-6时,如图①,AC=24-(-6)=30,30÷3=10 s,当点A为0时,如图②,不符合题意.所以需要10 s到达终点C.(3)①当a=0,b=-2,c=24时,a2b-bc=02×(-2)-(-2)×24=48;②当a=-6,b=-2,c=24时,a2b-bc=(-6)2×(-2)-(-2)×24=-72+48=-24.。

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)

北师大版七年级数学上册《第三章整式及其加减》单元测试卷(带答案)一、选择题1.小明比小强大2岁,比小华小4岁.如果小强y 岁.则小华( ) A .(y −2)岁B .(y +2)岁C .(y +4)岁D .(y +6)岁2.下列代数式中,是次数为3的单项式的是( ) A .−m 3nB .3C .4t 3−3D .x 2y 23.对于多项式−3x −2xy 2−1,下列说法中,正确的是( ) A .一次项系数是3 B .最高次项是2xy 2 C .常数项是−1D .是四次三项式4.下列各组单项式中,不是同类项的是( ) A .−2y 2a 3与12ay 2B .12x 3y 与−12xy 3 C .6a 2bn 与−a 2nbD .23与325.按如图所示的程序运算,如果输入x 的值为12,那么输出的值为( )A .3B .0C .−1D .−36.下列运算中,正确的是( ) A .3a +2b =5abB .2a 3+3a 2=5a 5C .5a 2−4a 2=1D .3a 2b −3ba 2=07.若关于x 的代数式2x 2+ax +b −(2bx 2−3x −1)的值与x 无关,则a −b 的值为( ) A .2B .4C .−2D .−48.观察下列关于m ,n 的单项式的特点:12m 2n ,23m 2n 2,34m 2n 3,45m 2n 4,56m 2n 5,……,按此规律,第n 个单项式是( ) A .nn+1m 2n n B .nn+1m n n nC .n−1nm 2n nD .n−1nm n n n二、填空题9.一支钢管需要a 元,一本管记本需要b 元,现买5支钢笔和8本笔记本共需要 元. 10.若x P +4x 3+qx 2+2x +5是关于x 的五次四项式,则qp = . 11.已知2x 6y 2和−x 3m y n 是同类项,则2m +n 的值是 .12.一种商品成本为a 元/件,商场在成本的基础上增加20%作为售价出售,现搞活动促销,按原售价的九折出售.设售出m件该商品时,总利润为元.13.已知a是−5的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则a+b+c的值是.三、计算题14.计算:(1)4b−3a−3b+2a(2)(3x2−y2)−3(x2−2y2)+m2−3cd+5m的值.15.若a、b互为相反数,c、d互为倒数,|m|=3,求a+b4m四、解答题16.已知代数式A=x2+ax−2a(1)求2A−B;(2)若2A−B的值与x的取值无关,求a的值.17.如图,在一个直角三角形休闲广场的直角处设计一块四分之一圆形花坛,若圆形的半径为r米,广场一直角边长为2a米,另一直角边长为b米.(1)列式表示广场空地的面积(用含π的式子表示);(2)若a=150米,b=50米,r=20米,求广场空地的面积(π取3.14).18.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算:时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为15公里,行车时间为20分钟,则需付车费多少元?(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元(用含a、b的代数式表示,并化简)?(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,但下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差多少分钟?参考答案1.D2.D3.C4.B5.C6.D7.D8.A9.(5a+8b)10.011.612.0.08am13.1014.(1)解:4b−3a−3b+2a=(4−3)b+(2−3)a=b−a(2)解:(3x2−y2)−3(x2−2y2)=3x2−y2−3x2+6y2=5y215.解:依题意得a+b=0,cd=1,m=±3.当m=3时,原式=0+32−3×1+5×3=9−3+15=21.当m=−3时,原式=0+(−3)2−3×1+5×(−3)=9−3−15=−9. 因此值为21或-9.16.(1)解:原式=4ax-x-4a+1(2)解:a=1417.(1)解:四分之一圆的面积为:14πr2;直角三角形的面积为:12×2a×b=ab;所以,广场空地的面积为:ab−14πr2;(2)解:当a=150米,b=50米,r=20米,π=3.14时ab−14πr2=150×50−14×3.14×202=7186(平方米)18.(1)解:1.8×15+0.45×20+0.4×(15−10)=38(元)答:需付车费38元.(2)解:当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a−10)=(2.2a+0.45b−4)元;(3)解:小王与小张乘坐滴滴快车分别为x分钟、y分钟1.8×9.5+0.45x=1.8×14.5+0.45y+0.4×(14.5−10)整理,得:0.45x−0.45y=10.8∴x−y=24因此,这两辆滴滴快车的行车时间相差24分钟.。

北师大版七年级上册数学第三章检测试题(附答案)

北师大版七年级上册数学第三章检测试题(附答案)

北师大版七年级上册数学第三章检测试题(附答案)、单选题(共 12题;共 24 分)1. 用代数式表示 “m 的 5倍与 n 的差的平方 ”,正确的是 ( ) A. (5m - n )2B. 5(m - n )2C. 5m -n 22. 下列结论中,正确的是( )A. 单项式 的系数是 3,次数是 2.C. 单项式﹣ xy 2z 的系数是﹣ 1,次数是 4. 3. 下列计算:( 1)a n ?a n =2a n , ( 2) a 6+a 6=a 12 3=9x 3y 9 中,正确的个数为 ( ) B. 单 项式 m 的次数是 1 ,没有系数 .D. 多项式 5x 2-xy+3 是三次三项式 .3) c?c 5=c 5 , (4)26+26=27 , (5)( 3xy 3)C. 个2D. 个37.我们把 1,1,2,3,5,8, 13,21,⋯这组数称为斐波那契数列,为了进一步研究,依次以这列数为半 径作 90°圆弧, , ,⋯得到斐波那契螺旋线, 然后顺次连结 P 1P 2 , P 2P 3 , P 3P 4P 1(0,1), P 2(﹣ 1, 0), P 3( 0,﹣ 1),则该折线上的点 P 9的坐标为 A. (﹣6,24) B. (﹣ 6,25) C. (﹣5,24) D. (﹣ 5,25) 8. 下列说法中正确的是( )D. (m -5n ) 2A. 0 个B. 个14.下列运算正确的是()A. a 2+a 2=2a 4B. a 6÷a 2=a 3C.5. 若 x 是 2 的相反数,|y|=3 ,则 x ﹣y 的值是(A. ﹣5 B . 16.已知 m 2-m-1=0 ,则计算: m 4-m 3-m+2 的结果为A. 3 B . -3﹣ a 3) 2=a 6D. ( ab ) 2=ab 2)C . ﹣1 或 5D . 1 或﹣ 5 ()C . 5D . -5得到螺旋折线(如图),已知点 ()A. 0不是单项式B. ﹣的系数是C.﹣23a2b3c的次数是8D. x2y 的系数是09. 如果2a2m-5b n+2与mab2n-2的和为单项式,则m 与n 的值为().A. m = 2,n = 3B. m = 3,n =4C. m = -3,n = 2D. m = 3,n = -210. 下列关于单项式- xy2的说法中,正确的是()A. 系数是 3,次数是 2B. 系数是 , 次数是 2C. 系数是 , 次数是 3D. 系数是 - , 次数是 3 11.如图,动点 P 在平面直角坐标系中按图中箭头所示方向运动, 第 1 次从原点运动到点 (1, 1),第 2 次接着运动到点 (2, 0),第 3 次接着运动到点 (3, 2),⋯⋯,按这样的运动规律,经过第 2019 次运动后,动点 P 的坐 标是( )A. (2018, 2)B. (2019, 2)C. (2019,1)D. (2017, 1)12. 如果 y=3x , z=2(y-1),那么 x-y+z 等于( ) A. 4x-1B . 4x-2C . 5x-1D . 5x-2二、填空题(共 7题;共 16 分)13.七年一班要给每人添置一套新桌椅 .每行 人,排好 行后,发现还有 人没有新桌椅,请问共需要 ________ 套桌椅.14. _____________________ 在平面直角坐标系中,点 A 1(1,2),A 2(2,5), A 3(3,10), A 4(4,17), ⋯,用你发现的规律 确定点 A n 的坐标为 . 15.将一些相同的 “○按”如图所示的规律依次摆放,观察每个 “稻草人 ”中的 “○的”个数,则第 20个“稻草人 ”中有 _______ 个“○.”16. 已知 x m +1y n -2与- 2x 2y 4是同类项,则 m =17. _____________________________________________ 若﹣5abn ﹣1与 a m ﹣1b 3 是同类项,则 m+2n=18.观察下列各式: ⋯请你将发现的规律用含自然数 n( n ≥1)的代数式表达出来 ______ .19. 如上图,已知等腰 Rt △ AA 1A 2的直角边长为 1,以 Rt △ AA 1A 2的斜边 AA 2为直角边,画第 2 个等腰 Rt △AA 2A 3 , 再以 Rt △ AA 2A 3的斜边 AA 3为直角边,画第 3 个等腰 Rt △AA 3A 4 , ⋯,依此类推直到第 100 个等腰 Rt △ AA 100A 101 , 则由这 100 个等腰直角三角形所构成的图形的面积为 __________ 。

北师大版七年级上册数学第三章测试卷含答案

北师大版七年级上册数学第三章测试卷含答案

北师大版七年级上册数学第三章测试题一、单选题1.在代数式x 2+5,-1,x 2-3x+2,π,5x ,211x x ++中,整式有( ) A .3个 B .4个 C .5个 D .6个 2.下列运算正确的是( )A .()2121a a -=-B .2222a a a +=C .33323a a a -=D .220a b ab -= 3.多项式2112x x ---的各项分别是( ) A .21,,12x x - B .21,,12x x --- C .21,,12x x D .21,,12x x -- 4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球和7个篮球共需要多少元( ) A .4m+7n B .28mn C .7m+4n D .11mn 5.下列各组中的两个单项式能合并的是( ) A .4和4x B .3x 2y 3和−y 2x 3 C .2ab 2和100ab 2c D .m 和m 2 6.单项式-3πxy 2z 3的系数和次数分别是( )A .-π,5B .-1,6C .-3π,6D .-3,7 7.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- 8.已知2x 3y 2和﹣x 3m y 2是同类项,则式子4m ﹣24的值是( )A .20B .﹣20C .28D .﹣28 9.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3 10.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式为( ) A .b =a(1+8.9%+9.5%)B .b =a(1+8.9%×9.5%)C .b =a(1+8.9%)(1+9.5%)D .b =a(1+8.9%)2(1+9.5%)二、填空题11.单项式225xy -的系数是________,次数是________. 12.多项式3233525xy x y x y -+-+的次数是________,最高次项的系数是________,常数项是________.13.去括号:26(31)x x --+=________14.列式表示:x 的3倍与x 的二分之一的差为________.15.一个两位数,个位数字是十位数字的2倍,若个位数字为a ,则这个两位数可表示为__________16.m 是一个两位数,n 是一个一位数,把n 放在m 的左边,所构成的三位数为________. 17.三个连续偶数,最小的一个是22n +,则这三个偶数的和是________.18.若2|2|(1)0m n n -++=,则2m n -+=________.19.若代数式2345x x --的值为7,则2453x x --的值为________. 20.若23n x y 与332m x y -的差是单项式,则n m =________. 21.计算:()()121x y x x y --++-+=________.三、解答题22.计算: (1)2a 5−3b 5−4(12a 5−12a 3b 2+2a 2b 3−34b 5);(2)(4a 2b −5ab 2)−(3a 2b −4ab 2)23.先化简,再求值.(1)(−x 2+5x +4)+(5x −4+2x 2),其中x =−2;(2)(2x 2−2y 2)−3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =−1,y =2.24.已知|x +2|+(y −1)2=0,求13x 3+(2x 2y +3xy 2−6)−3(29x 3+x 2y +xy 2)的值.25.已知某轮船顺水航行3小时,逆水航行2小时,(1)设轮船在静水中前进的速度是m 千米/时,水流的速度是a 千米/时,则轮船共航行多少千米?(2)当轮船在静水中前进的速度是80千米/时,水流的速度是3千米/时,则轮船共航行多少千米?26.(1)已知多项式238x my +-与多项式227nx y -++的差中,不含有x ,y ,求m n mn +的值;(2)已知2|3|(4)0a b ++-=,求多项式222a ab b ++的值.27.张华在一次测验中计算一个多项式加上532xy yz xz -+时,误认为减去此式,计算出错误结果为26xy yz xz -+,试求出正确答案.参考答案1.B【解析】【详解】凡是在分母中没有字母的都是整式,所以2+5,-1,x 2-3x+2,π,是整式,所以选B .2.B【解析】【分析】分别根据去括号、合并同类项进行计算进行判别即可.故选:B .【详解】A. ()2122a a -=-,故A 选项错误;B. 2222a a a +=,故B 选项正确;C. 33323a a a -=-,故C 选项错误;D. 22a b ab -,不是同类项,不能合并,故D 选项错误.故选:B .【点睛】本题考查的是去括号、合并同类项,熟知同类项的概念是解答此题的关键. 3.B【解析】【分析】根据多项式的概念求解即可.【详解】 多项式2112x x ---的各项分别是21,,12x x ---. 故选B.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.4.A【解析】【分析】根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.【详解】∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选A.【点睛】注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.5.D【解析】【分析】根据同类项的概念结合选项求解.【详解】A、4和4x不是同类项,不能合并;B、3x2y3和−y2x3不是同类项,不能合并;C、2ab2和100ab2c不是同类项,不能合并;D、m和m是同类项,可以合并.2故选D.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中相同字母的指数相同的概念.6.C【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式系数、次数的定义,单项式-3πxy2z3的系数和次数分别是-3π,6.故选:C.【点睛】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.7.B【解析】【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】a-,∵一个多项式与221-+的和是32a a∴这个多项式为:(3a-2)-(a2-2a+1)=3a-2-a2+2a-1=-a2+5a-3,故选B.【点睛】题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键.8.B【解析】【详解】∵2x3y2与﹣x3m y2的和是单项式,∴2x3y2与﹣x3m y2是同类项,∴3m=3,解得m=1,所以,4m-24=4×1-24=4-24=-20.故选B.9.B【解析】【分析】知识点是代数式求值及绝对值,根据a的取值范围,先去绝对值符号,再计算求值.【详解】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选B.【点睛】考核知识点:绝对值化简.10.C【解析】【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【详解】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.11.25- 3【解析】【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数进行分析即可.【详解】单项式225xy-的系数是25-,次数是3,故答案为:25-;3. 【点睛】 此题主要考查了单项式,关键是掌握单项式的相关定义.12.5 -2 +5【解析】【分析】根据多项式的概念及单项式的次数、系数的定义解答.【详解】多项式3233525xy x y x y -+-+的次数是5.最高次项系数是-2,常数项是+5. 故答案为:5,-2,+5.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.13.2631x x +-【解析】【分析】利用去括号法则求解即可.【详解】 26(31)x x --+=2631x x +-.故答案为:2631x x +-.【点睛】此题考查了去括号法则的运用,熟练掌握去括号法则是解题的关键.14.132x x -【解析】【分析】根据题意可以用代数式表示题目中的语句,本题得以解决.【详解】由题意可得,x的3倍比x的二分之一大多少可表示为:132x x-,故答案为:132x x-.【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.15.6a【解析】【分析】根据题意,先求出十位上的数字,再用十位数字×10+个位数字×1求出这个两位数.【详解】个位数字是十位数字的2倍,若个位数字为a,则十位数是12 a,则这个数是1106.2a a a⨯+=故答案为:6a.【点睛】考查列代数式,掌握两位数的表示方法是解题的关键.16.100n m+【解析】【分析】根据m是一个两位数,n是一个一位数,将n写到m的左边成为一个三位数,即n扩大了100倍,m不变,即可得出答案.【详解】由题意,可得这个三位数为:100n m+.故答案为100n m+.【点睛】主要考查了列代数式,掌握三位数的表示方法,能够用字母表示数是本题的关键.17.612n+【解析】【分析】三个连续偶数之间的关系,22n +为最小的整数,则其余两个连续偶数分别为24n +、26n +,即可求出三个偶数的和.【详解】22n +为最小的整数,则其余两个连续偶数分别为24n +、26n +,所以三个连续偶数之和为:22n ++24n ++26n +=612n +.故答案为:612n +.【点睛】把握好连续偶数之间的关系,每相邻两个偶数之间差2,同时要注意题中已经给出最小的偶数为22n +,所以其余两个数都要用含有n 的式子表示出来.18.0【解析】【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】根据题意得,m-2n=0,n+1=0,解得m=-2,n=-1,所以,-m+2n=-(-2)+2×(-1)=2-2=0.故答案为:0.【点睛】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.19.-1【解析】【分析】根据题意列出等式,变形后求出x 2-43x 的值,代入原式计算即可得到结果. 【详解】∵3x 2-4x-5的值为7,3x 2-4x=12,代入x 2-43x-5,得13(3x 2-4x )-5=4-5=-1.故答案为:-1.【点睛】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键. 20.8【解析】【分析】根据单项式的差是单项式,可得同类项,根据同类项的定义,可得答案.【详解】由题意,得m =2,n =3.∴n m =23=8.,故答案为:8.【点睛】本题考查了合并同类项,利用同类项的定义得出n ,m 的值是解题关键.21.42x y -【解析】【分析】先去括号,再合并同类项.【详解】()()121x y x x y --++-+=121x y x x y -+-+-+=42x y -.故答案为:42x y -.【点睛】解题要注意正确合并同类项;整式的加减中去括号时要看括号外的因数是正数还是负数(正数时,去括号后原括号内各项的符合与原来的符合相同;负数时,去括号后原括号内各项的符合与原来的符合相反).22.(1)2a 3b 2−8a 2b 3;(2)a 2b −ab 2.【解析】【分析】(1)由于原式中含有括号,则先去括号,然后进行加减运算合并同类项;(2)先去括号,再合并同类项.【详解】(1)原式=2a5−3b5−2a5+2a3b2−8a2b3+3b5=2a3b2−8a2b3.(2)原式=4a2b−5ab2−3a2b+4ab2=a2b−ab2.【点睛】整式的加减中去括号时要看括号外的因数是正数还是负数:正数时,去括号后原括号内各项的符合与原来的符合相同;负数时,去括号后原括号内各项的符合与原来的符合相反.23.(1)x2+10x,-16;(2)−x2+y2,3.【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把x、y的值代入计算即可求出值.【详解】(1)(−x2+5x+4)+(5x−4+2x2).=−x2+5x+4+5x−4+2x2=x2+10x;当x=−2时,原式=(−2)2+10×(−2)=4−20=−16.(2)(2x2−2y2)−3(x2y2+x2)+3(x2y2+y2)=2x2−2y2−3x2y2−3x2+3x2y2+3y2=−x2+y2当x=−1,y=2时,原式=−(−1)2+22=−1+4=3.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.−13x3−x2y−6,−223【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【详解】因为|x +2|+(y −1)2=0,所以x +2=0,y −1=0,所以x =−2,y =1.13x 3+(2x 2y +3xy 2−6)−3(29x 3+x 2y +xy 2)=13x 3+2x 2y +3xy 2−6−23x 3−3x 2y −3xy 2.=−13x 3−x 2y −6,当x =−2,y =1时,原式=−13×(−2)3−(−2)2×1−6=−13×(−8)−4−6=−223.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.()5m a +千米;403千米【解析】【分析】(1)共航行路程=顺水路程+逆水路程=(静水速度+水流速度)×顺水时间+(静水速度-水流速度)×逆流时间,把相关数值代入,化简即可;(2)把80,3代入(1)得到的式子,求值即可.【详解】(1)轮船共航行路程为:(m+a )×3+(m-a )×2=(5m+a )千米, (2)把m=80,a=3代入(1)得到的式子得:5×80+3=403千米. 答:轮船共航行403千米.【点睛】本题考查列代数式及代数式求值问题,得到共航行路程的等量关系是解决本题的关键,用到的知识点为:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度.26.(1)3;(2)1【解析】【分析】(1)先根据题意得出m 、n 的值,代入代数式进行计算即可;(2)根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】(1)()2223827(3)(2)15x my nx y n x m y +---++=++--.因为不含有x ,y ,所以30n +=,20m -=,即3n =-,2m =.所以()()3223963mn mn +=-+⨯-=-=. (2)因为2|3|(4)0a b ++-=, 所以30a +=,40b -=,即3a =-4b =,.所以22222(3)2(3)441a ab b ++=-+⨯-⨯+=.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键. 27.12125xy yz xz -+【解析】【分析】运用两次整式的加减运算,设原来的多项式为A ,按照减法列算式求出A ,再按照加法求出正确结果.【详解】设原来的整式为A ,则A-(5xy-3yz+2xz )=2xy-6yz+xz ,得A=7xy-9yz+3xz ;∴A+(5xy-3yz+2xz )=7xy-9yz+3xz+(5xy-3yz+2xz )=12xy-12yz+5xz ;∴原题的正确答案为:12xy-12yz+5xz .【点睛】整式的加减运算实际上就是去括号、合并同类项.。

北师大版七年级数学上册第三章测试题(含答案)

北师大版七年级数学上册第三章测试题(含答案)

北师大版七年级数学上册第三章测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分)1.下列各式:①2x -1;②0;③S =πR 2;④x<y ;⑤st ;⑥x 2.其中代数式有( B )A .3个B .4个C .5个D .6个2.下列说法中,正确的是( C ) A.m 2n 4不是整式B .-3abc 2的系数是-3,次数是3C .3是单项式D .多项式2x 2y -xy 是五次二项式 3.下列计算正确的是( D ) A .3a -2a =1 B .x 2y -2xy 2=-xy 2 C .3a 2+5a 2=8a 4 D .3ax -2xa =ax 4.下列叙述中,错误的是( C )A .代数式x 2+y 2的意义是x ,y 的平方和B .代数式5(a +b)的意义是5与(a +b)的积C .x 的5倍与y 的和的一半,用代数式表示是5x +y2D .x 的12与y 的13的差,用代数式表示是12x -13y5.如图①,把一个长为m ,宽为n 的长方形(m>n)沿虚线剪开,拼成图②,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( A )A.m -n 2B .m -nC.m 2D.n 26.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( B )A .110B .158C .168D .178第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题3分,共18分) 7.多项式 -3m +2 与m 2+m -2的和为m 2-2m.8.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮 (85-a +3b) 吨.9.化简:m -[n -2m -(m -n)]的结果为 4m -2n . 10.若4x m y n 与-3x 6y 2的和是单项式,则mn = 12 .11.若a -b =1,则(a -b)2-2a +2b 的值是 -1 .12.如图是一组有规律的图案:第1个图案由四个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n 为正整数)个图案由 (3n +1) 个▲组成.三、(本大题共5小题,每小题6分,共30分)13.计算:(1)3x 2+4x -2x 2-x +x 2-3x -1; 解:原式=2x 2-1.(2)2x 2-(-4x +5)+[4x 2-(3x 2-2x)-6x -5]. 解:原式=2x 2+4x -5+(4x 2-3x 2+2x -6x -5) =3x 2-10.14.先化简,再求值:-(9x 3-4x 2+5)-(-3-8x 3+3x 2),其中x =-3. 解:原式=-9x 3+4x 2-5+3+8x 3-3x 2 =-x 3+x 2-2.当x =-3时,原式=-(-3)3+(-3)2-2=27+9-2 =34.15.按照下图所示的程序计算当x 分别为-3,0时的输出值.解:程序对应的代数式为2(5x -2).当x =-3时,2(5x -2)=2×[5×(-3)-2] =2×(-17)=-34;当x =0时,2(5x -2)=2×(5×0-2)=-4.16.求12m 2n +2mn -3nm 2-3nm +4m 2n 的值,其中m 是最小的正整数,n 是绝对值等于1的数.解:12m 2n +2mn -3nm 2-3nm +4m 2n=32m 2n -mn. 由题意知:m =1,n =±1, 当m =1,n =1时,原式=12;当m =1,n =-1时,原式=-12.综上,该代数式的值为12或-12.17.已知:a 3b n +2+ab 3+6是一个六次多项式,单项式x 3n y 7-m 的次数与该多项式相同,求m ,n 的值.解:因为a 3b n +2+ab 3+6是一个六次多项式, 所以3+n +2=6, 解得n =1,所以3n +7-m =6, 即3+7-m =6, 所以m =4,即m ,n 的值分别为4,1.四、(本大题共3小题,每小题8分,共24分)18.已知代数式x 4+ax 3+3x 2+5x 3-7x 2-bx 2+6x -2合并同类项后不含x 3,x 2项,求2a +3b 的值.解:原式=x 4+(ax 3+5x 3)+(3x 2-7x 2-bx 2)+6x -2 =x 4+(a +5)x 3+(-4-b)x 2+6x -2. 由题意,得a +5=0,-4-b =0, 解得a =-5,b =-4,所以2a +3b =2×(-5)+3×(-4)=-22.19.一个花坛的形状如图所示,它的两端是半径相等的半圆. (1)求花坛的周长l ; (2)求花坛的面积S ;(3)若a =8 m ,r =5 m ,求此时花坛的周长及面积(π取3.14).解:(1)l =2πr +2a. (2)S =πr 2+2ar.(3)当a =8 m ,r =5 m 时,l =2π×5+2×8=10π+16≈47.4 m ,S =π×52+2×8×5=25π+80≈158.5 m 2.20.已知A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,当a =1,b =2时,求A -2B +3C 的值.解:∵A =5a +3b ,B =3a 2-2a 2b ,C =a 2+7a 2b -2,∴A -2B +3C =(5a +3b)-2(3a 2-2a 2b)+3(a 2+7a 2b -2) =5a +3b -6a 2+4a 2b +3a 2+21a 2b -6 =-3a 2+25a 2b +5a +3b -6. 当a =1,b =2时,原式=-3×12+25×12×2+5×1+3×2-6=52.五、(本大题共2小题,每小题9分,共18分)21.某公司的某种产品由一家商店代销,双方协议不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用式子表示这两个月该公司应付给商店的钱数;(2)假设代销费为每月200元,每件产品的提成为2元,该商店一月份销售了200件,二月份销售了250件,求该商店这两个月销售此种产品的收益.解:(1)这两个月该公司应付给商店的钱数为[2a +(m +n)b]元. (2)当a =200,b =2,m =200,n =250时,2a +(m +n)b =1 300元.答:该商店这两个月销售此种产品的收益为1 300元.22.如果在关于x ,y 的多项式(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2中,无论x ,y 取何有理数,多项式的值都不变,求4(a 2-ab +b 2)-3(2a 2+b 2+5)的值.解:(ax 2-3x +by -1)-2⎝⎛⎭⎫3-y -32x +x 2 =ax 2-3x +by -1-6+2y +3x -2x 2=(a -2)x 2+(b +2)y -7. 根据题意得a =2,b =-2, 原式=4a 2-4ab +4b 2-6a 2-3b 2-15 =-2a 2-4ab +b 2-15. 当a =2,b =-2时,-2a 2-4ab +b 2-15=-2×22-4×2×(-2)+(-2)2-15 =-8+16+4-15 =-3.六、(本题共12分) 23.观察下面数表:12 3 43 4 5 6 74 5 6 7 8 9 10 ……(1)依此规律:第六行最后一个数字是________,第n 行最后一个数字是________. (2)其中某一行最后一个数字可能是2 017吗?若不可能,请说明理由;若可能,请求出是第几行?解:(1)因为第一行最后的数字为1, 第二行最后的数字为4, 第三行最后的数字为7, 第四行最后的数字为10,所以根据数据排列的规律,可得到每一行的最后一个数字与它前一行最后一个数字的差为3.所以按照这个规律可得到第n 行的最后的数字为1+3(n -1)=3n -2. 所以第六行最后一个数字是3×6-2=16. (2)可能是2 017,因为由3n -2=2 017, 解得n =2 0193=673,∴最后一个数字可能是2 017,是第673行.。

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)

北师大版七年级上册数学第三章《整式及其加减》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列式子符合书写规范的是( )A .-1xB .115xyC .0.3÷xD .-52a 2.下列各式中,是单项式的是( )A .x 2-1B .a 2b C.πa +b D.x -y 3 3.单项式-π3a 2b 的系数和次数分别是( ) A .π3,3 B .-π3,3 C .-13,4 D.13,4 4.下列单项式中,与a 2b 是同类项的是( )A .2a 2bB .a 2b 2C .ab 2D .3ab5.如果多项式(a -2)x 4-12x b +x 2-3是关于x 的三次多项式,那么( ) A .a =0,b =3 B .a =1,b =3 C .a =2,b =3 D .a =2,b =16.下列去括号正确的是( )A .(a -b )-(c -d )=a -b -c -dB .-a -2(b -c )=-a -2b +2cC .-(a -b )+c =-a -b +cD .-2(a -b )-c =-2a +b -c7.【2021·台州】将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A.20% B.x+y2×100% C.x+3y20×100% D.x+3y10x+10y×100%8.如图①是一个长为2m、宽为2n的长方形,其中m>n,先用剪刀沿图中虚线(对称轴)剪开,将它分成四个形状和大小都一样的小长方形,再将这四个小长方形拼成一个如图②的正方形,则中间空白部分的面积是( )A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( ) A.20 B.18 C.16 D.1510.【教材P104复习题T16变式】【2020·德州】如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为( )A.148 B.152 C.174 D.202二、填空题(每题3分,共24分)11.用代数式表示“比a的平方的一半小1的数”是____________.12.若单项式-2x3yn与4x m+2y5合并后的结果还是单项式,则m+n=________.13.【教材P101复习题T2变式】按照如图所示的步骤操作,若输入x的值为-4,则输出的值为________.14.在山东部分地区,大年初一常常包上几个装有硬币的饺子,吃到“钱馅”饺子的人,寓意新的一年财源滚滚、大吉大利.因为怕弄坏牙齿,朵朵的奶奶就把花生放在饺子里代替硬币,朵朵家有6口人,奶奶按照每人n 粒花生的规则包饺子(每个饺子包1粒),那么有花生的饺子有________个.15.若多项式2x 3-8x 2+x -1与多项式3x 3+2mx 2-5x +3的和不含x 2项,则m =________.16.某同学计算一个多项式加上xy -3yz -2xz 时,误认为减去此式,计算出的错误结果为xy -2yz +3xz ,则正确的结果是__________.17.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简|a +c |-|c -b |-|a +b |的结果为________.18.【2021·怀化】观察等式:2+22=23-2,2+22+23=24-2,2+22+23+24=25-2……已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是__________.三、解答题(19,21,22题每题10分,其余每题12分,共66分)19.先去括号,再合并同类项:(1)2a -(5a -3b )+(4a -b ); (2)3x 2y -⎣⎢⎡⎦⎥⎤2xy 2-2⎝ ⎛⎭⎪⎫xy -32x 2y +xy +3xy 2.20.先化简,再求值:(1)7a 2b +(-4a 2b )-(2a 2b -2ab ),其中a =-2,b =1;(2)2x 2-⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1.21.【教材P 102复习题T 9变式】已知代数式A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)当x =y =-1时,求2A +4B 的值;(2)若2A +4B 的值与x 的取值无关,求y 的值.22.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m).(1)求阴影部分的面积(用含x的代数式表示);(2)当x=9,π取3时,求阴影部分的面积.23.比较两个数的大小时,我们可以用“作差法”.它的基本思路是求a与b两数的差,当a-b>0时,a>b;当a-b<0时,a<b;当a-b=0时,a=b.试运用“作差法”解决下列问题:(1)比较2a+1与2(a+1)的大小;(2)比较a+b与a-b的大小.24.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:每买一张课桌就赠送一把椅子;方案二:课桌和椅子都按定价的80%付款.某校计划添置100张课桌和x把椅子.(1)若x=100,请计算哪种方案划算;(2)若x>100,请用含x的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.参考答案一、1.D 2.B 3.B 4.A 5.C 6.B 7.D8.C 9.A10.C点思路:根据图案知,第1个图案有12个棋子,第2个图案有22个棋子,第3个图案有34个棋子,…第n 个图案有2[1+2+…+(n +1)+(n +2)]+2(n -1)=(n +2)(n +3)+2(n -1)(个)棋子.故第10个这样的图案需要黑色棋子的个数为(10+2)(10+3)+2×(10-1)=174.二、11.12a 2-1 12.6 13.-6 14.6n 15.4 16.3xy -8yz -xz 点拨:由题意可知原多项式为(xy -2yz +3xz )+(xy -3yz-2xz )=2xy -5yz +xz ,则正确的结果为(2xy -5yz +xz )+(xy -3yz -2xz)=3xy -8yz -xz .17.2b -2c 点拨:由题图可知a +c <0,c -b >0,a +b <0,所以原式=-(a+c)-(c -b)-[-(a +b)]=-a -c -c +b +a +b =2b -2c.18.m 2-m点技巧:由题中规律,得2100+2101+2102+…+2199=(2+22+23+...+2199)-(2+22+23+ (299)=(2200-2)-(2100-2)=(2100)2-2100.因为2100=m ,所以原式=m 2-m .三、19.解:(1)原式=2a -5a +3b +4a -b =a +2b ;(2)原式=3x 2y -(2xy 2-2xy +3x 2y +xy )+3xy 2=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.20.解:(1)7a 2b +(-4a 2b )-(2a 2b -2ab )=7a 2b -4a 2b -2a 2b +2ab =a 2b +2ab .把a =-2,b =1代入,得原式=(-2)2×1+2×(-2)×1=0.(2)2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2)=2x 2-(-x 2+2xy -2y 2)-(2x 2-2xy +4y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2.把x =12,y =-1代入,得原式=⎝ ⎛⎭⎪⎫122-2×(-1)2=-74. 21.解:(1)2A +4B =2(2x 2+3xy -2x -1)+4(-x 2+xy -1)=4x 2+6xy -4x -2-4x 2+4xy -4=10xy -4x -6.当x =y =-1时,原式=10×(-1)×(-1)-4×(-1)-6=10+4-6=8.(2)2A +4B =10xy -4x -6=(10y -4)x -6.因为2A +4B 的值与x 的取值无关,所以10y -4=0,解得y =0.4.22.解:(1)由题图中各个部分面积之间的关系可得,阴影部分的面积=2(x -2)+4(x -2-2)-12π·⎝ ⎛⎭⎪⎫2+422=2x -4+4x -16-92π=⎝ ⎛⎭⎪⎫6x -20-92πm 2. (2)当x =9,π取3时,阴影部分的面积为54-20-272=412(m 2). 23.解:(1)因为2a +1-2(a +1)=2a +1-2a -2=-1<0,所以2a +1<2(a +1).(2)(a+b)-(a-b)=a+b-a+b=2b.①当b>0时,a+b>a-b;②当b<0时,a+b<a-b;③当b=0时,a+b=a-b.24.解:(1)当x=100时,方案一:100×200=20 000(元);方案二:100×(200+80)×80%=22 400(元).因为20 000<22 400,所以方案一划算.(2)当x>100时,方案一:100×200+80(x-100)=80x+12 000(元);方案二:(100×200+80x)×80%=64x+16 000(元).(3)当x=300时,①按方案一购买:80×300+12 000=36 000(元);②按方案二购买:64×300+16 000=35 200(元);③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子:100×200+80×200×80%=32 800(元),36 000>35 200>32 800,即先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子最省钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章单元检测题
时间:90分钟 满分:120分
一、选择题(每小题3分,共24分) 1.计算2a -a ,正确的结果是( D ) A .-2a 2 B .1 C .2 D .a
2.当x =-2时,代数式x +3的值( A ) A .1 B .-1 C .5 D .-5 3.与a -b +c 互为相反数的是( C )
A .a +b -c
B .a -b -c
C .-a +b -c
D .a -b +c 4.观察一列数:2,4,6,8,…,第n 个数为( B ) A .n +2 B .2n C .2(n +1) D .2(n -1)
5.下列各式:①x +y =3;②3a -2b ;③2;④5(x -y )+2;⑤x
6;⑥x ,其中代数式有( C )
A .3个
B .4个
C .5个
D .6个
6.某农户去年产玉米n 千克,今年比去年增产20%,则今年玉米的产量为( B ) A .(1-20%)n 千克 B .(1+20%)n 千克 C .(n +20%)千克 D .n ·20%千克
7.如图,一块砖的外侧面积为x ,那么图中残留部分墙面(指阴影部分)的面积为( B )
A .4x
B .13x
C .8x
D .16x
8.若M =2a 2b ,N =3ab 3,P =-4a 2b ,则下列各式正确的是( C )
A .M +N =5a 3b 3
B .N +P =-ab
C .M +P =-2a 2b
D .M +N +P =a 2b 二、填空题(每小题3分,共24分)
9.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为__3__.
10.某仓库有存粮85吨,第一天运走a 吨,第二天又运来3车,每车b 吨,此时仓库有存粮__(85+3b -a )__吨.
11.在式子4x 4,a ÷b ,0,18x +4,53(s -m ),n 6,71
3xy 中,符合代数式书写格式的有__4x 4,
0,18x +4,5
3
(s -m )__.
12.一个只含字母x 的二次三项式,它的二次项系数比一次项系数小1,一次项系数比常数项又小1,常数项为-23,则这个多项式为__-83x 2-53x -2
3
__.
13.如图,长方形窗户上的装饰物是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是__2ab -1
2
πb 2__.
14.已知x +1x =3,则代数式(x +1x )2+x +6+1
x
的值为__18__.
15.已知有理数a ,b 在数轴上的位置如图所示,化简|a +b |-|b -a |的结果为__-2b __. 16.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°
算一次,则滚动第2016次后,骰子朝下一面的点数是__4__.
三、解答题(共72分) 17.(8分)化简:
(1)(4ab -b 2)-2(a 2+2ab -b 2); (2)(4x -3y )-[2(x -1)+2y -3]. 解:b 2-2a 2 解:2x -5y +5
18.(8分)先化简,再求值:
(1)(a 3-2b 3)+2(ab 2-1
2a 2b )-2(ab 2-b 3),其中a =-1,b =20;
解:原式=a 3-a 2b ,当a =-1,b =20时,原式=-21
(2)2x 2-{-3x +[4x 2-(-x )2-(2x 2-x )]},其中x =-2. 解:原式=x 2+2x ,当x =-2时,原式=0
19.(6分)某种商品每件进价为p 元,提高进价的30%定出售价,每件售价为多少元?后来商品滞销,库存积压,按售价的80%出售,每件还能盈利多少元? 解:1.3p ,0.04p
20.(6分)已知关于x ,y 的单项式-3x a y 与bx 2y 能合并成一项,其结果为-6x 2y .求多项式2(-4a 2+1)-5(a 2-ba )+4(3a 2-ab )的值.
解:由题意得a =2,-3+b =-6,所以b =-3,多项式化简得-a 2+ab +2,代入求值得原式=-8
21.(6分)将4个数a ,b ,c ,d 排成两行、两列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪
a b c d ,
定义⎪⎪⎪⎪⎪

a b c d =ad -bc .若⎪⎪
⎪⎪
⎪⎪
-5 y -2x 2 x -y =6,求2x -6y +5的值.
解:由题意得⎪⎪⎪⎪
⎪⎪
-5 y -2x 2 x -y =-5(x -y )-2(y -2x )=-x +3y =6,故2x -6y +5=2(x -3y )
+5=2×(-6)+5=-7
22.(8分)某人买了50元的乘车月票卡,如果此人乘车的次数用m 表示,则记录他每次乘车后的余额n 元如下表:
(1)写出用此人乘车的次数m 表示余额n 的式子; (2)利用上述式子,计算乘了13次车还剩多少元? (3)此人最多能乘几次车? 解:(1)n =50-0.8m
(2)当m =13时,n =50-0.8×13=39.6(元),即乘了13次车还剩39.6元 (3)当n =0时,50-0.8m =0,解得m =62.5,因为m 为正整数,所以最多能乘62次车
23.(8分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?
n →平方→-n →×2→-2n 2→+2n -1→答案
(1)填写表内空格:
__输入任何数结果都为-1__(3)用简要的过程说明你发现的规律的正确性.
解:2(n 2-n )-2n 2+2n -1=-1,输出值恒为-1,与n 无关
24.(10分)如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为a 米,计算:
(1)窗户的面积; (2)窗框的总长;
(3)若a =1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元?(π取3.14)
解:(1)(4+π2)a 2
平方米 (2)(15+π)a 米 (3)(4+π
2)a 2×25+20(15+π)a =502.05(元)
25.(12分)下表是某月的日历: 星期一 星期二 星期三 星期四 星期五 星期六 星期日 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
28
29
30
31
完成下列问题:
(1)图中方框(即阴影部分)的9个数的和是多少?它与方框中间的10有什么关系? (2)方框中的三列数每一列的和是多少?有什么规律? (3)方框中的三行数每一行的和是多少?有什么规律?
(4)把这个方框上下左右平移,得到新方框,若方框中间的一个数为a ,则这9个数的和为多少?
解:(1)90,是10的9倍 (2)27,30,33;依次大3 (3)9,30,51;依次大21 (4)9a。

相关文档
最新文档