载体的名词解释生物学

合集下载

医学微生物学期末考试之名词解释答

医学微生物学期末考试之名词解释答

答案一、名词解释:1、L型细菌:亦称细菌细胞壁缺陷型,是由于细菌胞壁的肽聚糖结构受理化因素或生物因素的破坏或合成被抑制所致。

此种细菌在普通环境下会死亡,但在高渗环境下仍可存活。

2、中介体:为细菌部分细胞膜内陷、折叠、卷曲形成的囊状结构,多见与革蓝染色阳性菌。

其功能类似于真核细胞的线粒体,故又称为“拟线粒体”。

3、质粒:是存在于细菌细胞质中的染色体以外的遗传物质,为闭合环状的双链DNA,它控制细菌的某些特定的遗传性状(如耐药、毒力等)。

4、芽胞:是细菌体在特定的情况下脱水形成的一个空泡,具有多层致密的结构,抵抗力特别强。

杀灭芽孢最有效的方法是高压蒸汽灭菌法。

5、热原质:又称为致热原,将它注入动物或人的机体可引起发热,它的成分是革蓝染色阴性菌的LPS。

热原质耐热,但不易挥发,可用蒸馏的方法祛除。

6、消毒:是指杀灭病原微生物的方法。

7、溶原性转换:细菌从温和噬菌体获得新的遗传性状。

8、转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状。

可分为普遍性转导和局限性转导。

9、正常菌群:指定居于人的体表及与外界相通的腔道中微生物群,在一般情况下,对机体有益无害。

10、败血症:是指病原菌侵入血流,并在其中大量生长繁殖,产生毒性代谢产物,引起严重的全身性中毒症状。

11、人工自动免疫:用人工接种的方法给机体输入抗原性物质(如疫苗、类毒素等),使机体免疫系统因受抗原刺激而产生体液和/或细胞免疫应答的过程。

12、SPA:存在于90%金黄色葡萄球菌表面,可与人及多种哺乳动物IgG分子的Fc段非特异性结合。

SPA的这一特点可增强葡萄球菌的抗吞噬能力。

13、肥达试验:利用已知的伤寒沙门菌的O、H抗原和甲、乙型副伤寒沙门菌的H抗原,分别与不同稀释度的患者血清作定量凝集试验,根据抗体含量的多少和早期及恢复期抗体的动态变化,辅助临床诊断肠热症。

14、霍乱肠毒素:是霍乱弧菌的主要致病物质,为不耐热外毒素。

分子生物学名词解释1

分子生物学名词解释1

分子生物学名词解释第二章(主要的:核小体、半保留复制、复制子、单链结合蛋白、岗崎片段、错配修复、DNA的转座、C值矛盾、前导链与后随链。

)1. C值反常现象(C值矛盾C-value paradox):C值是一种生物的单倍体基因组DNA的总量。

真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。

C值一般随着生物进化而增加,高等生物的C值一般大于低等生物。

某些两栖动物的C值甚至比哺乳动物还大,而在两栖动物里面,C值变化也很大。

2.DNA的半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。

3.DNA聚合酶:●以DNA为模板的DNA合成酶●以四种脱氧核苷酸三磷酸为底物●反应需要有模板的指导●反应需要有3 -OH存在●DNA链的合成方向为5 34.DNA连接酶(1967年发现):若双链DNA中一条链有切口,一端是3’-OH,另一端是5‘-磷酸基,连接酶可催化这两端形成磷酸二酯键,而使切口连接。

但是它不能将两条游离的DNA单链连接起来DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用5.DNA 拓扑异构酶(DNA Topisomerase):拓扑异构酶І:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。

主要集中在活性转录区,同转录有关。

例:大肠杆菌中的ε蛋白拓扑异构酶Π:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA分子。

同复制有关。

例:大肠杆菌中的DNA旋转酶6. DNA 解螺旋酶/解链酶(DNA helicase)通过水解ATP获得能量来解开双链DNA。

E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。

rep蛋白沿3 ’ 5’移动,而解螺旋酶I、II、III沿5 ’ 3’移动。

7. 单链结合蛋白(SSBP-single-strand binding protein):稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。

细胞生物学名词解释

细胞生物学名词解释

细胞生物学名词解释:1.生物膜:细胞内的膜系统与细胞质膜统称为生物膜2.载体蛋白:又称通透酶(permease)生物膜上普遍存在的跨膜蛋白,能与特定的溶质分子结合,通过一系列构象改变介导跨膜被动运输或主动运输3.通道蛋白:能形成穿膜充水小孔或通道的蛋白质。

担负溶质的穿膜转运,如细菌细胞膜的膜孔蛋白。

通道蛋白的特点:1)介导被动运输。

2)对离子有高度选择性。

3)转运速率高4)不持续开放,受“阀门”控制。

4.单克隆抗体:通过克隆单个分泌抗体的B淋巴细胞,获得的只针对某一抗原决定簇的抗体具有专一性强、能大规模生产的特点。

单克隆抗体:来自单个细胞克隆所分泌的抗体5.离子泵:离子泵是膜运输蛋白之一,也看作一类特殊的载体蛋白,能驱使特定的离子逆电化学梯度穿过质膜,同时消耗ATP形成的能源,属于主动运输。

6.钠钾泵:此类运输泵运输时需要磷酸化,具有两个独立的α催化亚基,具有ATP结合位点;绝大多数还具有β调节亚基,α亚基利用ATP水解能发生磷酸化与去磷酸化,从而改变泵蛋白的构象,实现离子的跨膜转运。

7.协同运输:协同运输又称偶联主动运输,它不直接消耗ATP,但要间接利用自由能,并且也是逆浓度梯度的运输。

运输时需要先建立电化学梯度,在动物细胞主要是靠钠泵,在植物细胞则是由H+泵建立的H+质子梯度8.脂筏:生物膜上富含(神经)鞘脂和胆固醇的微小区域,与生物膜某些功能的发挥有关。

9.脂质体:在水溶液环境中人工合成的一种球星脂双层结构。

10.组成型胞吐途径:在真核细胞,有高尔基体反面囊膜分泌的囊泡向质膜流动并与之融合的膜泡运输过程,呈连续分泌状态,完成质膜更新,分泌胞外基质组分、营养或信号分子等功能。

11.调节型胞吐作用:在真核生物的一些特化细胞,所产生的分泌物储存在分泌泡内,当细胞受到胞外刺激时,分泌泡与质膜合并并将内含物分泌出细胞。

该胞吐作用方式称为调节型胞吐途径。

12.膜骨架:细胞质膜的一种特别结构,是由膜蛋白和纤维蛋白组成的网架,它参与维持细胞质膜的形状并协助质膜完成多种生理功能,这种结构称为膜骨架。

名词解释

名词解释

名词解释基因组--细胞或生物体中,一套完整单倍体的遗传物质的总和。

生物所具有的携带遗传信息的遗传物质总和称为基因组。

基因组学--基因组学是研究生命体全部遗传信息的一门科学。

基因组学研究的对象涉及原核生物和真核生物不同的种属,其所研究的内容触及到生命学科的各个领域,对生命科学的未来发展将产生重大影响。

模式生物---通过对选定的生物物种进行科学研究,用于揭示某种具有普遍规律的生命现象,此时,这种被选定的生物物种就是模式生物。

由于进化的原因,许多生命活动的基本方式在地球上的各种生物物种中是保守的,这是模式生物研究策略能够成功的基本基础。

豌豆、果蝇、线虫、果蝇、非洲爪蟾、蝾螈、小鼠等基因组等容线(等值区)---大部分真核基因组表现出一种称为等值区(isochore)的组织形式。

定义为“具有一致碱基组成的长区域”或“连续分布的具有相似碱基组成的DNA区段”,它们在基因组中成片相嵌排列。

CpG岛---基因组中富含GC碱基(60-70%)的DNA区段,一般长度为1-2 kb。

CpG 岛总是与基因相连,可作为寻找基因的依据。

染色体组---染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。

序列复杂性---基因组中单拷贝的DNA序列称为单一序列,多拷贝的DNA序列称为重复序列,不同序列的DNA总长称为复杂性。

C值---一个物种单倍体基因组的DNA含量是相对恒定的,它通常称为该物种DNA的C 值。

&C值悖理:生物的复杂性与基因组的大小并不完全成比例增加,也就是说,物种的C 值和它进化复杂性之间没有严格的对应关系。

这一反常的现象即c值悖理,也是复杂生物的特性之一。

支架附着区(SAR)---与染色体骨架附着区结合的DNA顺序称为SAR 。

与核基质结合的DNA 顺序称为MAR(基质附着区)。

遗传图谱---是以遗传距离表示基因组内基因座位相对位置的图谱遗传作图---采用遗传学分析方法将基因或其它DNA顺序标定在染色体上构建连锁图。

细胞生物学名词解释

细胞生物学名词解释

名词解释(完整版)U4-细胞膜的分子结构与特性1、膜流(membrane flow):膜性转运小泡穿梭于细胞内膜和细胞膜之间进行物质转运的过程中,膜脂和膜蛋白等膜的主要成分也在各膜性细胞器之间进行转移和重组,形成膜流。

2、膜整合蛋白(integral protein):又可称为膜内在蛋白或跨膜蛋白。

指单位膜中分布的一类蛋白质,其为兼性分子,它们的多肽链可横穿膜一次或多次,同时也可以由1条或几条多肽链构成。

其主要有单次跨膜、多次跨膜和多亚基跨膜蛋白等类型。

3、膜脂(membrane lipid):组成生物膜的基本成分,包括磷脂、胆固醇和糖脂,是兼性分子(双亲媒性分子),极性头部亲水,非极性尾部疏水。

4、膜蛋白(membrane protein):能直接或间接地与生物膜的脂双层结合的蛋白质通称为膜蛋白。

主要类型有镶嵌蛋白(膜整合蛋白)、脂锚定蛋白和周围蛋白(膜外在蛋白)三种。

5、载体蛋白(carrier protein):几乎存在与所有类型的生物膜上,是多次跨膜的蛋白质,能与特定的溶质分子或离子结合,通过一系列构象改变实现对这些物资的穿模运输。

U5-细胞膜与物质转运6、ATP驱动泵(ATP-driven pump):是一种ATP酶,都是跨膜蛋白,在膜的胞质侧具有一个或多个与ATP结合的位点,能水解ATP,利用ATP水解释放的能量逆浓度梯度或或电化学梯度转运离子和小分子,保证了大多数离子的跨膜浓度差。

7、胞吞作用(exocytosis):又称内吞作用,是细胞膜内陷,将细胞外的大分子或颗粒物质包围形成小泡,转运到细胞内的过程,包括吞噬、胞饮和受体介导的胞吞。

8、穿膜运输(transmembrane transport):蛋白质穿过细胞器的膜从细胞质基质进入细胞器内的运输方式称为穿膜运输。

9、受体介导的胞吞(receptor mediated endocytosis):细胞通过受体介导,有选择地高效的摄取细胞外特定的大分子的过程。

细胞生物学名词解释

细胞生物学名词解释

细胞生物学名词解释1受体,配体:受体(receptor):存在于细胞膜上细胞内、能接受外界的信号,并将这一信号转化为细胞内的一系列生物化学反应,从而对细胞的结构或功能产生影响的蛋白质分子。

配体(ligand):受体所接受的外界信号,包括神经递质、激素、生长因子、光子、某些化学物质及其他细胞外信号。

受体是细胞膜上的特殊蛋白分子,可以识别和选择性地与某些物质发生特异性结合反应,产生相应的生物效应.与之结合的相应的信息分子叫配体。

2. 细胞通讯,信号传导,信号转导,细胞识别:细胞通讯:指一个细胞发出的信息通过介质传递到别一个细胞产生相应的反应。

信号传导:相当于是将上面细胞的刺激冲动传向下一个细胞,起着一种传递承接的作用,生化性质上没有什么改变。

信号转导:指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。

细胞识别:是指细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。

是细胞通讯的一个重要环节。

3. 分子伴侣:一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质结构执行功能时的组份。

4. 核孔复合体:在内外膜的融合处形成环状开口,直径为50~100nm,核孔构造复杂,含100种以上蛋白质,并与核纤层紧密结合。

是选择性双向通道。

功能是选择性的大分子出入(主动运输),酶、组蛋白、mRNA、tRNA等存在电位差,对离子的出入有一定的调节控制作用。

5. 常染色质,异染色质 : 在细胞核的大部分区域,染色质结构的折叠压缩程度比较小,即密度较低,进行细胞染色时着色较浅,这部分染色质称常染色质.着丝点部位的染色质丝,在细胞间期就折叠压缩的非常紧密,和细胞分裂时的染色体情况差不多,即密度较高,细胞染色时着色较深,这部分染色质称异染色质.6. 核仁组织区:即rRNA序列区,它与细胞间期核仁形成有关,构成核仁的某一个或几个特定染色体片断。

分子生物学 名词解释

分子生物学 名词解释

名词解释1. 基因(gene):2. 结构基因(structural gene):3. 断裂基因(split gene):4. 外显子(exon):5. 内含子(intron):6. 多顺反子RNA(polycistronic/multicistronic RNA):7. 单顺反子RNA(monocistronic RNA):8. 核不均一RNA(heterogeneous nuclear RNA, hnRNA):9. 开放阅读框(open reading frame, ORF):10. 密码子(codon):11. 反密码子(anticodon):12. 顺式作用元件(cis-acting element):13. 启动子(promoter):14. 增强子(enhancer):15. 核酶(ribozyme)16. 核内小分子RNA(small nuclear RNA, snRNA)17. 信号识别颗粒(signal recognition particle, SRP)18. 上游启动子元件(upstream promoter element)19. 同义突变(same sense mutation)20. 错义突变(missense mutation)21. 无义突变(nonsense mutation)22. 移码突变(frame-shifting mutation)23. 转换(transition)24. 颠换(transversion)(三)简答题1. 顺式作用元件如何发挥转录调控作用?2. 比较原核细胞和真核细胞mRNA的异同。

3. 说明tRNA分子的结构特点及其与功能的关系。

4. 如何认识和利用核酶?5. 若某一基因的外显子发生一处颠换,对该基因表达产物的结构和功能有什么影响?6. 举例说明基因突变如何导致疾病。

(四)论述题1. 真核生物基因中的非编码序列有何意义?2. 比较一般的真核生物基因与其转录初级产物、转录成熟产物的异同之处。

分子生物学名词解释

分子生物学名词解释

转化:一种生物由于接受了另一种生物的遗传物质而表现出后者的遗传性状,或发生遗传性状改变的现象叫做转化熔解温度Melting temperature :即通过加热由双链变为单链这一系列温度的位于中部的那点复性Renaturation(annealing):DNA双螺旋分子变性后的互补单链再结合成双链的过程称为复性点突变:是包括单碱基改变的一种变化回复突变Revertants :通过逆转已发生变化的突变细胞或有机体而获得自发突变Spontaneous mutations :是由于自然界的影响而发生,其产生原因是由于DNA复制发生错误或是由于环境的损伤转换Transition:是一种突变,即指一种嘧啶被另一种嘧啶代替,一种嘌呤被另一种嘌呤代替,G-C对被A-T对替换,或者相反如亚硝酸作为氧化脱氨基试剂将胞嘧啶转化为尿嘧啶颠换Transversion :是一种突变,即嘌呤被嘧啶代替或者相反,因此A-T对变成了T-A或C-G 突变热点:是突变发生频率高的位点或重组频率高的那些位点修饰碱基Modified bases :是除了那些在DNA(T、C、A、G)、RNA(U、C、A、G) 合成时的四种通用碱基之外的一些碱基,由核酸合成后修饰产生等位基因Allele:是指位于染色体同一位置分别控制两种不同性状的基因。

eg:现有一基因型Aa,A和a就互为等位基因。

同位基因:是指位于染色体上同一位置控制同一性状的基因。

eg:现有一基因型AA,A和A就互为同位基因。

(染色体上同一基因座上的基因,相互作用主要表现为显性、隐性和共显性)。

共显性:一对等位基因的两个成员在杂合体中都表达的遗传现象——人类的ABO血型。

互补测验:比较顺式和反式构型个体的表型以判断两突变是否发生在一个基因座内的测验,称为互补测验又称顺反测验功能获得型突变Gain-of-function mutation :表示使蛋白质获得新的活性(或功能),这种性质显性的无效突变Null mutation:一个基因被确定后,可以构建一个缺失该基因的体系来检测它的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

载体的名词解释生物学
生物学中,载体(Vector)是指用来传递、繁殖和表达外源DNA(或RNA)
分子的工具。

在分子生物学和基因工程领域,载体扮演着至关重要的角色。

本文将探讨载体在生物学中的定义、种类、应用以及相关的研究进展。

一、载体的定义
载体是指一种生物分子,能够携带外源DNA或RNA分子。

它为这些分子提供一个合适数量及合适的环境,使其稳定存在,并能进行复制、传递和表达。

载体可以是DNA、RNA或蛋白质,也可以是一个细胞、病毒、质粒等。

二、载体的种类
1. DNA载体
DNA载体是最常见且最重要的载体类别之一。

其中,质粒是最常用的DNA载体。

质粒是一种环状DNA分子,能够自主复制并存在于细胞质中。

质粒可以在接
受外源DNA后进行基因复制,从而将外源DNA稳定的传递给目标细胞。

此外,
噬菌体也是常见的DNA载体,它是一种病毒,能够感染细菌,并在细菌内复制自身。

2. RNA载体
RNA载体主要指RNA病毒,它是一种只能通过RNA复制和传递基因的病毒。

RNA载体包括正义病毒和反义病毒。

正义病毒将其RNA转录成DNA并插入宿主
细胞染色体中,从而实现基因传递。

反义病毒则利用RNA复制酶来生成更多的RNA病毒。

三、载体的应用
1. 外源基因表达
载体在基因工程中广泛应用于外源基因表达。

研究人员可以将感兴趣的基因插入载体中,然后将其导入目标细胞。

通过选择适当的载体和表达元件,外源基因可以被成功地表达出来。

这对于探究基因功能、生物制剂的生产以及疾病治疗等方面都具有重要意义。

2. 基因治疗
载体在基因治疗中扮演着关键的角色。

基因治疗是一种利用外源基因修复或替代患者体内缺乏或异常基因的方法。

通过将修复好的基因插入载体中,并将其导入患者体内,可以实现基因的传递和修复,从而治疗患者的遗传性疾病。

3. 基因传递
载体还可以用于基因传递研究。

通过将感兴趣的基因插入载体中,研究人员可以将其引入目标细胞,并观察和研究基因的功能和表达。

这对于揭示基因功能及相关生理机制具有重要意义。

四、载体研究的进展
随着科学技术的不断进步,载体的研究也取得了飞速发展。

目前,研究人员正致力于开发更高效、更安全的载体系统,以满足不同领域的需求。

新型载体技术的发展使得基因工程和基因治疗取得了重大突破。

例如,逆转录病毒载体(Retroviral vector)能够稳定地将外源基因插入宿主基因组,实现长期的基因表达。

聚合酶链反应(Polymerase Chain Reaction)的发明和广泛应用,使得基因的扩增和编辑变得更加迅速和准确。

此外,基因组编辑技术的快速发展也为载体研究提供了新的机遇。

例如,CRISPR-Cas9系统利用RNA指导酶(RNA-guided endonuclease)实现对基因组的精确编辑,开启了一个全新的基因组编辑时代。

总结:
载体作为生物学中的重要概念,扮演着基因传递、表达和修复的关键角色。

它能够稳定地携带和传递外源基因,广泛应用于基因工程、基因治疗以及基因传递研究等方面。

随着科学技术的不断发展,载体研究也取得了显著进展,为开拓新领域和实现更准确的基因编辑提供了新的机遇。

相关文档
最新文档