磨削加工中的磨削方式
简述磨削加工

磨削加工1. 简介磨削加工是一种常见的金属加工方法,通过使用磨料对工件表面进行摩擦磨损,以达到加工的目的。
它可以用于改善工件表面质量、调整尺寸精度和形状精度,以及去除杂质和残余应力等。
磨削加工广泛应用于机械制造、航空航天、汽车制造、模具制造等领域。
2. 磨削原理磨削加工是利用切削性能较差的材料(磨料)对工件进行切削,通过与工件表面的相对运动来实现切削作用。
其主要原理包括以下几个方面:•切削颗粒:磨料是由硬度较高的颗粒组成,通常为氧化铝、碳化硅等材料。
这些颗粒与工件表面摩擦产生很高的切向力,从而实现切削作用。
•切向力:当磨料与工件表面接触时,由于相对运动产生了摩擦力,使得磨料在切向方向上产生了切削力。
这种力对工件表面进行了切削作用。
•磨屑形成:在磨削过程中,磨料与工件表面的摩擦力和切向力使得工件表面的材料被切削下来,形成了磨屑。
这些磨屑会随着磨料的运动带走,并通过冷却液进行排出。
•热效应:由于切削过程中的摩擦力和切向力,会产生较高的温度。
为了避免温度过高引起工件变形或损坏,通常需要使用冷却液进行冷却。
3. 磨削方法根据加工目标和工件材料的不同,磨削加工可以采用多种方法。
下面介绍几种常见的磨削方法:3.1 平面磨削平面磨削是最基本、最常用的磨削方法之一。
它主要用于对平面工件进行加工,如平面零件、平底孔等。
平面磨削通常采用平面砂轮进行加工,通过对工件表面进行连续的摩擦来实现加工效果。
在平面磨削过程中,需要注意保持磨削面与砂轮之间的良好接触,以确保加工质量。
3.2 内圆磨削内圆磨削是用于加工孔内表面的一种方法。
它通常使用内圆砂轮进行加工,通过对孔内表面进行旋转磨削来实现加工效果。
在内圆磨削过程中,需要注意选择合适的砂轮尺寸和形状,并控制好加工参数,以确保加工质量。
3.3 外圆磨削外圆磨削是用于加工轴类零件外表面的一种方法。
它通常使用外圆砂轮进行加工,通过对零件外表面进行旋转磨削来实现加工效果。
在外圆磨削过程中,同样需要注意选择合适的砂轮尺寸和形状,并控制好加工参数。
磨削加工中的高效磨削技术

磨削加工中的高效磨削技术随着生产和科技的不断发展,机械加工业也在不断进步。
磨削加工作为机械加工过程中重要的环节,对于加工质量的影响非常大。
在过去,由于磨削加工效率低下,长时间的手工操作不仅浪费时间,而且也增加了劳动强度,同时精度也不易保证。
而随着高科技的到来和加工事业的不断进步,经过长时间的探索研究,高效磨削技术逐步发展起来,使磨削加工成为一种高度自动化的加工方式。
高效磨削技术主要采用的是高能量磨削方式。
它的基本原理是通过增加切削速度,提高磨削力,使其获得更高的能量密度,从而使磨削效率大幅提高。
在具体的应用中,高效磨削技术的出现在很大程度上解决了过去磨削加工中很难处理的问题。
一方面,高能量的磨削方式能够有效地降低磨削加工的时间,缩短了加工周期,降低了生产成本;另一方面,高效磨削技术能够改善加工表面的粗糙度,提高加工精度,保持加工品质的稳定性。
高效磨削技术的应用高效磨削技术的应用范围非常广泛,在各个行业都有着广泛的应用。
在汽车制造和航空航天领域,需要高精度、高强度、高刚度的轮毂,并且需要保证车轮在高速行驶中的安全。
在这种情况下,高效磨削技术展现了其独特的技术价值。
此外,在模具制造、机械零部件制造、船舶工业等领域中也广泛应用。
高效磨削技术也为未来高速磨削领域带来了无限的可能性。
高效磨削技术的应用除了有着广泛的范围外,还拥有许多的优势。
首先,高效磨削技术不仅可以节约加工时间,同时大大降低了生产成本。
其次,高效磨削技术能够帮助实现精度控制和质量控制,确保加工品质的稳定性。
再次,高效磨削技术还可以降低工人的劳动强度,提高了工人的工作效率和生产效率。
高效磨削技术的发展方向在未来的发展中,随着技术的不断提升,高效磨削技术将会得到更广泛的应用和发展。
随着生产工艺要求的日益提高,越来越多的厂商开始寻求解决方案来支持高质量、高效率的制造。
因此,随着技术的不断创新和开发,高效磨削技术未来的发展将会朝着更加高精度、更加自动化和更加环保等方面进行探索和发展。
磨削加工类型与运动

2、内圆磨削
磨内孔视频
主运动——砂轮旋转 进给运动——工件旋转作圆周进给,工件或砂轮纵向 往复移动和横向进给运动。
磨削加工类型与运动
常用的磨削方法:
外圆磨削 平面磨削 内圆磨削 成型磨削 无心外圆磨削
纵磨法磨外圆
周边磨削平面
磨削的主运动
vc do no m / s 1000
工件的切向进给运动
VW m / s 或m/min
工件轴向进给运动
fa mm/ r 或 mm/st
径向进给量
fr mm
1、外圆磨削
磨外圆视频
主运动——砂轮旋转
进给运动——工件旋转、移动
吃刀运动——砂轮、工件的相对径向移动
工艺范围:圆柱面、圆锥面、轴肩端面、球面、特殊形状回转面
1、外圆磨削
外圆磨削按不同的进给方向分为纵磨海参和横磨法。
纵磨法:磨外圆时,工件同时作圆周进给和沿轴向作纵 向进给,每单行程或往复行程终了,砂轮作周期的横向 进给。(磨削力小,散热条件好,运用广泛)
切入磨削:将工件放在托板和导轮之间,使磨削砂 轮横向切入进给,来磨削工件表面。导轮中心线需 偏转一个很小的角度(约定30′)使工件在微小轴向 摩擦力的作用下紧靠挡块,得到可靠的轴向定位。来自外圆无心磨削方法特点:
1)工件不需打中心孔,支承刚性好,磨削余量小而均 匀,生产率高,易实现自动化,适合成批生产; 2)加工精度高,其中尺寸精度可达IT5-IT6,形状精 度也比较好,表面粗糙度Ra1.25-0.16μm ; 3)不能加工断续表面,如花键、单键槽表面。 4)只能加工尺寸较小形状简单的零件。
磨削加工中的超硬磨削技术

磨削加工中的超硬磨削技术随着工业的不断发展,各种材料的使用愈加广泛,但是这些材料的硬度也越来越高,传统的磨削工艺难以满足现代工业对材料加工的需求。
因此,超硬磨削技术应运而生。
本篇文章就超硬磨削技术进行深度分析,探讨它在磨削加工中的应用与发展。
第一节:超硬磨削技术的概述超硬磨削技术是一种采用高速旋转的砂轮对高硬度材料进行加工的先进技术。
它能够高效地加工各种硬度材料,如高速钢、硬质合金、非金属材料等。
与传统的磨削工艺相比,超硬磨削工艺能够达到更高的加工精度及表面质量,同时还能降低对材料的损伤和变形。
超硬磨削技术的主要设备是CNC磨床,它能够高速旋转砂轮,并在磨削过程中自动调整刀具的位置和角度。
这样一来,超硬材料的加工就变得更为精准和高效。
除此之外,超硬磨削技术还应用了液压系统、自动化系统等多种先进技术,进一步提高了加工质量和效率。
第二节:超硬磨削技术的种类超硬磨削技术包括金刚石砂轮磨削、碳化硅砂轮磨削、立方氮化硼砂轮磨削等几种类型。
在这些磨削方式中,金刚石砂轮磨削是最常见的磨削方式之一,它具有高硬度、高耐磨性和高热稳定性等优点,可以用于加工各类热敏性材料和脆性材料。
碳化硅砂轮磨削和立方氮化硼砂轮磨削则适用于加工各种金属材料。
碳化硅砂轮磨削具有高硬度、高耐磨性、高温稳定性等特点,可以用于加工大型、高硬度的锻造铸件等;立方氮化硼砂轮磨削则由于其高硬度、高温稳定性和低摩擦系数等优点,成为加工难度较大的高精度测量仪器的理想工具。
第三节:超硬磨削技术的应用超硬磨削技术主要应用于机械制造、航空航天、汽车制造、工业钻探以及医疗器械等领域。
其中,在机械制造领域中,超硬磨削技术已经成为高精度加工的首选,并广泛应用于模具制造、齿轮加工、精密陶瓷等高端领域。
在航空航天领域中,超硬磨削技术则被广泛应用于加工高温合金等难加工材料,大大提高了零件加工的精度和质量。
第四节:超硬磨削技术的优势和未来发展方向超硬磨削技术具有高效、精确、高品质、低损伤等优点,在工业制造中是一项首屈一指的高端技术。
常见的3种磨削方法介绍

常见的3种磨削方法介绍磨削过程就是砂轮表面上的磨粒对工件表面的切削、划沟和滑擦的综合作用过程。
(一)外圆磨削外圆磨削可以在普通外圆磨床或万能外圆磨床上进行,也可在无心磨床上进行,通常作为半精车后的精加工。
1、纵磨法磨削时,工件随工作台作圆周进给运动和纵向进给运动,使砂轮能磨削所有表面。
在每个纵向行程或往复行程后,砂轮进行横向进给,逐渐磨掉磨削余量。
它可以磨削较长的表面,具有良好的磨削质量。
特别是在单件、小批量生产和细磨时,一般采用纵向磨削法。
2、横磨法(切入磨法)采用交叉磨削方式,工件无纵向进给运动。
使用比待磨削表面(或与磨削表面一样宽)宽的砂轮以非常低的进给速度横向进给工件,直到磨掉所有加工余量。
交叉磨削法主要用于磨削长度较短的柱面和两侧有台阶的表面3、深磨法其特点是所有磨削余量(直径一般为0.2~0.6mm)均在纵向刀具中磨掉。
磨削过程中,工件的周向进给速度和纵向进给速度非常慢,砂轮前端被修整成阶梯形或锥形。
深度磨削法的生产率约为纵向磨削法的两倍,可达到IT6水平,表面粗糙度Ra值在0.4~0.8之间。
然而,修整砂轮很复杂,只适合大规模生产。
磨削允许砂轮超出工件,与加工表面两端保持较大距离。
4、无心外圆磨削法工件放置在砂轮和导轮之间,其下方有一支撑板。
砂轮(也称为工作轮)旋转并起切割作用。
导向轮是一个橡胶粘合轮,带有非常细的磨粒。
工件和导轮之间的摩擦力很大,因此工件以接近导轮的线速度旋转。
无心外圆磨削是在无心外圆磨床上进行的。
无心外圆磨床生产率高,但调整复杂;孔与套筒零件外圆的同轴度误差无法修正;带有长轴向槽的零件不能磨削,以防止外圆圆度误差过大。
因此,无心外圆磨削主要用于批量生产细长光轴、轴销、小套筒等零件的轴径。
(二)内圆磨削除了在普通内圆磨床或万能外圆磨床上进行内圆磨削外,无心内圆磨削也可用于大型薄壁零件;对于重量大、形状不对称的零件,可采用行星内圈磨削。
此时,应首先完成工件的外圆。
内圆磨削由于砂轮轴刚性差,一般都采用纵磨法。
机械制造技术--磨削加工概述

机械制造技术–磨削加工概述简介磨削加工是机械制造中常用的一种加工方法。
通过磨削将工件的表面剥离,实现工件的加工精度提高和表面质量改善。
磨削加工通常用于硬度较高、形状复杂、精度要求较高的工件加工,如汽车发动机曲轴、齿轮、精密模具等。
磨削加工的原理磨削加工的原理是利用磨削颗粒的高速旋转和工件的间隙之间的相互作用力,使工件表面颗粒被剥离。
磨削加工主要应用砂轮作为磨削工具,通过磨削工具和工件之间的相对运动,实现对工件表面的切削。
砂轮的分类砂轮是磨削加工中常用的磨削工具,根据不同的磨削任务和工件材料,砂轮可以分为不同的类型,包括磨削砂轮、抛光砂轮、磨床砂轮等。
砂轮的选择不仅取决于工件的材料和形状,还取决于磨削的精度要求和表面质量要求。
砂轮的组成和结构砂轮通常由磨削颗粒、结合剂和孔隙三个部分组成。
砂轮的磨削颗粒可以是石英、氧化铝等硬质颗粒,结合剂可以是陶瓷、橡胶、金属等材料,孔隙可以提高砂轮的散热性能和剥离颗粒的能力。
砂轮的结构可以分为两种类型:单层结构和多层结构。
单层结构的砂轮由一层磨削颗粒和结合剂构成,适用于较粗糙的磨削。
多层结构的砂轮由多层磨削颗粒和结合剂构成,适用于较精细的磨削。
磨削加工的过程磨削加工通常包括粗磨、半精磨和精磨三个阶段。
在粗磨阶段,砂轮的颗粒与工件表面进行大范围的剥离,以消除工件的毛刺和大尺寸误差。
在半精磨阶段,砂轮的颗粒与工件表面进行中等范围的剥离,以改善工件的表面质量和减小尺寸误差。
在精磨阶段,砂轮的颗粒与工件表面进行微小范围的剥离,以获得工件的高精度和高表面质量。
磨削加工的优点和局限性磨削加工具有以下优点:1.可以实现高精度和高表面质量的加工。
2.可以加工复杂形状和高硬度的工件。
3.可以控制加工过程中的温度和应变。
然而,磨削加工也有一些局限性:1.加工效率低,加工速度慢。
2.磨削过程中产生的热量和应力可能会导致工件表面的损伤和变形。
3.砂轮的磨损较快,需要经常更换。
磨削加工的应用磨削加工广泛应用于各个行业,特别是需要高精度和高表面质量的领域。
第三节外圆磨床的磨削方法

第三节外圆磨床的磨削方法外圆磨床是一种用于对工件外圆进行磨削的专用机床。
它可以对各种形状和材质的工件进行加工,并能在精度要求较高的情况下实现高效率的加工。
外圆磨床的磨削方法主要包括平面磨削、对中磨削和深入磨削等。
平面磨削是外圆磨床最基本的磨削方法之一、它适用于对平面、圆弧、齿廓等工件进行磨削。
在平面磨削时,工件经过定心装置定位后,砂轮通过工作台和电机驱动系统旋转,并向工件表面施加磨料。
根据工件的形状和要求,可以选择不同形状和粒度的砂轮,以达到不同的磨削效果。
平面磨削具有操作简单、加工效率高的特点,广泛应用于各种工件的加工。
对中磨削是外圆磨床的另一种常用磨削方法。
它适用于对轴类工件进行加工,如轴瓦、滚珠轴承等。
在对中磨削中,工件通过工件夹持装置实现定位,并通过定心装置进行对中。
砂轮则通过工作台和电机驱动系统旋转,同时沿工件轴向进行移动,对工件进行磨削。
对中磨削可以提供高精度的加工,尤其适用于工件轴向精度要求高的场合。
深入磨削是外圆磨床的一种高级磨削方法。
它适用于对孔、槽等工件内壁进行加工。
深入磨削的主要原理是通过砂轮的旋转和工作台的升降来实现对工件内壁的磨削。
在深入磨削时,砂轮的选择和工艺参数设置非常重要。
需要根据工件的材质、尺寸和形状等因素来确定合适的砂轮类型和粒度,以及合适的砂轮进给量和磨削速度,以保证加工品质和效率。
除了上述基本的磨削方法外,外圆磨床还可以进行多道磨削、联合磨削和光学磨削等特殊磨削方法。
多道磨削是指通过多个砂轮的连续磨削来实现工件的加工。
联合磨削是指将磨削与切割、磨齿、磨位等工艺相结合,以提高磨削效率和加工精度。
光学磨削是指利用光学装置对工件进行检测和测量,以实时调整磨削参数,提高加工品质。
外圆磨床的磨削方法是根据工件的形状、材质和要求等因素来确定的。
不同的磨削方法有各自的特点和适用范围,可以根据具体情况选择合适的磨削方法。
通过合理选择磨削方法和优化磨削工艺参数,可以提高外圆磨床的加工精度和效率,满足各种工件的加工需求。
磨削的加工范围

磨削的加工范围磨削是一种常见的金属加工方法,通过磨削工具对工件进行摩擦切削,以达到精密加工的目的。
磨削工艺可以用于加工不同材料的工件,具有广泛的应用范围。
在磨削的加工范围中,首先要提到的是平面磨削。
平面磨削是指将工件表面磨削成平整的加工方法。
它适用于各种工件的平面加工,如平面零件、平面连接面等。
平面磨削可以采用手动磨削、半自动磨削和全自动磨削等不同方式进行。
除了平面磨削,还有圆柱磨削。
圆柱磨削是指对圆柱形工件进行加工的方法。
圆柱磨削广泛应用于轴类零件、套筒类零件等的加工过程中。
圆柱磨削可以分为外圆磨削和内圆磨削两种形式。
其中,外圆磨削是将工件外圆表面进行磨削,而内圆磨削则是将工件内圆表面进行磨削。
还有曲面磨削。
曲面磨削是指对工件曲面进行加工的方法。
曲面磨削可以分为平面曲面磨削和非平面曲面磨削。
平面曲面磨削是将工件表面进行平整磨削,使其达到规定的平面度和光洁度。
而非平面曲面磨削则是对工件的非平面曲面进行加工,常见的有球面磨削、锥面磨削等。
磨削还可以用于加工各种形状的齿轮。
齿轮磨削是一种特殊的磨削工艺,用于加工各种齿轮。
齿轮磨削可以分为外齿轮磨削和内齿轮磨削。
外齿轮磨削是将齿轮的外齿面进行磨削,内齿轮磨削则是将齿轮的内齿面进行磨削。
齿轮磨削可以提高齿轮的精度和光洁度,提高齿轮的传动效率和使用寿命。
磨削还可以用于加工各种形状的孔。
孔磨削是指对工件孔进行加工的方法。
孔磨削可以分为外孔磨削和内孔磨削。
外孔磨削是将工件外孔进行磨削,内孔磨削则是将工件内孔进行磨削。
孔磨削可以提高孔的精度和光洁度,提高工件的使用性能。
磨削的加工范围非常广泛,可以用于加工不同形状和材料的工件。
通过磨削工艺,可以获得更高的加工精度和表面质量,提高工件的使用性能。
磨削在机械制造、航空航天、汽车制造等行业中都有着重要的应用。
随着科技的发展,磨削技术也在不断创新和改进,将为各个行业的发展提供更多的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磨削加工中的磨削方式
磨削加工是一种精密的金属加工方法,不仅可以用于加工金属
材料,还可以用于加工陶瓷、玻璃等非金属材料。
它的基本原理
是在切削工具与工件之间施加外力,并且在介质中进行磨磨擦削,以达到加工的目的。
磨削加工中的磨削方式有很多种,下面将对
其进行一一介绍。
1. 平面磨削
平面磨削是一种磨削工艺,主要用于加工平面及其上的孔和槽。
这种加工方式通过旋转磨削轮,使其与工件表面接触,施加相应
的压力和剪切力来进行磨削。
平面磨削的加工精度高,工件表面
质量好,适用于加工超精密配件。
2. 内圆磨削
内圆磨削是一种在工作件内部进行磨削的加工方式,主要用于
加工内径大小不同的圆柱体。
这种加工方式的主要设备是内圆磨床,通过不断旋转工作件和磨削轮,结合适当的压力、速度等参数,来进行磨削加工。
3. 外圆磨削
外圆磨削是一种在工作件外部进行磨削的加工方式,主要用于加工外径大小不同的圆柱体。
这种加工方式的主要设备是外圆磨床,通过不断旋转工作件和磨削轮,结合适当的压力、速度等参数,来进行磨削加工。
4. 中心磨削
中心磨削是一种在两个中心点之间进行磨削加工的方式,主要用于加工圆锥体、圆柱锥体等形状的工件。
这种加工方式的主要设备是中心磨床,在加工过程中,需要较高的精度控制及对磨削力的稳定性要求。
5. 轮廓磨削
轮廓磨削是一种根据工件轮廓进行磨削的加工方式,主要用于加工各种不规则形状的工件。
这种加工方式的主要设备是数控磨
床,通过对工件进行高精度的三维扫描和轮廓学习,来得到工件的三维形状。
随后,根据得到的轮廓数据进行加工。
6. 微型磨削
微型磨削是一种在微米尺度下进行磨削的加工方式,主要用于加工高精度、超细的微件。
这种加工方式的设备应具有高精度、高速度、低摩擦等特点,常用于制造高端光学元件、半导体芯片等高端应用领域。
总之,磨削加工中的磨削方式有很多种,不同的加工方式适用于不同的工件加工需求,需要精确控制加工参数,以保证加工效果。
随着技术的不断进步,相信未来还会涌现更多更精密的磨削加工方式,为各行各业的高精度加工需求提供更多的选择。