氧化铝陶瓷烧结温度曲线
烧结温度和烧结温度范围的测定

四、实验步骤 1.试样制备:将制备好的泥浆或压滤后的滤饼,经真 空练泥机挤制成直径12mm或23mm的试条,放在铺有薄纸 的平板上,阴干至发白后,放入烘箱内干燥。然后把试条 锯成为¢12mm×30mm或¢23mm×l5 mm的样品,在细砂纸 上磨去毛边棱角,并沿轴向磨出一平面,以便堆放。把样 品表面刷干净,编号,再放人烘箱内,在105~110℃温度 下烘干至恒量,取出放在干燥器内冷却至室温备用。 2.在天平上称取干燥后的试样质量。 3.称取饱吸煤油后在煤油中试样质量,饱吸煤油后在 空气中试样质量(试样饱吸煤油的方法同干燥体积体收缩 和干燥气孔率测定)。
式中
G0 ——干燥试样在空气中质量,g; G1——干燥试样饱吸煤油后在煤油中质量,g; G2——干燥试样饱吸煤油后在空气中质量,g; G3——烧后试样在空气中质量,g; G4 ——烧后试样饱吸煤油(水)在煤油(水)中质 量,g; G5——烧后试样饱吸煤油在空气中质量,g; γ水——水的密度(在室温下),g/ cm3; γ油——煤油的密度(在室温下),g/ cm3; V0——干燥试样体积,cm3; V ——烧后试样体积,cm3。
一、实验目的 烧结温度和烧结温度范围是坯料的重要性能之一,它对鉴 定坯料在烧成时的安全程度、制定合理的烧成升温曲线以 及选择窑炉等均有重要参考价值。为了决定最适宜的烧 成制度,必须知道坯料的烧结温度与烧结温度范围这两个 重要工艺特性。 本实验的目的: 1.掌握烧结温度与烧结温度范围的测定原理和测定方 法。 2.了解影响烧结温度与烧结温度范围的复杂因素。 3.明确烧结温度与烧结温度范围对陶瓷生产的实际意 义。
4.将称过质量的试样放人105~110℃烘箱内排除 煤油,直至将试样中的煤油排完为止。 5.按编号顺序将试样装人高温炉中,装炉时炉底 和试样之间撒一层薄薄煅烧石英粉或Al2O3粉, 以免在高温时粘连。装好后开始加热,并按升温 曲线升温,按预定的取样温度取样。 升温速度:室温~1100℃,100~150℃/h; 1100℃~烧成停炉,50~60℃/h。 取样温度:300~900℃每隔100℃取样3个; 900~1200℃每隔50℃取样3个; 1200~烧成停火,每隔20~10℃取样3个。
Al2O3陶瓷制品烧结工艺的影响因素探讨

Al2O3陶瓷制品烧结工艺的影响因素探讨作者:周益平来源:《江苏陶瓷》2015年第02期摘要阐述了Al2O3制品的烧结机理,分析了烧成气氛,添加剂对Al2O3制品烧结的影响,探讨理想的升温制度、保温时间。
关键词氧化铝陶瓷制品;烧结机理;影响因素;烧成制度0 前言工业特种陶瓷中, Al2O3制品以其优良的耐酸碱性、耐磨性、耐电性、机械强度高等,在化工磷复肥和有色金属行业以及其他行业得到了广泛的应用。
在氧化铝陶瓷生产过程中,坯体烧结后的制品显微结构及其内在性能会发生根本变化,也很难通过其他途径补救。
所以研究氧化铝陶瓷的烧结工艺,选择合理的烧成制度,确保氧化铝陶瓷制品的性能和产品质量是十分必要的。
本文对烧结机理、影响烧结性能的因素、添加烧结助剂进行了探讨。
1 烧结机理和影响烧结性能的因素1.1烧结机理烧结是坯体由于温度变化发生的物理化学反应,得到了致密、坚硬的陶瓷制品的过程。
其物理化学变化包括坯体中残余拌料水分的排除、物料中化合物结合水和有机物分解的排除、氧化铝同质异晶的晶型转变以及固态物质颗粒间的固相反应等。
固相反应在氧化铝陶瓷的烧结技术中占有重要的位置,它是通过物质质点的迁移扩散作用进行的,随着温度的升高,晶体的热缺陷不断增加,质点的迁移扩散由内扩散形式到外扩散,从而发生反应产生新的物质。
1.2影响Al2O3陶瓷烧结的因素较多,主要表现如下:1.2.1晶体的结构化学键强的化合物(晶体)具有较高的晶格能量,晶格结构牢固,即使在较高温度下,质点的振动迁移也较弱,只有在接近熔点温度时,才会产生显著的物理化学反应。
所以,由这类化合物组成的坯体不易烧结。
而由微细晶体组成的多晶体相比于单晶体而言,由于前者内部晶界面很多,而晶界是缺位缺陷相对集中和易消除的地方,也是原子和离子扩散迁移的快速通道,所以远比后者易于烧结。
1.2.2物料的分散度物料分散度越高,表面能就越高,所以具有促进迁移扩散的强大作用,有利于烧结。
各类氧化物陶瓷烧结体积变化点

各类氧化物陶瓷烧结体积变化点一、概述氧化物陶瓷作为一种重要的结构材料,其烧结性能一直备受关注。
体积变化是认识氧化物陶瓷烧结行为的重要指标之一。
本文将对各类氧化物陶瓷在烧结过程中的体积变化点进行探讨。
二、硅酸盐陶瓷烧结体积变化点1. 石英陶瓷石英陶瓷在烧结过程中,通常在1200°C左右出现大小约0.2的体积收缩。
在1300°C左右会再次出现约0.5的体积收缩。
在1400°C以上,石英陶瓷的体积基本上稳定。
2. 镁铝硅酸盐陶瓷镁铝硅酸盐陶瓷在1000°C左右会出现约1的体积收缩。
在1100°C左右再度出现体积收缩,范围在0.5-1之间。
在1200°C以上,镁铝硅酸盐陶瓷的体积基本上保持稳定。
三、氧化物陶瓷烧结体积变化点1. 氧化铝陶瓷氧化铝陶瓷在1200°C左右会出现0.5-1的体积收缩。
在高温下,氧化铝陶瓷的体积基本上稳定,收缩的幅度不大。
2. 氧化锆陶瓷氧化锆陶瓷在1300°C左右会出现约0.5的体积收缩。
在1400°C以上,氧化锆陶瓷的体积基本上保持稳定。
四、复合氧化物陶瓷烧结体积变化点1. 氧化锆复合氧化钙陶瓷氧化锆复合氧化钙陶瓷在1300°C左右会出现约0.5的体积收缩。
在1400°C以上,氧化锆复合氧化钙陶瓷的体积基本上保持稳定。
2. 氧化锆复合氧化铝陶瓷氧化锆复合氧化铝陶瓷在1300°C左右会出现约1的体积收缩。
在1400°C以上,氧化锆复合氧化铝陶瓷的体积基本上保持稳定。
五、结论在烧结过程中,不同类型的氧化物陶瓷都会出现一定程度的体积收缩。
通过了解各类氧化物陶瓷在烧结过程中的体积变化点,可以更加深入地了解其烧结行为,为优化烧结工艺提供重要依据。
值得注意的是,以上数据仅供参考,实际应用中仍需根据具体情况进行调整。
希望本文对氧化物陶瓷烧结体积变化点的研究能够为相关领域的科研工作提供一定帮助。
氧化锆粉+氧化铝粉的陶瓷烧结温度

氧化锆粉和氧化铝粉是目前制备高性能陶瓷材料中常用的原料,它们具有优良的耐高温、耐腐蚀和机械强度等特性,因此在航空航天、能源、化工等领域有着广泛的应用。
而通过烧结工艺将氧化锆粉和氧化铝粉制成的陶瓷制品,其烧结温度是影响陶瓷制品性能的重要因素之一。
在陶瓷烧结过程中,氧化锆粉和氧化铝粉的烧结温度不仅决定了陶瓷制品的致密度、强度和晶粒尺寸等性能,还直接影响了烧结工艺的成本和效率。
科研工作者和生产厂家一直致力于寻找最佳的氧化锆粉和氧化铝粉的烧结温度,以满足不同工作条件下的需求。
在实际生产中,氧化锆粉和氧化铝粉的烧结温度是根据具体的配方和烧结工艺来确定的,下面我们将结合实验数据,深入探讨氧化锆粉和氧化铝粉的烧结温度。
1. 影响氧化锆粉和氧化铝粉烧结温度的因素在烧结工艺中,氧化锆粉和氧化铝粉的烧结温度受到多种因素的影响。
其中主要包括原料的性质、压制工艺、烧结气氛和烧结时间等因素。
1.1 原料的性质氧化锆粉和氧化铝粉的颗粒大小、形状、晶型和纯度等性质会直接影响其烧结温度。
一般来说,颗粒尺寸较小、形状较规则的氧化锆粉和氧化铝粉在烧结过程中更容易形成致密的结构,从而降低烧结温度。
1.2 压制工艺在烧结工艺中,通过改变氧化锆粉和氧化铝粉的压制工艺,可以调整烧结温度。
一般而言,采用高压制度工艺,如等静压烧结和冷等静压烧结,可以降低烧结温度。
1.3 烧结气氛选择合适的烧结气氛也对氧化锆粉和氧化铝粉的烧结温度有着重要影响。
在还原气氛下进行烧结,可以降低烧结温度,促进烧结过程中氧化物的还原反应,形成致密的结构。
1.4 烧结时间烧结时间对烧结温度也有一定影响。
一般情况下,延长烧结时间可以降低烧结温度,使氧化锆粉和氧化铝粉更充分地发生烧结反应,提高陶瓷制品的致密度和强度。
2. 实验数据分析针对氧化锆粉和氧化铝粉的不同性质和烧结工艺条件,我们进行了大量的实验研究,得到了丰富的实验数据。
通过对这些数据的分析,我们可以将氧化锆粉和氧化铝粉的烧结温度进行初步归纳。
96氧化铝陶瓷烧结温度

氧化铝陶瓷的烧结温度因具体类型和制造工艺的不同而有所差异。
对于Al2O3含量在99.9%以上的高纯型氧化铝陶瓷,其烧结温度可以高达1650℃以上。
然而,适当的提高烧结温度对氧化铝陶瓷的性能有积极的影响。
例如煅烧氧化铝粉末为主要原料,在1500℃、1550℃、1600℃等不同的温度下制备氧化铝陶瓷,结果表明:烧结温度对氧化铝陶瓷的体积收缩率、体积密度、吸水率和气孔率以及抗弯强度和维氏硬度都有显著影响。
值得注意的是,尽管氧化铝的熔点高达2000多度,使得氧化铝陶瓷的烧结温度普遍较高,但降低氧化铝陶瓷的烧结温度以缩短烧结周期、降低能耗、减少窑炉和窑具的损耗并降低生产成本一直是企业关注的重要问题。
为此,研究人员采取了诸如获得分散均匀、无团聚并具有良好烧结活性的超细粉体、添加适量的烧结助剂等途径来降低其烧结温度。
氧化铝陶瓷的微波烧结

《硅灰石、氧化铝、钛酸钙等陶瓷材料制备》实验报告---------------氧化铝陶瓷的微波烧结1、引言1.1氧化铝陶瓷材料的结构、性能及应用背景1.11氧化铝陶瓷材料的结构氧化铝陶瓷是一种以α-Al2O3为主晶相的陶瓷材料,氧化铝含量一般在75~99.9%之间,通常习惯以氧化铝的含量来分类。
氧化铝的含量在75%左右称为“75瓷”,含量在85%左右称作“85瓷”,含量在99%左右称作“99瓷”。
含量在99%以上的称作刚玉瓷或纯刚玉瓷。
氧化铝有α(刚玉型)、β、γ、δ等11种变体,其中主要是α、γ两种晶型,而且只有一种热力学稳定相,即α氧化铝。
而β氧化铝是含碱的铝酸盐(R2O·11Al2O3或RO·6Al2O3)。
它们的结构各不相同。
1.12氧化铝陶瓷材料的性能及应用背景(1)机械强度高:氧化铝烧结后的抗弯强度可达250MPa,热压产品可达500MPa。
氧化铝的成分愈纯,强度愈高。
强度在高温下可维持到900℃。
利用氧化铝陶瓷的这一性质可以制成装置瓷和其他机械构件。
(2)电阻率高,电绝缘性好:氧化铝的常温电阻率约为1015Ω·cm,绝缘强度15Kv/mm,利用其绝缘性和强度可制成各种基板、管座、火花塞和电路外壳等(3)硬度高:莫氏硬度为9,加上优良的抗磨损性,所以广泛地用以制造刀具、磨轮、磨料、拉丝模、挤压模、轴承等。
用A12O3陶瓷刀具加工汽车发动机和飞机零件时,可以以高的切削速度获得高的精度。
(4)熔点高,抗腐蚀:氧化铝的熔点为2050℃,能较好地抵抗一些熔融金属的侵蚀,可用作耐火材料、炉管,热电偶保护套等。
(5)化学稳定性好:许多复合的硫化物、磷化物、砷化物、碘化物、氧化物以及硫酸、盐酸、硝酸、氢氟酸不与A12O3作用。
因此A12O3可制备人体关节、人工骨等生物陶瓷材料。
(6)光学特性:氧化铝陶瓷可以制成用于高压纳灯的透明陶瓷灯管。
透明氧化铝陶瓷的熔点高达2050℃,能在1600℃的环境里不受钠蒸气的腐蚀,而且可以通过95%的光线。
【精品文章】氧化铝陶瓷的低温烧结技术简介

氧化铝陶瓷的低温烧结技术简介
一、氧化铝陶瓷简介
氧化铝陶瓷材料。
具有机械强度高、硬度大、高频介电损耗小、高温绝缘电阻高、耐化学腐蚀性和导热性良好等优良综合技术性能。
同时其生产原料来源广、价格相对便宜、加工制造技术较为成熟等优势,故已被广泛应用于电子、电器、机械、化工、纺织、汽车、冶金和航空航天等行业,成为目前世界上用量最大的氧化物陶瓷材料。
氧化铝陶瓷是一种以α氧化铝为主晶相的陶瓷材料,氧化铝含量一般在75~99.9%之间,通常习惯以氧化铝的含量来分类。
氧化铝的含量在75%左右称为“75瓷”,含量在85%左右称作“85瓷”,含量在99%左右称作“99瓷”。
含量在99%以上的称作刚玉瓷或纯刚玉瓷。
99瓷氧化铝瓷材料主要用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。
氧化铝有α(刚玉型)、β、γ、δ等11种变体,其中主要是α、γ两种晶型,而且只有一种热力学稳定相,即α氧化铝。
而β氧化铝是含碱的铝酸盐(R2O·11Al2O3或RO·6Al2O3)。
它们的结构各不相同。
氧化铝陶瓷
二、氧化铝陶瓷低温烧结技术
由于氧化铝熔点高达2050℃,导致氧化铝陶瓷的烧结温度普遍较高(参见表一中标准烧结温度),从而使得氧化铝陶瓷的制造需要使用高温发热体。
氧化铝陶瓷低温常压烧结

氧化铝陶瓷低温常压烧结张全贺051002131摘要:氧化铝陶瓷材料以其优良的性能及较低的制造成本,被广泛应用于国民经济各部门。
随着科学技术的发展,特别是电子、能源、空间技术、汽车工业的发展,对材料的要求越来越苛刻,因此对高纯氧化铝陶瓷尤其是更高纯度的高性能氧化铝陶瓷需求量大为增加。
本课题围绕制各A1203含量>99.8wt%的高纯氧化铝陶瓷进行研究,通过原科粉体预处理工艺、烧结助剂添加工艺、成型优化工艺,从而实现常压下低温烧结高纯高致密氧化铝陶瓷。
本课题中获得的低温烧结试样具有较好的显微结构和较高的机械性能。
原料粉预处理工艺是一种新的氧化铝粉体解团聚方法,具有工艺简单、成本消耗低、粉体处理效果显著的特点,对于粉体解团聚处理工艺的技术进步有一定的促进意义。
在烧结助剂的研究中,本课题MgO为基本考察助剂,Y203、La203、Nd20s、纳米A1203为复合添加助剂,通过相关的选择实验,研究了以上烧结助剂在14500C、1550。
(2、16500C对~203含I>99.8wt%的商纯氧化铝陶瓷的烧结体密度的作用规律。
这一研究的结果,为高纯氧化铝陶瓷的制各提供重要参考数据。
通过高纯超细氧化铝粉料的凝胶浇注成型工艺的研究,优化高纯超细氧化铝粉体的凝胶浇注成型参数,获得了高质量的凝胶浇注成型试样。
以获得的生坯为研究对象,通过对真空烧结工艺参数的分析和工艺试验,在150012温度下,实现了高纯氧化铝陶瓷的低温致密烧结;获得的高纯高致密氧化铝陶瓷密度可达3.979/cm3;烧结体平均晶粒尺寸3~4um;抗弯强度(三点)可达500MPa以上;表面显微硬度可达18.5GPa以上。
关键词:氧化铝陶瓷预处理凝胶成型低温烧结纯1 引言氧化铝陶瓷是指以高纯AI2O3粉末为主要原料,经各种陶瓷工艺制成的晶相晶粒尺寸小于6um并以刚玉为主晶相的氧化铝陶瓷材料,其具有高熔点、高硬度机械性能好、耐蚀、绝缘等优良特性刚玉是自然界中的一种极硬材料,莫氏硬度为9,仅次干金刚石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化铝陶瓷烧结温度曲线
氧化铝陶瓷烧结温度曲线描述了在烧结过程中氧化铝陶瓷材料的温度变化情况。
烧结温度曲线通常由两个主要阶段组成:加热阶段和保温阶段。
在加热阶段,烧结过程开始时,将炉温逐渐升高到陶瓷材料的烧结温度。
这个
温度通常会根据具体的陶瓷成分和制造工艺来确定。
在此阶段,温度曲线的斜率较大,即温度上升速度较快。
当炉温达到烧结温度后,进入保温阶段。
在这个阶段,炉温会保持在一定的温
度范围内,充分使陶瓷颗粒间的分子间力发展,使陶瓷颗粒之间产生结合,形成致密的结构。
在保温阶段,温度曲线呈平稳水平或逐渐增加的形态。
烧结温度曲线的设计需要根据具体陶瓷材料的特性和工艺要求进行调整。
过高
的烧结温度可能导致陶瓷材料失真、烧结缺陷或颗粒过度生长,影响其性能。
而过低的烧结温度则可能导致未完全结合的陶瓷颗粒,影响材料的致密性和强度。
因此,烧结温度曲线的设计需要综合考虑陶瓷材料的成分、颗粒大小、形状以
及所要求的性能指标。
通过精确控制烧结温度曲线,可以获得高品质和优越性能的氧化铝陶瓷材料。