新人教版中考数学基础训练9含答案

合集下载

(完整word版)初三数学基础练习卷9(含答案).doc

(完整word版)初三数学基础练习卷9(含答案).doc

初三数学基础练习卷9一、选择题(下列各题所给答案中,有且只有一个答案是正确的,每小题 3 分,共30 分)1. 2 的相反数是()1B.- 2 C. 2 D. 2 A.22.下列计算中,正确的是()A.a 21 2B.2a 2 3a 3 a 3 b) 2 6 b 2 D.a 3 2 a 6 a a C.(a aa3.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是( )4.一台机床在十天内生产的产品中,每天出现的次品个数依次为(单位:个)0,2, 0, 2,3,0, 2,3,1, 2,那么这十天中次品个数的()A.平均数是 2 B.众数是 3 C.中位数是 1.5 D .方差是 1.255.若反比例函数y k1,2) ,则这个函数的图象一定经过点()的图象经过点 (xA.( 2,1) 1 ,C.(2,1) D. 1 ,B. 2 22 26.设两圆的半径分别为R 和 r ,圆心距为d,且关于 x 的方程 x2-2(R- d)x+r2=0 有两个相等的实数根,则两圆的位置关系是()A.外离B.外切C.内切 D .内切或外切7.桌子上摆放着若干个碟子,从三个方向上看,三种视图如下,则桌子上共有碟子()俯视图主视图左视图A.8个B.10 个C. 12 个D.14 个8.在直角坐标系中,O 为坐标原点,已知M(-1,1) ,在 y 轴上确定点N,使△ MON 为等腰三角形,则符合条件的点N 的个数共有()A.1 个B.2 个C.3 个D.4 个9.如图,在△ ABC 中, AB =AC ,AD⊥ BC 于 D ,∠ C=20°,沿 AD 剪开,若将△ABD 绕点 D 顺时针旋转角α后,斜边恰好过原△ ABC的顶点A,则旋转角α的大小为()A. 40°B. 20°C. 70°D. 50°10.下列四个命题①等式(6 x) 2= x-6成立的条件是x< 6②一直角三角形的两边长为 3 和 4,则斜边上的中线长为 2.5③顺次连结对角线相等的四边形四边中点所得的四边形是正方形④如果一个图形经过位似变换得到另一个图形,那么这两个图形一定相似其中假命题有()...A.4 个B.3 个C.2 个D.1 个二、填空题(每空 2 分,共 16 分)11.如果x 1 在实数范围内有意义,则x 的取值范围是.12.滴水穿石,水滴不断地落在一块坚硬的石头上,一年后石头上形成了一个深为- 24.347 ×10 m 的小洞,按照这个速度,一百年后这个小洞的深度为m(保留两个有效数字).213.因式分解: 2m-8 =.14.如图,⊙ O 的弦 AB= 8,OC⊥ AB 于点 D,交⊙ O 于点 C,且 CD= 2,那么⊙ O 的半径为______.15.如图,已知梯形 ABCD 中,AD ∥BC,∠ C=90 °,以 CD 为直径的圆与 AB 相切,AB=6 ,那么梯形 ABCD的中位线长是.COODA D BABC第14题图第18题第 15题图第 16题16.如图, AB 是半⊙ O 的直径, C、D 是半圆的三等分点,若AB=2,P 是直径 AB 上的任意一点,则图中阴影部分的面积是 _________ _.17.已知某二次函数图象满足:( 1)对称轴平行于y 轴;( 2)图象与坐标轴恰有两个公共点;( 3)当 x> 1 时, y 的值随 x 的增大而减小 .请你写出一个同时具备上述特征的二次函数表达式:.18、如图,∠ AOB= 45°,过 OA 上到点 O 的距离分别为1,3, 5, 7,9, 11,的点作 OA 的垂线与OB 相交 ,得到并标出一组黑色梯形,它们的面积分别为S1, S2, S3, S4,观察图中的规律,求出第10 个黑色梯形的面积 S10 = .三、解答题0-cos45o+ -12220.(本题 4 分)( 1)计算:- 1 +(4 -π)3(x 1) 2x 3( 2)解不等式组:x1x,并写出不等式组的整数解.(本题5分)3 221.(本题 8 分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交 CE 的延长线于 F ,且 AF BD ,连结 BF .( 1)求证:D是BC的中点.( 2)如果AB AC ,试判断四边形AFBD 的形状,并证明你的结论.AFEB D C22. (本题 8 分)如图,某边防巡逻队在一个海滨浴场岸边的 A 点处发现海中的 B 点有人求救,便立即派三名救生员前去营救. 1 号救生员从 A 点直接跳入海中; 2 号救生员沿岸边 (岸边看成是直线 ) 向前跑到C 点,再跳入海中; 3 号救生员沿岸边向前跑300m 到离 B 点最近的D 点,再跳入海中.救生员在岸上跑的速度都是 6m/ s,在水中游泳的速度都是2m/ s.若∠ BAD=45°,∠ BCD=60°,三名救生员同时从 A 点出发,请说明谁先到达营救地点B.( 2 1.4,3 1.7)23.( 1)2008年我国部分地区发生了“手足口”病情,这是一种肠道传染病,其主要是通过接触被感染的手、食品及生活用品等引起感染 .小军和他的同学在小区里开展了一次安全卫生宣传,并抽样调查了居民对“手足口”病的了解情况,结果如下:了解 A 比较了解(知道传染 B 一般了解(只知道是传染 C 不了解(没有关注,程度途径和预防措施)病,但途径和预防不清楚)不清楚是什么)人数30 40 ※根据抽样调查结果回答下列问题:(本题 6分)①请将 B,C标注在扇形统计图对应的区域中,本次抽样调查中,“不了解”(即C)的人数是人;②若小区有居民约5000人,根据抽样调查,试估计该小区约有多少人对“手足口”这一病情“比较了解”(即A)?初三数学基础卷9( 2)位于坐标原点的一个质点M 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,....并且向上、向右移动的可能性相同.(本题 7 分)①列出质点M 移动 3 次时所有可能的方法,并用坐标表示出它的位置;②求质点M 移动 3 次后位于点(1, 2)的概率.24.(本题 8 分)家用电灭蚊器的发热部分使用了PTC 发热材料,它的电阻R( kΩ)随温度 t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到 30℃的过程中,电阻与温度成反比例关系,且在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升 1℃,电阻增加4kΩ.15⑴求当 10≤t≤30时, R 和 t 之间的关系式;⑵求温度在 30℃时电阻 R 的值;并求出 t≥30时, R 和 t 之间的关系式;⑶ 家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过 6 k Ω?初三数学基础卷 9答案一、1.B2.C3. B 4.D5.C6.D7. C8.D9.A10. B .二、填空 (每空 3 分,共 30 分)11. x ≥- 112. 4.313.( m+2 )( m -2)14. 515.316..17. y=-( x - 1) 2 等 18. 76.3三、解答 (共90 分)20.( 1) 0( 2)- 2<x ≤ 0,整数解 - 1, 0.21.( 1)先 △ AEF ≌△ DEC —————————— 2 分∴ AF=CD —————————— 3 分 ∵ AF=BD ∴ BD=CD∴ D 是 BC 的中点.——————————4 分( 2)如果 ABAC ,四 形 AFBD 是矩形. -----------5 分∵ AF=BD , AF ∥ BD∴四 形 AFBD 是平行四 形—————————— 6 分∵ AB=AC , BD=CD∴∠ ADB=90 °∴四 形 AFBD 是矩形——————————8 分22. 解:( 1)在 △ ABD 中,∠ A=45°,∠ D=90°, AD=300 ,AD2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∴ AB=300cos45BD AD tan45300.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分在 △ ABD 中,∵∠ BCD=45° ,∠ D=90°,∴ BCBD 300 200 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分sin 6032∴ CDBD 300 100 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分tan 6031 号救生 到达B 点所用的3002150 2 210(秒).⋯⋯⋯⋯⋯⋯5 分22 号救生 到达B 点所用的300 100 3200 3 250 3 (秒).⋯ 6 分62 50191.733 号救生 到达B 点所用的300 300 200 (秒).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分6 2∵ 191.7< 200< 210,初三数学基础卷 923.( 1)①图略,—————————2 分30 人——————————4 分② 1500—————————— 6 分( 2)①向上移动 3个单位, M ( 0, 3)向上移动 2个单位,向右移动 1个单位, M ( 1, 2) 向上移动 1个单位,向右移动 2单位, M (2, 1)向右移动 3个单位, M ( 3, 0)—————————— 4分② 1—————————— 6分46024.⑴当 10≤t ≤ 30时, R2 分——————————t⑵当 t=30 时, R=2 ;—————————— 3 分当 t ≥30时, R4t 6 —————————— 5 分15⑶令 R=6,求得 t=45,—————————— 6 分所以当 10≤t ≤45 时,发热材料的电阻不超过6 k Ω. —————————— 8 分。

初三数学基础练习及答案

初三数学基础练习及答案

初三数学基础练习及答案1、如果-□×(-2)=6,则“□”内应填的实数是(3)。

2、下列各式计算不正确的是(B)。

3、视力表对我们来说并不陌生。

如图是视力表的一部分,其中开口向上的两个“E”之间的变化是(C)对称。

4、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是(B)55°。

5、某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:完成引体向上的个数:7 8 9 10人数:3 1 1 5这组同学引体向上个数的众数与中位数依次是(D)10和9.5.6、方程(x-3)(x+1)=x-3的解是(C)x=3或x=-1.7、如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何的侧面积是(D)75πcm2.8、如图所示,给出下列条件:ACABA①∠B=∠ACD;②∠ADC=∠ACB;③△ABC∽△ACD;④AC2=AD·AB.其中单独能够判定△ABC∽△ACD的个数为(B)2.9、某校生物老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数(2n+1)粒。

10、如图,直线l和双曲线y =(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则有(A)S1<S2<S3.11、计算:$|-3|-2=1$。

12、在函数$y=x+3$中,自变量$x$的取值范围是$(-\infty,+\infty)$。

13、截止2010年1月7日,京沪高铁累计完成投资1224亿元,为总投资的56.2%。

$1224\times10^8$元用科学记数法表示为$12.24$亿元。

人教版中考仿真押题卷《数学试卷》含答案解析

人教版中考仿真押题卷《数学试卷》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.12-的倒数是( ) A. B. 12 C. D.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( ) A. B. C. D. 3. 下列图形中,由AB ∥CD ,能得到∠1=∠2的是A. B. C. D. 4.如图,将RtABC 绕直角项点C 顺时针旋转90°,得到A' B'C ,连接AA',若∠1=20°,则∠B 度数是( )A. 70°B. 65°C. 60°D. 55°5.已知a b <,下列不等式中,变形正确的是( ) A. a 3b 3->- B. 3a 13b 1->- C. 3a 3b ->- D. a b 33> 6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103B. 55×103C. 0.55×104D. 5.5×104 7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 49.如图,在△ABC 中,∠ACB =90°,BE 平分∠ABC ,ED ⊥AB 于点D .若∠A =30°,AE =6 cm ,则BC 等于( )3 B. 3 cm 3 D.4 cm10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d 0022A B +,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d 223543=+,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6二.填空题11.因式分解:2ax 2﹣4axy +2ay 2=_____.12.函数2y x =-中,自变量的取值范围是 . 13.如图,点A(t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tanα=32 ,则t 的值是________.14.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,则图中阴影部分的面积等于___________.15.如图,一折扇完全打开后,若外侧两竹片OA,OB的夹角为120°,扇面ABDC的宽度AC是OA的一半,且OA=30 cm,则扇面ABDC的周长为__________cm.16.如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比12OAAD,若AB=1.5,则DE=_____.17.在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是cm.18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.三.解答题19.计算:(﹣1)2020+(π﹣3)0﹣3tan30°+11()2-.20.已知x 、y 满足方程组52251x y x y -=-⎧⎨+=-⎩,求代数式()()()222x y x y x y --+-的值. 21.如图,已知∠AOB =60°,点P 在边OA 上,OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,求OM 的长.22.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2面积之比为 (不写解答过程,直接写出结果).23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 面积为8,求▱ABCD 的面积.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?26.如图,AB 是⊙O 的直径,D 是⊙O 上一点,点E 时AD 的中点,过点A 作⊙O 的切线交BD 的延长线于点F .连接AE 并延长交BF 于点C .(1)求证:AB =BC ;(2)如果AB =10.tan ∠FAC =12,求FC 的长.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.答案与解析一、选择题1.12-的倒数是( )A. B. 12C. D.【答案】A【解析】【分析】根据倒数的定义求解即可.【详解】12-的倒数是,故选A.【点睛】本题考查了倒数,分子分母交换位置是求一个数倒数的关键.2.为丰富国民精神文化生活,提升文化素养,全国各地陆续开展全民阅读活动. 现在的图书馆不单是人们学习知识的地方,更是成为人们休闲的好去处. 下列图书馆标志的图形中不是..轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴.据此可以分析.【详解】根据轴对称图形的定义可知,选项A,C,D,是轴对称图形,选项B不是轴对称图形.故选B【点睛】本题考核知识点:轴对称图形.解题关键点:理解轴对称图形的定义.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A、∵AB∥CD,∴∠1+∠2=180°.故本选项错误.B、如图,∵AB∥CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB∥CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项错误.D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项错误.故选B.4.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )A. 70°B. 65°C. 60°D. 55°【答案】B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.5.已知a b <,下列不等式中,变形正确的是( )A. a 3b 3->-B. 3a 13b 1->-C. 3a 3b ->-D. a b 33> 【答案】C【解析】【分析】根据不等式的性质解答即可.【详解】解:A 、不等式a b <的两边同时减去3,不等式仍成立,即33a b -<-,故本选项错误; B 、不等式a b <的两边同时乘以3再减去1,不等式仍成立,即3131a b -<-,故本选项错误; C 、不等式a b <的两边同时乘以3-,不等式的符号方向改变,即33a b ->-,故本选项正确; D 、不等式a b <的两边同时除以3,不等式仍成立,即33a b <,故本选项错误; 故选C .【点睛】本题考查了不等式的性质注意:不等式两边都乘以同一个负数,不等号的方向改变.6.2018年10月24日上午9时,港珠澳大桥正式通车,它是连接香港、珠海、澳门的超大型跨海通道,全长55 000米,数据55 000用科学记数法表示是( )A. 55×103 B. 5.5×103 C. 0.55×104 D. 5.5×104 【答案】D【解析】【分析】由科学记数法公式()101<10n a a ⨯≤即可得到结果;【详解】455000=5.510⨯;故答案选D .【点睛】本题主要考查了科学记数法的表示,准确判断小数点的位置是关键.7.如图,下列选项中不是正六棱柱的三视图的是( )A. B. C. D.【答案】A【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.【点睛】本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.8.一组数据3、2、4、5、2,则这组数据的众数是( )A. 2B. 3C. 3.2D. 4【答案】A【解析】【分析】根据众数的概念进行求解即可.【详解】2出现了两次,其余数据均出现一次,2出现的次数最多,所以这组数据的众数是2,故选A.【点睛】本题考查了众数的概念,熟练掌握”众数是指一组数据中出现次数最多的数据”是解题的关键.9.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于点D.若∠A=30°,AE=6 cm,则BC等于()3cm B. 3 cm 3 D. 4 cm【答案】C【解析】【分析】根据直角三角形的性质求出DE ,根据角平分线的性质求出CE ,根据正切的定义计算即可.【详解】解:在Rt △ADE 中,∠A=30°,∴DE=12AE=3,∠ABC=60°, ∵BE 平分∠ABC ,ED ⊥AB ,∠ACB=90°,∴CE=DE=3,∠EBC=30°,在Rt △CBE 中,BC=tan CE EBC =∠(cm ), 故选:C .【点睛】本题考查的是角平分线的性质、直角三角形的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为d,例如:点P 0(0,0)到直线4x +3y ﹣3=0的距离为d35=,根据以上材料,求点P 1(3,4)到直线y =﹣3544x +的距离为( ) A. 3 B. 4 C. 5 D. 6【答案】B【解析】【分析】先将直线的解析式化为定义中的形式,再根据距离公式计算即可. 【详解】∵3544y x =-+ ∴35044x y +-= ∴点1)(3,4P 到直线3544y x =-+5454== 故选:B .【点睛】本题考查了一次函数的几何应用:点到直角的距离公式,掌握理解距离公式是解题关键.二.填空题11.因式分解:2ax2﹣4axy+2ay2=_____.【答案】2a(x﹣y)2【解析】【分析】先提取公因式2a,再对余下的多项式利用平方差公式继续分解.【详解】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)2【点睛】本题主要考查因式分解,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,掌握上述因式分解的知识点是解题的关键.12.函数12yx=-中,自变量的取值范围是.【答案】x>2【解析】【分析】根据分式有意义和二次根式有意义的条件求解.详解】解:根据题意得,x﹣2>0,解得x>2.故答案为x>2.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= 32,则t的值是________.【答案】2 【解析】【分析】根据正切的定义即可求解.【详解】∵点A (t ,3)在第一象限,∴AB=3,OB=t ,又∵tanα=AB OB =32, ∴t=2.故答案为2.14.如图,△ABC 绕点A 顺时针旋转45°得到△A′B′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于___________.2-1【解析】【分析】由旋转的性质可得45CAC BAB ∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==可证AFB ∆',ADB ∆和BEF ∆为等腰直角三角形,分别求出ADB S ∆,BEF S ∆的值,即可求解.【详解】解:如图,设,AB B C ''交于点,BC B C '',交于点,90BAC ∠=︒,2AB AC ==45B C ∴∠=∠=︒,ABC ∆绕点顺时针旋转45︒得到△AB C '',45CAC BAB ∴∠'=∠'=︒,45B B ∠'=∠=︒,2AB AB '==, AFB ∴∆'是等腰直角三角形,AD BC ∴⊥,B F AF '⊥,212AF AB ='=, 21BF AB AF ∴=-=-, 45B ∠=︒,EF BF ⊥,AD BD ⊥,ADB ∴∆和BEF ∆为等腰直角三角形,212AD BD AB ∴===,21EF BF ==-, 图中阴影部分的面积1111(21)(21)2122ADB BEF S S ∆∆=-=⨯⨯---=-, 故答案为:21-.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质.15.如图,一折扇完全打开后,若外侧两竹片OA ,OB 的夹角为120°,扇面ABDC 的宽度AC 是OA 的一半,且OA =30 cm ,则扇面ABDC 的周长为__________cm .【答案】(30π+30)【解析】【分析】根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算.【详解】由题意可得:1152OC AC OA ===, 弧AB 长=12030=20180ππ⨯, 弧CD 的长=12015=10180ππ⨯, ∴扇形ABCD 的周长=()20+10+15+15=30+30cm πππ, 故答案为()30+30π. 【点睛】本题主要考查了弧长的计算,准确理解所给图形找出相关的量是解题的关键. 16.如图,在平面直角坐标系中,已知△ABC 与△DEF 位似,原点O 是位似中心,位似比12OA AD =,若AB =1.5,则DE =_____.【答案】4.5【解析】【分析】根据位似图形的性质得出AO,DO 的长,进而得出, 13OA OD =,13AB DE =求出DE 的长即可 【详解】∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB OA DE OD =, ∵12OA AD =, ∴13OA OD =, ∴13AB DE =, ∴DE =3×1.5=4.5. 故答案为4.5.【点睛】此题考查坐标与图形性质和位似变换,解题关键在于得出AO,DO 的长17.在等腰△ABC 中,AB=AC ,其周长为20cm ,则AB 边的取值范围是 cm .【答案】5<x <10.【解析】【分析】设AB=AC=x ,则BC=20﹣2x ,根据三角形的三边关系即可得出结论.【详解】∵在等腰△ABC 中,AB=AC ,其周长为20cm ,∴设AB=AC=x cm ,则BC=(20﹣2x )cm ,∴22022020x x x >-⎧⎨->⎩ , 解得5cm <x <10cm ,故答案为5<x <10.【点睛】本题考查了等腰三角形的性质,三角形三边关系,正确理解和灵活运用相关知识是解题的关键. 18.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.【答案】20﹣208000=401401. 【解析】【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+=归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.三.解答题19.计算:(﹣1)2020+(π+11()2-.【答案】3.【解析】【分析】先计算有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂,再计算实数的乘法,最后计算实数的加减运算即可.【详解】原式1123=+-+1112=+-+3=.【点睛】本题考查了有理数的乘方、零指数幂、特殊角的正切函数值、负整数指数幂等知识点,熟记各运算法则是解题关键.20.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.【答案】35【解析】【分析】原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组52251x yx y--⎧⎨+-⎩=①=②,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=15,则原式=213+=555.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.21.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,求OM的长.【答案】OM=5.【解析】【分析】作PD⊥MN于D,根据30°角所对直角边是斜边一半的性质可得OD的长,根据等腰三角形三线合一的性质求出MD,即可得出OM的长.【详解】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,∠AOB=60º,OP=12,∴OD=12OP=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=12MN=1,∴OM=OD-MD=6-1=5.【点睛】本题主要考查了含30º角的直角三角形性质、等腰三角形的”三线合一”性质,过点P作PD⊥OB 是解答的关键.22.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)△A1B1C1与△A2B2C2面积之比为(不写解答过程,直接写出结果).【答案】(1)作图见解析;(2)作图见解析;(3)1:4【解析】【分析】(1)根据关于x轴对称点的性质得出对应点位置进而得出答案;(2)根据将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以-2,得出各点坐标,进而得出答案;(3)利用位似图形的性质得出位似比,进而得出答案.【详解】(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3) ∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,∴△A1B1C1与△A2B2C2的相似比为:1∶2,∴△A1B1C1与△A2B2C2面积之比为:1∶4.【点睛】本题考查了作图-轴对称变换、作图-位似变换,熟练掌握直角坐标系中的基本作图方法是解答的关键.23.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A(-1,n),B(2,-1)两点,与y 轴相交于点C .(1)求一次函数与反比例函数的表达式;(2)若点D 与点C 关于x 轴对称,求△ABD 的面积.【答案】(1)一次函数的表达式为y =-x +1,反比例函数的表达式为y =-2x ;(2)S △ABD =3. 【解析】【分析】(1)先把B 点坐标代入m y x=中求出m ,得到反比例函数解析式为2y x =-,再利用解析式确定A 点坐标,然后利用待定系数法求一次函数解析式即可;(2)先利用一次函数解析式确定()0,1C ,利用关于x 轴对称的性质得到()0,1D -,则BD x ∥轴,然后根据三角形面积公式计算即可;【详解】解:(1)∵反比例函数m y x =的图象经过点B(2,-1), ∴m =-2.……∵点A(-1,n)在2y x=-的图象上,∴n =2.∴A(-1,2). 把点A ,B 的坐标代入y =kx +b ,得221k b k b ⎧-+=⎨+=-⎩解得11k b ⎧=-⎨=⎩, ∴一次函数的表达式为y =-x +1,反比例函数的表达式为2y x =-; (2)∵直线y =-x +1交y 轴于点C ,∴C(0,1).∵点D 与点C 关于x 轴对称,∴D(0,-1).∵B(2,-1),∴BD ∥x 轴.∴S △ABD =12×2×3=3. 【点睛】本题主要考查了反比例函数与一次函数的交点问题知识点,准确理解待定系数法求解析式是关键.24.如图,在▱ABCD 中,点E 在边BC 上,点F 在边AD 的延长线上,且DF =BE ,EF 与CD 交于点G .(1)求证:BD ∥EF .(2)若BE =4,EC =6,△DGF 的面积为8,求▱ABCD 的面积.【答案】(1)证明见解析;(2)ABCD 的面积为100.【解析】【分析】(1)根据平行四边形的判定与性质即可得证;(2)先根据平行四边形的性质得出DF 、AD 的长和//,//AB CD BD EF ,再根据平行线的性质得出,F ADB FDG A ∠=∠∠=∠,然后根据相似三角形的判定与性质得出2()DFG ADB SDF S AD =,从而可求出ADB △的面积,由此即可得ABCD 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形∴//AD BC ,即//DF BE又∵DF =BE∴四边形BEFD 是平行四边形∴//BD EF ;(2)∵四边形ABCD 是平行四边形,4,6BE EC ==∴4,4610DF BE AD BC BE EC ====+=+=,//AB CD∴FDG A ∠=∠∵四边形BEFD 是平行四边形//BD EF ∴∴F ADB ∠=∠ ∴DFG ADB ~∴2244()()1025DFG ADB S DF SAD === ∵8DFG S =∴50ADBS=∴ABCD的面积为2250100ADBS=⨯=.【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),利用平行四边形的性质得到两个三角形相似的条件是解题关键.25.随着城际铁路的开通,从甲市到乙市的高铁里程比快里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【答案】(1)高铁列车的平均时速为240千米/小时;(2)王老师能在开会之前到达.【解析】【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220-90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,122012209082.5x x--=,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.【点睛】此题考查分式方程的应用,解题关键在于列出方程26.如图,AB是⊙O的直径,D是⊙O上一点,点E时AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=10.tan∠FAC =12,求FC的长.【答案】(1)证明见解析;(2)FC=203.【解析】【分析】(1)连接EB,可得BE⊥AC,∠ABE=∠CBE,再证∆ABE≅∆CBE,即可得到结论;(2)易得∠FAC=∠ABE,从而得AEBE=12,设AE=x,则BE=2x,可得AC=5BE=5,作CH⊥AF于点H,易证Rt△ACH∽Rt△BAE,可得HC=4,AH=8,由HC∥AB,得FCFB=HCAB,进而即可求解.【详解】(1)连接EB,∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵点E为AD弧的中点,∴∠ABE=∠CBE,在∆ABE与∆CBE中,∵=90{AEB CEBBE BEABE CBE∠∠=︒=∠∠=,∴∆ABE≅∆CBE(ASA),∴BA=BC;(2)∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan ∠ABE =tan ∠FAC =12, ∵在Rt △ABE 中,tan ∠ABE =AE BE =12, ∴设AE =x ,则BE =2x , ∴AB =5x ,即5x =10,解得:x =25,∴∆ABE ≅∆CBE ,∴AC =2AE =45,BE =45,作CH ⊥AF 于点H ,∵∠HAC =∠ABE ,∴Rt △ACH ∽Rt △BAE ,∴HC AE =AH BE =AC AB ,即HC 25=AH 45=4510, ∴HC =4,AH =8,∵HC ∥AB ,∴FC FB =HC AB ,即FC FC 10+=25, 解得:FC =203.【点睛】本题主要考查圆的基本性质,锐角三角函数以及相似三角形的综合,掌握圆周角定理的推论,锐角三角函数的定义以及相似三角形的判定和性质定理,是解题的关键.27.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) (3,23)Q -或()3,23-或113113,22⎛⎫-+- ⎪ ⎪⎝⎭或1133313,22⎛⎫--+ ⎪ ⎪⎝⎭. 【解析】【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解; (3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角关系,确定直线OQ 倾斜角,进而求解.【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =,过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =, ∴CH 2则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±故点(3,3)Q -或()3,23-;②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点13,22Q ⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭;综上,点Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学试卷含答案

人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。

九年级上册数学基础训练人教版

九年级上册数学基础训练人教版

九年级上册数学基础训练人教版一、一元二次方程。

1. 定义与一般形式。

- 定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中a是二次项系数,b是一次项系数,c 是常数项。

- 例如方程3x^2-5x + 1 = 0,这里a = 3,b=-5,c = 1。

2. 解法。

- 直接开平方法。

- 对于形如x^2=k(k≥0)的方程,解为x=±√(k)。

- 例如,方程x^2=9,解得x = 3或x=-3。

- 配方法。

- 步骤:先将方程化为ax^2+bx=-c的形式,然后在等式两边加上一次项系数一半的平方((b)/(2a))^2,将左边配成完全平方式(x +(b)/(2a))^2,再进行求解。

- 例如,解方程x^2+6x - 1 = 0。

- 首先将方程变形为x^2+6x=1。

- 然后在等式两边加上((6)/(2))^2=9,得到x^2+6x + 9=1 + 9,即(x +3)^2=10。

- 解得x=-3±√(10)。

- 公式法。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

- 例如,解方程2x^2-3x - 2 = 0,这里a = 2,b=-3,c=-2。

- 先计算b^2-4ac=(-3)^2-4×2×(-2)=9 + 16 = 25。

- 然后代入公式x=(3±√(25))/(2×2)=(3±5)/(4),解得x = 2或x=-(1)/(2)。

- 因式分解法。

- 将方程化为一边是两个一次因式乘积,另一边为0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px+q = 0。

- 例如,解方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

中考数学基础训练卷 (9)

中考数学基础训练卷 (9)

中考基础训练15时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩1、32表示………………………………………………………………………………( )A 、2×2×2B 、2×3C 、3×3D 、2+2+22、小马虎在下面的计算中只做对了一道题,他做对的题目是 ……………………( )A 、222)(b a b a -=-B 、6234)2(a a =- C 、5232a a a =+ D 、1)1(--=--a a3、接《法制日报》6月8日报道,1996年至8年 全国耕地面积共减少114000000亩,用科学记数法表示为…………………………………………………( )A 、1.14×106B 、1.14×107C 、1.14×108D 、0.114×109 4、图1是小明用八块小正方体搭的积木,该几何体的俯视图是…………………( ) 5、如图2,AB 为⊙O 的直径,点C 在⊙O 上,∠B =50°,则A 等于…( )A 、80°B 、60°C 、 50°D 、40°6、如图3,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的……………( ) A 、51 B 、41 C 、31 D 、103 7、反比例函数)0(≠=k x k y 的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 等于…………………( )A 、10B 、5C 、2D 、101 8、如图4射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10°。

设∠AOC 和∠BOC 的度数分别为x 、y ,则下列正确的方程组为…………( )A 、⎩⎨⎧+==+10180y x y xB 、⎩⎨⎧+==+102180y x y xC 、⎩⎨⎧-==+y x y x 210180D 、⎩⎨⎧-==+10290x y y x 9、一个底面半径为5cm ,母线长为16cm 的圆锥,它的侧面展开图的面积是……( )A 、80πcm 2B 、40πcm 2C 、80cm 2D 、40cm 2D 、C 、B 、A、B 图3C DF 图410、如果012=-+x x ,那么代数式7223-+x x 的值为…………………………( )A 、6B 、8C 、—6D 、—811、吐鲁番盆地低于海平面155m ,记作—155m 。

2024年人教版九年级数学中考专题训练:锐角三角函数(含解析)

2024年人教版九年级数学中考专题训练:锐角三角函数(含解析)

2024年人教版九年级数学中考专题训练:锐角三角函数1.如图,在数学综合实践活动课上,两名同学要测量小河对岸大树BC 的高度,甲同学在点A 测得大树顶端B 的仰角为45°,乙同学从A 点出发沿斜坡走米到达斜坡上点D ,在此处测得树顶端点B 的仰角为26.7°,且斜坡AF 的坡度为1:2.(1)求乙同学从点A 到点D 的过程中上升的高度;(2)依据他们测量的数据求出大树BC 的高度.(参考数据:sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)2.如图,在中,D 是上一点,,以为直径的经过点C ,交于点E ,过点E 作的切线交于点F.(1)求证:.(2)若,,求的长.3.如图1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,BC=a ,AD=h .(1)求正方形PQMN 的边长(用a 和h 的代数式表示);ABC BC BD AD =AD O AB O BD EF BC ⊥5CD =2tan 3B =DF(2)如图2,在△ABC 中,在AB 上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC 内,连接BN 并延长交AC 于点N ,画NM BC 于点M ,画NP ⊥NM 交AB 于点P ,再画PQ ⊥BC 于点Q ,得到四边形PQMN ,证明四边形PQMN 是正方形;(3)在(2)中的线段BN 该线上截取NE=NM 连接EQ ,EM (如图3),当∠QEM=90°时,求线段BN 的长(用a ,h 表示)4.如图,在直角坐标系中有,O 为坐标原点,,,将此三角形绕原点O 顺时针旋转,得到,二次函数的图象刚好经过A ,B ,C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线与二次函数图象相交于M ,N 两点.①若,求k 的值;②证明:无论k 为何值,恒为直角三角形.5.如图,四边形ABCD 内接于,的半径为4,,对角线AC 、BD 相交于点P.过点P 分别作于点E ,于点F.(1)求证:四边形为正方形;(2)若,求正方形的边长;(3)设PC 的长为x ,图中阴影部分的面积为y ,求y 与x 之间的函数关系式,并写出y 的最大值.6.如图,已知一次函数的图象经过,两点,且与轴交于点,二次函数的图象经过点,,连接.Rt AOB ()03A ,()10B -,90︒Rt COD 2y ax bx c =++3l y kx k =-+:2PMN S = PMN O O 90ADC AB BC ∠=︒=,PE AD ⊥PF CD ⊥DEPF 2AD CD=DEPF 1y kx m =+()15A --,()04B -,x C 224y ax bx =++A C OA(1)求一次函数和二次函数的解析式.(2)求的正弦值.(3)在点右侧的轴上是否存在一点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由.7.如图1,在四边形ABCD 中,AC 交BD 于点E ,△ADE 为等边三角形.(1)若点E 为BD 的中点,AD =4,CD =5,求△BCE 的面积;(2)如图2,若BC =CD ,点F 为CD 的中点,求证:AB =2AF ;(3)如图3,若AB ∥CD ,∠BAD =90°,点P 为四边形ABCD 内一点,且∠APD =90°,连接BP ,取BP 的中点Q ,连接CQ.当AB =,AD =,tan ∠ABC =2时,求CQ 的最小值.8.如图1,在矩形中,,.P ,Q 分别是,上的动点,且满足,E 是射线上一点,,设,.OAB ∠C x D BCD OAB D ABCD 4AB =30ACB ∠=︒AC CD 35DQ CP =AD AP EP =DQ x =AP y =(1)求y 关于x 的函数表达式.(2)当中有一条边与垂直时,求的长.(3)如图2,当点Q 运动到点C 时,点P 运动到点F.连结,以,为边作.①当所在直线经过点D 时,求的面积;②当点G 在的内部(不含边界)时,直接写出x 的取值范围.9.等边中,是中线,一个以点D 为顶点的30°角绕点D 旋转,使角的两边分别与,的延长线相交于点E ,F .交于点M ,交于点N .(1)如图①,若,求证:.(2)如图②,在绕点D 旋转的过程中:①探究三条线段,,之间的数量关系,并说明理由;②若,,求的长.10. 在平面直角坐标系中,对于和点不与点重合给出如下定义:若边,上分别存在点,点,使得点与点关于直线对称,则称点为的“翻折点”.(1)已知,若点与点重合,点与点重合,直接写出的“翻折点”的坐标;是线段上一动点,当是的“翻折点”时,求长的取值范围;PQE AC DQ FQ FQ PQ PQFG GF PQFG ABC ABC CD AC BC DF AC DE BC CE CF =DE DF =EDF ∠CD CE CF 6CE =2CF =DM xOy OAB (P O )OA OB M N O P MN P OAB ()30A,(0.B ①M A N B OAB P ②AB P OAB AP(2)直线与轴,轴分别交于,两点,若存在以直线为对称轴,且斜边长为的等腰直角三角形,使得该三角形边上任意一点都为的“翻折点”,直接写出的取值范围.11. 如图,在中,边绕点顺时针旋转得到线段,边绕点逆时针旋转得到线段,连接,点是的中点.(1)以点为对称中心,作点关于点的对称点,连接,.依题意补全图形,并证明;求证:;(2)若,且于,直接写出用等式表示的与的数量关系.12.如图1,菱形的边长为,,,分别在边,上,,,点从点出发,沿折线以的速度向点匀速运动不与点 C 重合 ;的外接圆与相交于点,连接交于点设点的运动时间为ts.(1) ;(2)若与相切,判断与的位置关系;求的长;(3)如图3,当点在上运动时,求的最大值,并判断此时与的位置关系; (4)若点在的内部,直接写出的取值范围.13.如图,已知菱形ABCD , E 为对角线AC 上一点.3(0)4y x b b =-+>x y A B AB 2OAB b ABC AB B α(0α180)︒<<︒BD AC C 180α︒-CE DE F DE F C F G BG DG ①AC DG =②DGB ACB ∠=∠α60=︒FH BC ⊥H FH BC ABCD 12cm B 60∠=︒M N AB CD.AM 3cm =DN 4cm =P M MB BC -1cm /s C ()APC O CD E PE AC F.P APE ∠=︒O AD ①O CD ② APCP BC CF PE AC N O t(1)[建立模型]如图1,连结BE,DE.求证:∠EBC=∠EDC.(2)[模型应用]如图2,F是DE延长线上一点,∠EBF=∠ABC,EF交AB于点G.①判断△FBG的形状,并说明理由.②若G为AB的中点,且AB=4,∠ABC=60°,求AF的长.(3)[模型迁移]F是DE延长线上一点,∠EBF=∠ABC,EF交射线AB于点G,且sin∠BAC=,BF//AC.求的值. 14.小明家住在某小区一楼,购房时开发商赠送了一个露天活动场所,现小明在活动场所正对的墙上安装了一个遮阳棚,经测量,安装遮阳棚的那面墙高,安装的遮阳棚展开后可以使正午时刻房前能有宽的阴影处以供纳凉.已知正午时刻太阳光与水平地面的夹角为,安装好的遮阳篷与水平面的夹角为,如下右图为侧面示意图.(参考数据:,,,,,)(1)据研究,当一个人从遮阳棚进出时,如果遮阳棚外端(即图中点C)到地面的距离小于时,则人进出时总会觉得没有安全感,就会不自觉的低下头或者用手护着头,请你通过计算,判断此遮阳棚是否使得人进出时具有安全感?(2)请计算此遮阳棚延展后的长度(即的长度).(结果精确到)15.数学兴趣小组在探究圆中图形的性质时,用到了半径是6的若干圆形纸片.45ABBG BC AB3m2m()AD63.4︒BC10︒100.17sin︒≈100.98cos︒≈100.18tan︒≈63.40.89sin︒≈63.40.45cos︒≈63.4 2.00tan︒≈2.3mBC0.1m(1)如图1,一张圆形纸片,圆心为O ,圆上有一点A ,折叠圆形纸片使得A 点落在圆心O 上,折痕交于B 、C 两点,求的度数.(2)把一张圆形纸片对折再对折后得到如图扇形,点M 是弧上一动点.①如图2,当点M 是弧中点时,在线段、上各找一点E 、F ,使得是等边三角形.试用尺规作出,不证明,但简要说明作法,保留作图痕迹.②在①的条件下,取的内心N ,则 .③如图3,当M 在弧上三等分点S 、T 之间(包括S 、T 两点)运动时,经过兴趣小组探究都可以作出一个是等边三角形,取的内心N ,请问的长度是否变化.如变化,请说明理由;如不变,请求出的长度.16.已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.17.如图1,在平面直角坐标系中,Rt △OAB 的直角边OA 在y 轴的正半轴上,且OA =6,斜边OB =10,点P 为线段AB 上一动点.O BAC ∠PQ PQ OP OQ EFM EFM EFM ON =PQ EFM EFM ONON )2y x bx c =++yA (4B(C -b c BC y DE )2y x bx c =++AB E AB F EF AEF ABC ∠E(1)请直接写出点B 的坐标;(2)若动点P 满足∠POB =45°,求此时点P 的坐标;(3)如图2,若点E 为线段OB 的中点,连接PE ,以PE 为折痕,在平面内将△APE 折叠,点A 的对应点为A′,当PA′⊥OB 时,求此时点P 的坐标;18.如图,在菱形中,对角线相交于点O ,,.动点P 从点A 出发,沿方向匀速运动,速度为;同时,动点Q 从点A 出发,沿方向匀速运动,速度为.以为邻边的平行四边形的边与交于点E .设运动时间为,解答下列问题:(1)当点M 在上时,求t 的值;(2)连接.设的面积为,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在的平分线上?若存在,求出t 的值;若不存在,请说明理由.19.在矩形中,点E 为射线上一动点,连接.ABCD AC BD ,10cm AB=BD =AB 1cm /s AD 2cm /s AP AQ ,APMQ PM AC ()()s 05t t <≤BD BE PEB ()2cm S PEC ∠ABCD BC AE(1)当点E 在边上时,将沿翻折,使点B 恰好落在对角线上点F 处,交于点G .①如图1,若,求的度数;②如图2,当,且时,求的长.(2)在②所得矩形中,将矩形沿进行翻折,点C 的对应点为C ′,当点E ,C ′,D 三点共线时,求的长.20.如图,在矩形ABCD 中,AB=2,BC=4,点E 在直线AB 上,连结DE ,过点A 作AF ⊥DE 交直线BC 于点F ,以AE 、AF 为邻边作平行四边形AEGF.直线DG 交直线AB 于点H.(1)当点E 在线段AB 上时,求证:△ABF ∽△DAE.(2)当AE=2时,求EH 的长.(3)在点E 的运动过程中,是否存在某一位置,使得△EGH 为等腰三角形.若存在,求AE 的长.21.如图1,等边三角形纸片中,,点D 在边上(不与点B 、C 重合),,点E 在边上,将沿折叠得到(其中点C ′是点C 的对应点).BC ABE AE BD AEBD BC =AFD ∠=4AB EF EC =BC ABCD ABCD AE BE ABC 12AB =BC 4CD =AC CDE DE 'C DE(1)当点C ′落在上时,依题意补全图2,并指出C ′D 与的位置关系;(2)如图3,当点C ′落到的平分线上时,判断四边形CDC ′E 的形状并说明理由;(3)当点C ′到的距离最小时,求的长;(4)当A ,C ′,D 三点共线时,直接写出∠AEC ′的余弦值.22.如图,四边形是菱形,其中,点E 在对角线上,点F 在射线上运动,连接,作,交直线于点G.(1)在线段上取一点T ,使,①求证:;②求证:;(2)图中,.①点F 在线段上,求周长的最大值和最小值;②记点F 关于直线的轴对称点为点N.若点N 落在的内部(不含边界),求的取值范围.AC AB ACB ∠AB CE ABCD 60ABC ∠=︒AC CB EF 60FEG ∠=︒DC BC CE CT =FET GEC ∠=∠FT CG =7AB =1AE =BC EFG AB EDC ∠CF答案解析部分1.【答案】(1)解:作DH ⊥AE 于H ,如图所示:在Rt △ADH中,∵,∴AH =2DH ,∵AH 2+DH2=AD 2,∴(2DH )2+DH 2=()2,∴DH =6(米).答:乙同学从点A 到点D 的过程中,他上升的高度为6米;(2)解:如图所示:过点D 作DG ⊥BC 于点G ,设BC =x 米,在Rt △ABC 中,∠BAC =45°,∴AC =BC =x ,由(1)得AH =2DH =12,在矩形DGCH 中,DH =CG =6,DG =CH =AH+AC =x+12,在Rt △BDG 中,BG =BC-CG =BC-DH =x-6,∵tan ∠BDG =,∴,解得:x≈24,12DH AH =BG DG626.70.512x tan x -=︒≈+答:大树的高度约为24米.【解析】【分析】(1)作DH ⊥AE 于H ,利用勾股定理可得AH 2+DH 2=AD 2,再结合AH =2DH ,可得(2DH )2+DH 2=(2,最后求出DH=6即可;(2)过点D 作DG ⊥BC 于点G ,设BC =x 米,则DH =CG =6,DG =CH =AH+AC =x+12,BG =BC-CG =BC-DH =x-6,再结合tan ∠BDG =, 可得,最后求出x 的值即可。

2020年广东数学中考基础冲刺训练9(含答案)

2020年广东数学中考基础冲刺训练9(含答案)

2020年考前基础训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.下列各数中,是负数的是( ) A .|-3| B .-3C .-(-3)D .132.下列运算中,正确的是( ) A .3x +2x =5x 2 B .3x -2x =xC .3x ·2x =6xD .3x ÷2x =233.下列等式从左到右的变形中,属于因式分解的是( ) A .x 2+2x -1=(x -1)2 B .(a +b )(a -b )=a 2-b 2 C .x 2+4x +4=(x +2)2D .ax 2-a =a (x 2-1)4.据统计,2019年全国高考人数再次突破千万,高达1 031万人.数据1 031万用科学记数法可表示为( ) A .0.1031×106 B .1.031×107C .1.031×108D .10.31×1095.如图所示的几何体的俯视图是( )6.已知a ,b ,c 是△ABC 的三条边长,化简|a +b -c |-|c -a -b |的结果为( ) A .2a +2b -2c B .2a +2bC .2cD .07.不等式组⎩⎪⎨⎪⎧x +1>0,x -1≤1的整数解有( )A .0个B .2个C .3个D .无数个8.关于x 的一元二次方程x 2+2x +a =0有两个不相等的实数根,则实数a 的取值范围是( ) A .a >1 B .a =1C .a <1D .a ≤19.甲、乙两地相距80 km ,一辆载有N95口罩的汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km)与时间x (h)之间的函数关系如图所示,该车到达乙地的时间是当天上午( ) A .10:35 B .10:40C .10:45D .10:5010.如图,Rt △OCB 的斜边在y 轴上,OC =3,含30°角的顶点与原点重合,直角顶点C 在第二象限,将Rt △OCB 绕原点顺时针旋转120°后得到△OC ′B ′,则B 点的对应点B ′的坐标是( ) A .(3,-1) B .(1,-3)C .(2,0)D .(3,0)二、填空题(本大题共7小题,每小题4分,共28分) 11.一组数据1,2,9,5,8的中位数是 .12.如图,AB 是⊙O 的切线,点B 为切点,若∠A =30°,则∠AOB = .第12题图 第14题图 第15题图13.在一个不透明的盒子中装有a 个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a 的值约为 .14.如图,在△ABC 中,AB =4,AC =3,D 是AB 边上的一点.若△ABC ∽△ACD ,则AD 的长为 . 15.如图,B (3,-3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .16.现有古代数学问题:“今有牛五羊二值金八两,牛二羊五值金六两,则牛一羊一值金 两.” 17.如图,在菱形ABCD 中,AB =1,∠ADC =120°,以AC 为边作菱形ACC 1D 1,且∠AD 1C 1=120°;再以AC 1为边作菱形AC 1C 2D 2,且∠AD 2C 2=120°;…;按此规律,菱形AC 2019C 2020D 2020的面积为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:-14-|3-1|+(2-1.414)0+2sin 60°-⎝⎛⎭⎫-12-1.19.先化简,再求值:(x+1)(x-1)+(2x-1)2-2x(2x-1),其中x=2+1.20.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图(如图).请根据图表信息,解答问题.知识竞赛成绩分组统计表组别分数/分频数A 60≤x<70aB 70≤x<8010C 80≤x<9014D 90≤x<10018(1)本次调查一共随机抽取了名参赛学生的成绩;(2)统计表中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)求组别B所在扇形的圆心角的度数;(5)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有多少人.1.B 2.B 3.C 4.B 5.B 6.D 7.C 8.C 9.B 10.A 11.5 12.60° 13.30 14.94 15.y =6x16.二 17.32×32 020 18.解:原式=-1-(3-1)+1+2×32+2 =-1-3+1+1+3+2=3.19.解:原式=x 2-1+4x 2-4x +1-4x 2+2x =x 2-2x , 当x =2+1时,原式=(2+1)2-2(2+1)=3+2 2-2 2-2=1. 20. 解:(1)50 (2)8 (3)C(4)组别B 所在扇形的圆心角的度数为10÷50×360°=72°.(5)该校九年级竞赛成绩达到80分以上(含80分)的学生约有500×14+1850=320(人).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考基础训练(9)
时间:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
一、精心选一选
1.4的算术平方根是( ) A.2
B.2±
D.
2.计算23()a a b --的结果是( )
A.3a b -- B.3a b - C.3a b +
D.3a b -+
3.数据1,2,4,2,3,3,2的众数( ) A.1 B.2 C.3 D.4 4.正方形、矩形、菱形都具有的特征是( ) A.对角线互相平分 B.对角线相等 C.对角线互相垂直 D.对角线平分一组对角
5.已知数据1
22
-6-1.π-2,,,,,其中负数出现的频率是( ) A.20%
B.40%
C.60%
D.80%
6.如果4张扑克按图11-的形式摆放在桌面上,将其中一张旋转180后,扑克的放置情况如图12-所示,那么旋转的扑克从左起是( ) A.第一张 B.第二张 C.第三张
D.第四张
7.同时抛掷两枚质地均匀的正方体骰子(骰子每一面的点数分别是从1到6这六个数字中的一个),以下说法正确的是( ) A.掷出两个1点是不可能事件 B.掷出两个骰子的点数和为6是必然事件 C.掷出两个6点是随机事件 D.掷出两个骰子的点数和为14是随机事件 8.若方程2
40x x c -+=有两个不相等的实数根,则实数c 的值可以是( ) A.6 B.5 C.4 D.3
9.已知一个物体由x 个相同的正方体堆成,它的正视图
和左视图如图2所示,那么x 的最大值是( ) A.13 B.12 C.11 D.10
10.已知函数2
22y x x =--的图象如图3所示,根据其



2

视图
左视图
供的信息,可求得使1y ≥成立的x 的取值范围是( ) A.13x -≤≤ B.31x -≤≤
C.3x -≥
D.1x -≤或3x ≥
二、细心填一填
11.绝对值为3的所有实数为 . 12.方程2
650x x -+=的解是
. 13.数据8,9,10,11,12的方差2
S 为

14.若方程3x y +=,1x y -=和20x my -=有公共解,则m 的取值为 .
15.如图4,已知点E 在面积为4的平行四边形ABCD 的边上运动,使ABE △的面积为1的点E 共有 个.
三、开心用一用
16.计算:2
12
11
a a ++-.
答案:
一、选择题:每小题3分,共10个小题,满分30分. 1-5. ADBAC; 6-10.BCDCD
二、填空题:每小题3分,共6个小题,满分18分. 11.33-,; 12.1215x x ==, 13.2; 14.1; 15.2;指.
三、解答题: 16.原式121(1)(1)a a a =
+++-12(1)(1)a a a -+=+-1
1
a =
-.
图4。

相关文档
最新文档