七年级上册数学角的折叠问题

合集下载

七年级数学尖子生培优竞赛专题辅导专题16 折叠问题

七年级数学尖子生培优竞赛专题辅导专题16 折叠问题

专题16 折叠问题专题解读】折叠问题是近几年来中考出现频率较高的一类题型,同学们往往由于对折叠的本质理解不够透彻,因此难以找到解题的方向.折叠是现实生活常见的操作活动,而初中几何学习中,以折叠为活动载体的问题很多,这类问题一般都要经历操作、观察、比较、概括、交流、猜想、推理等过程.研究折叠问题,可以帮助学生提高观察能力、动手能力、想象能力、综合运用知识的能力,发展合情推理和演绎推理能力.思维索引】例1.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小明在草稿纸上画了一条数轴进行操作研究:操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-2表示的点与表示的点重合;操作二:(2)折叠纸面,使1表示的点与-3表示的点重合,若数轴上A、B两点之间的距离为8(A在B的左侧),且A、B两点经折叠重合,则A、B两点表示的数分别是、;操作三:(3)在数轴上剪下9个单位长度(从-1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图所示),若这三条线段的长度之比为1:1:2,求折痕处对应的点所表示的数?例2.如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数.(2)△MNK的面积能否小于12?若能,求出此时∠1的度数;若不能,试说明理由.(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,画出相应的图形.素养提升1.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=95°,则∠2的度数为( ) A .24° B .25° C .30° D .35°21FE C'B'BA F OD CBA2.如图,将△ABC 沿DE 、EF 翻折,顶点A 、B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO =98°,则∠C 的度数为( )A .40°B .41°C .42°D .43°3.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF /∥AD ,FN //DC ,则∠D 的度数为( )A .115°B .105°C .95°D .85°4.如图,四边形ABCD 纸片中,已知∠A =160°,∠B =30°,∠C =60°,四边形ABCD 纸片分别沿EF ,GH ,OP ,MN 折叠,使A 与A'、B 与B'、C 与C'、D 与D'重合,则∠1+∠2+∠3+∠4+∠5+∠6+∠7-∠8的值是( )A .600°B .700°C .720°D .800°5.如图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE =18°,则图2中∠AEF 的度数为( )A .108°B .114°C .116° D .120°图 1 图 2 图 3DCBA6.一根长30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠,为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,MA 的长应为 cm .BM A7.如图,将四边形纸片ABCD 沿MN 折叠,点A 、D 分别落在点A 1、D 1处,若∠1+∠2=140°,则∠B +∠C = .21D 11NM D CBA8.如图1,ABCD 是长方形纸带,∠DEF =23°,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,则图3中的∠CFE 的度数是 .图 a 图 b 图 cCFED CBA9.如图,△ABC 中,∠A =30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB =82°,则原三角形中的∠B 的度数为 .ED CBAE DACBA10.如图1,在长方形ABCD 中,E 点在AD 上,并且∠ABE =30°,分别以BE 、CE 为折痕进行折叠并压平,如图2.若图3中∠AED=n °,则∠BCE 的度数为 (用含n 的代数式表示).11.如图1,把△ABC纸片沿DE折叠,点A落在四边形BCDE内部,我们知道∠A与∠1、∠2之间有一定的数量关系;(1)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC纸片沿DE折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;(2)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC纸片沿DE折叠,使点A与点H重合,试探究∠BHC与∠1+∠2的关系,并证明你的结论.12.如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分:将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC是平分线AB1折叠,则等腰三角形的两个点B与点C 重合(因为等腰三角形的两个底角是相等的);情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?(填“是”“不是”)(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系,写出探究过程.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系是;应用提升(3)在三个角都不相等的三角形中,小丽找到一个三角形,三个角分别为4,16°,160°,发现此三角形的三个角都是好角.你能尝试再构造两组三个角都不相等,并且都是好角的三角形吗?写出具体角度即可.专题16折叠问题.思维索引】例1.(1)2; (2)-5,3 ; (3) 72,198,378; 例2.(1)40°; (2)不能,大于12; (3)略;素养提升】1.B ; 2.B ; 3.C ; 4.A ; 5.B ; 6.10.5; 7.110°; 8.111°; 9.78; 10.30+2n ; 11.(1)∠BIC =122.5°; (2)∠BHC =180°-5(∠1+∠2); 12.(1)是; (2)∠B =3∠C ;∠B =n ∠C ;(3)答案不唯一,只需要满足三点:和为180°,各不相等,以及任意两个角之间都存在整数倍关系;。

七年级数学展开与折叠

七年级数学展开与折叠
机械制造
在机械制造中,经常需要将零件展开成平面图形进行加工和制造。这样可以提高加工精度 和效率,也可以减少材料浪费和降低成本。同时,在机械装配过程中,也需要将零件按照 一定规律进行折叠和组装。
02
平面图形展开与折叠
正方形和长方形展开
正方形展开
正方形可以沿着对角线或者中垂线展开成一个直线 段或者两个相等的直角三角形。
物理理论的数学化
许多物理理论最终需要转化为数学 模型以便进行更深入的分析和研究, 如量子力学和广义相对论等。
数学在化学中的应用
化学计量学
数学在化学计量学中有着广泛应 用,如化学方程式的配平、摩尔
质量的计算等。
化学反应动力学
数学方法可以帮助研究化学反应 的速率和机理,如反应速率常数
的确定、反应机理的推导等。
圆形和扇形展开后,其各边长度和角 度关系可能会发生变化。同时,圆形 和扇形的面积和周长也会发生变化。
扇形展开
扇形是圆的一部分,可以沿着半径或者圆弧 展开,得到一个平面图形。根据展开方式的 不同,可以得到不同的形状,如三角形、梯 形等。
03
立体图形展开与折叠
正方体和长方体展开
正方体展开
正方体有6个面,12条棱,8个顶 点,可以展开成6个相连的正方形 。展开后,相对的面不相邻。
实现变废为宝
利用废旧纸张、布料等材 料进行展开与折叠的手工 制作,可以实现资源的再 利用,具有环保意义。
05
拓展内容:数学在其他领域的应用
数学在物理中的应用
描述物理现象
数学语言可以精确描述物理现象, 例如牛顿第二定律 F=ma 就用数 学表达式阐明了力和加速度之间
的关系。
解决物理问题
数学方法如微积分、常微分方程等 被广泛应用于解决物理问题,如求 解运动方程、分析电磁场等。

初一数学 角平分线、折叠问题专题

初一数学 角平分线、折叠问题专题

初一数学角平分线、折叠问题专题一.选择题(共30小题)1.如图,∠A=40°,∠C=110°,则∠CDB的度数是()A.70°B.130°C.150°D.160°2.如图,∠1=53°,∠3=108°,则∠2的度数为()A.52°B.53°C.54°D.55°3.如图,∠A=100°,∠B=20°,则∠ACD的度数是()A.100°B.110°C.120°D.140°4.如图,在△ABC中,∠B=∠C,∠BAC=∠B+15°,∠DAC是△ABC的外角,则∠DAC的度数是()A.100°B.105°C.110°D.115°5.如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110B.100C.55D.456.根据图中的数据,可得∠B的度数为()A.40°B.50°C.60°D.70°7.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=70°,∠B=40°,则∠ECD等于()A.40°B.50°C.45°D.55°8.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.95°B.85°C.75°D.65°9.如图,在△ABC中,∠BAC=50°,∠ABC和∠ACB的平分线交于点P,则∠BPC的度数是()A.115°B.100°C.105°D.125°10.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠A=70°,则∠F=()A.125°B.130°C.135°D.140°11.如图,点O是△ABC内一点,∠A=80°,BO、CO分别是∠ABC和∠ACB的平分线,则∠BOC等于()A.140°B.130°C.131°D.无法确定12.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P,若∠A=62°,则∠P的度数为()A.121°B.118°C.100°D.98°13.如图,△ABC的两个外角的平分线相交于点O,若∠A=80°,则∠O等于()A.40°B.50°C.60°D.80°14.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=()A.47°B.66.5°C.60°D.无法确定15.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,且∠BIC=140°,BM,CM分别平分∠ABC,∠ACB的外角,则∠BMC的度数是()A.25°B.30°C.35°D.40°16.如图,在△ABC中,BD、CD分别平分∠ABC、∠ACB,BG、CG分别平分三角形的两个外角∠EBC、∠FCB,则∠D和∠G的数量关系为()A.B.∠D+∠G=180°C.D.17.如图,∠ACE是△ABC的外角,BD平分∠ABC,CD平分∠ACE,且BD,CD相交于点D.若∠A=80°,则∠D等于()A.30°B.40°C.50°D.55°18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACM的平分线,若∠ABP=20°,∠ACP=60°,则∠A﹣∠P=()A.70°B.60°C.50°D.40°19.如图:①②③中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2+∠O3=()度.A.84B.111C.225D.20120.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线相交于点D,与∠ABC的外角平分线相交于点E,则下列结论一定正确的是()①∠BOC=90°+∠A;②∠D=∠A;③∠A=∠E;④∠E+∠DCF=90°+∠ABD.A.①②④B.①②③C.①②D.①②③④21.如图,三角形纸片ABC中,∠A=80°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=30°,则∠β的度数是()A.30°B.40°C.50°D.60°22.如图,将一张三角形纸片ABC的三角折叠,使点A落在△ABC的A′处折痕为DE,若∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是()A.γ=180°﹣α﹣βB.γ=α+2βC.γ=2α+βD.γ=α+β23.如图,将一个三角形剪去一个角后,∠1+∠2=230°,则∠A等于()A.35°B.50°C.65°D.70°24.如图所示,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.45°B.50°C.55°D.60°25.如图,三角形纸片ABC中,∠A=70°,∠B=80°,将纸片的一角沿DE折叠,使点C落在△ABC 内,若∠1=20°,则∠2=()A.20°B.30°C.40°D.50°26.如图,将△ABC一角折叠,若∠1+∠2=80°,则∠B+∠C=()A.40°B.100°C.140°D.160°27.如图,在△ABC中,∠C=70°,若沿图中的虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°28.如图,将纸片△ABC沿DE折叠使点A落在点A′处,若∠1=80°,∠2=16°,则∠A为()A.25°B.28°C.32°D.36°29.如图,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是()A.100°B.120°C.80°D.90°30.如图,线段AD,BC相交于点O,连接AB,CD,AP平分∠BAD,CP平分∠BCD,则∠P,∠B,∠D满足的关系式是()A.∠P=∠B+∠D B.∠P=∠D﹣∠BC.D.二.填空题(共10小题)31.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=50°,则∠BOC=.32.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为.33.如图所示,BD、CD分别是△ABC的两个外角∠CBE、∠BCF的平分线,则∠BDC与∠A之间的数量关系为.34.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.35.如图,已知△ABC中,∠B的平分线与∠C的外角平分线相交于点P,若∠A=70°,则∠P=.36.如图①②③中,∠A=50°,∠1=∠2,∠3=∠4,则∠O1+∠O2+∠O3=°.37.纸片△ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=20°,则∠2的度数为.38.如图,在三角形纸片ABC中,∠A=58°,∠B=83°,将纸片的一角折叠,使点C落在△ABC内.若∠1=38°,则∠2=.39.一张△ABC纸片,点M、N分别是AB、AC上的点,若沿直线MN折叠后,点A落在AC边的下面A′的位置,如图所示,则∠1,∠2,∠A之间的数量关系式是.40.如图,∠A=65°,∠BDC=140°,则∠1+∠2=°.。

北师大版七年级数学上册展开与折叠知识讲解-2022年学习资料

北师大版七年级数学上册展开与折叠知识讲解-2022年学习资料

棱锥特点:-1n棱推有n顶点,棱-有n介面,侧面的形状都是三角形-边形-2哪些面的形状与大小一定完全相-同 -不一定存在-3哪些棱的长度一定相等?-注:此题中n为不小于3的正整数.
问题1-你能马上说出十棱柱的顶点数、棱-数、面数吗?-顶点:20-棱:30-面:12-问题2-你能马上说出 棱柱的顶点数、棱数、-顶点:2n-棱:3n-面:n+2
北师大版七年级数学上册-第一章丰的图形世鳏-层与折叠-第二课时
想一想,做一做-把一个正方体的表面沿某些棱剪开,展成-一个平面图形,你能得到下面的些平面图-形吗?
下图经过折叠能否围成一个正方形?
·将一个正方体的表面沿某些棱剪开,能能-得到哪些平面图形?小组合作探索-正方体的11种不-同的展开图
底面-侧面-◆侧棱-2这个棱柱有几个侧面?侧面的形-状是什么图形?-答:棱柱有5个侧面,每个侧面都是长方形 -棱柱侧面的形状都是长方形,
底面-1-侧面-一侧棱-3侧面的个数与底面图形的边数有-什么关系?-答:侧面的个数与地面图形的边数相等。柱侧面的个数和底面图形的边数相等
底面-侧面-◆侧棱-4这个棱柱有几条侧棱?它们的长-度之间有什么关系?-答:棱柱有5条侧棱,每条侧棱的长度 等。-棱柱所有侧棱长都相等.
知识技能:-1、一个六棱柱模型如图所示。它的底-面边长都是5厘米,侧棱长4厘米。观-察这个模型,回答下列问 -2这个六棱柱一共有-多少条棱?它们的长度-分别是多少?-解:18条棱,6条侧棱的-长度彼此相等,均为4厘 -围成底面的所有棱长都相-等,均为5厘米-第1题
课堂小结:-·本节课我们学习了立体图形与平面图形之-间的关系:-展开-折叠
一、观察思考-1.冰淇淋筒-展开
2.长方形纸-折叠-044
交流归纳:-有些立体图形-展开-平面图形-折叠-有些平面图形

七年级数学折叠问题总结

七年级数学折叠问题总结

C D G FF 折叠问题1.常见图形① ② ③ ④⑤ ⑥ ⑦ ⑧⑨⑩2.折叠的本质是 ,折叠前后的对就应线段、对应角 。

3.折痕是 ,对应点连线被对称轴 。

练习题1.如图,DE ∥AB ,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于2.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上E 处,折痕为CD ,则∠BDE 等于3.在Rt ABC △中,903BAC AB M ∠==°,,为边BC 上的点,联结AM .如果将ABM △沿直线AM 翻折后, 点B 恰好落在边AC 的中点处,那么点M 到AC 的距离是 .4.如图,将矩形ABCD 沿BE 折叠,若∠CBA ′=30°则∠BEA ′=_____5.如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 。

6.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 。

7.矩形纸片ABCD 的边长AB =4,AD =2.将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在其一面着色(如图), 则着色部分的面积为8.将矩形纸片ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB =3,折叠后,点C 落在AD 边上的C 1处,并且点B 落在EC 1边上的B 1处.则BC 的长为 .9.如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是 F E D C B A N M F E D C B A F E D C B A F E D C B A N M F E D C B A F E D C B A E D C B A N M F E D C B A FE D C B A P E D C B A P E D C B A E D C B A M C B AA B C D E A′A ′ G D B C A E D D ′A NM F D AD A C B A 'F E D C B A10.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´BD 的度数为 .11.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则△CEF 的面积为12.已知边长为5的等边三角形ABC 纸片,点E 在AC 边上,点F 在AB 边上,沿着EF 折叠,使点A 落在BC 边上的点D 的位置,且ED BC ⊥,则CE 的长是 。

苏科版数学七年级上册5.3《展开与折叠》说课稿

苏科版数学七年级上册5.3《展开与折叠》说课稿

苏科版数学七年级上册5.3《展开与折叠》说课稿一. 教材分析《展开与折叠》是苏科版数学七年级上册第五章第三节的内容。

本节内容是在学生学习了平面几何图形的基础上,引入立体几何图形的一种表现形式——展开图。

通过展开与折叠,使学生更好地理解立体图形和平面图形之间的关系,提高学生的空间想象能力。

二. 学情分析七年级的学生已经掌握了平面几何图形的基本知识,具备一定的空间想象能力。

但立体几何图形对于他们来说还是一个新的领域,需要通过具体的活动和操作来建立立体几何图形和平面几何图形之间的联系。

三. 说教学目标1.知识与技能目标:理解展开与折叠的概念,掌握展开图的基本特点,能将立体几何图形正确地展开成平面图形。

2.过程与方法目标:通过观察、操作、思考,培养学生的空间想象能力,提高学生的动手实践能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。

四. 说教学重难点1.教学重点:展开图的概念及其基本特点。

2.教学难点:如何将立体几何图形正确地展开成平面图形,以及展开图与立体图形的相互转化。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、实践操作法等,引导学生主动探究,培养学生的空间想象能力。

2.教学手段:利用多媒体课件、实体模型、展开图卡片等,帮助学生直观地理解展开与折叠的概念。

六. 说教学过程1.导入新课:通过一个简单的谜语,引发学生对展开与折叠的思考,激发学生的学习兴趣。

2.自主探究:学生分组讨论,观察生活中的展开图,总结展开图的特点。

3.教师讲解:讲解展开图的概念及其基本特点,引导学生理解展开图与立体图形之间的关系。

4.实践操作:学生动手操作,尝试将立体几何图形正确地展开成平面图形。

5.合作交流:学生分组展示自己的展开图作品,互相评价,总结经验。

6.巩固提高:出示一些生活中的展开图,让学生判断其是否正确,并提出改进意见。

7.课堂小结:教师引导学生总结本节课的学习内容,巩固知识点。

数学折叠问题初一

数学折叠问题初一

数学折叠问题初一
在初一的数学课程中,折叠问题是一个常见的话题。

这些问题通常涉及到几何形状,特别是多边形和纸张的折叠。

通过解决这些问题,学生可以锻炼他们的空间想象能力和几何推理能力。

以下是一些常见的初一数学折叠问题的类型和解决方法:
1. 角度计算
问题:一张纸被折叠一次,使得一个角与另一个角重合。

计算新形成的角度。

解决方法:首先理解折叠是轴对称的。

如果知道原始角度,可以通过减去或加上相应的角度来找到新角度。

2. 长度计算
问题:一张纸被折叠后,某一部分与另一部分重合。

计算重合部分的长度。

解决方法:利用相似三角形或全等三角形的性质来计算长度。

3. 面积计算
问题:一张纸被折叠后,形成一个新的形状。

计算新形状的面积。

解决方法:根据折叠后的形状,使用相应的面积公式进行计算。

4. 折叠模式识别
问题:描述一个特定的折叠过程,然后要求学生识别出最终的形状或模式。

解决方法:通过逻辑推理和空间想象来预测最终的形状或模式。

5.多步骤折叠
问题:一张纸经过多次折叠后形成一个复杂的形状。

要求学生描述或分析这个过程。

解决方法:分步骤进行,每次只关注一次折叠,然后逐步建立整体的理解。

解决这些问题时,建议学生使用实际的纸张进行模拟,这有助于他们更好地理解折叠过程并锻炼空间想象能力。

同时,也要鼓励学生多练习不同类型的折叠问题,以提高他们的解题技巧和速度。

初中数学中的折叠问题

初中数学中的折叠问题

初中数学中的折叠问题对于折叠问题,我们要明白:1、折叠问题翻折变换实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形纸片折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD 为折痕,折叠后BG 和BH 在同一条直线上,∠CBD=度.BC 、BD 是折痕,所以有∠ABC=∠GBC,∠EBD=∠HBD 则∠CBD=90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC,若AB=4,AC=3,则△ADE 的面积是.沿BC 折叠,顶点落在点A ’处,根据对称的性质得到BC 垂直平分AA ’,即AF=AA ’,又DE ∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE 的面积=24 对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG,求AG 的长. 由勾股定理可得BD=5,由对称的性质得△ADG ≌△A ’DG,由A ’D=AD=3,AG ’=AG,则A ’B=5–3=2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于根据对称的性质得到∠ABE=∠CBE,∠EBF=∠CBF,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB=°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm,AB=6cm,求折叠后重合部分的面积.∵点C 与点E 关于直线BD 对称,∴∠1=∠2 ∵AD ∥BC,∴∠1=∠3 ∴∠2=∠3 ∴FB=FD设FD=x,则FB=x,FA=8–xGA'CABD在Rt△BAF中,BA2+AF2=BF2∴62+8-x2=x2解得x=所以,阴影部分的面积S△FBD=FD×AB=××6=cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD按如图所示折叠,若折叠角∠FEC=64°,则∠1=度;△EFG的形状三角形.∵四边形CDFE与四边形C’D’FE关于直线EF对称∴∠2=∠3=64°∴∠4=180°-2×64°=52°∵AD∥BC∴∠1=∠4=52°∠2=∠5又∵∠2=∠3∴∠3=∠5∴GE=GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF如图①;延CG折叠,使点B落在EF上的点B′处,如图②;展平,得折痕GC如图③;沿GH折叠,使点C落在DH上的点C′处,如图④;沿GC′折叠如图⑤;展平,得折痕GC′,GH如图⑥.1求图②中∠BCB′的大小;2图⑥中的△GCC′是正三角形吗请说明理由.1由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF=,利用特殊角的三角函数值的知识即可求得∠BCB’=60°;2首先根据题意得:GC平分∠BCB’,即可求得∠GCC’=60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’=GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE=x,则BE=GE=4-x,在Rt△AEG中,根据勾股定理有:AE2+AG2=GE2即:x2+4=4-x2解得x=,BE=EG=4–=∵∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3又∵∠A=∠D=90°∴△AEG∽△DGP∴=,则=,解得GP=二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于∵∠α=∠1,∠2=∠1∴∠α=∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC=,AB=S△ABC=AB×CD=在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形纸片折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm的长方形纸条成如图所示的形状,那么折痕PQ的长是如图,作QH⊥PA,垂足为H,则QH=2cm,由平行线的性质,得∠DPA=∠PAQ=60°由折叠的性质,得∠DPA=∠PAQ,∴∠APQ=60°,又∵∠PAQ=∠APQ=60°,∴△APQ为等边三角形,在Rt△PQH中,sin∠HPQ=∴=,则PQ=注意掌握折叠前后图形的对应关系.在矩形纸片折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE 的度数是∵AD∥BC,∴∠DEF=∠EFB=20°,在图b中,GE=GF,∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b∠GFC=140°,图c中的∠CFE=∠GFC-∠EFG15.将一张长为70cm的长方形纸片ABCD,沿对称轴EF折叠成如图的形状,若折叠后,AB与CD间的距离为60cm,则原纸片的宽AB是设AB=xcm.右图中,AF=CE=35,EF=x根据轴对称图形的性质,得AE=CF=35-xcm.则有235-x+x=60,x=10.16.一根30cm、宽3cm的长方形纸条,将其按照图示的过程折叠阴影部分表示纸条的反面,为了美观,希望折叠完成后纸条两端超出点P的长度相等,则最初折叠时,求MA的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm,下底等于纸条宽的2倍,即6cm,两个三角形都为等腰直角三角形,斜边为纸条宽的2倍,即6cm,故超出点P的长度为30-15÷2=,AM=+6=三、三角形中的折叠BD∴△AEF是等腰三角形1由折叠可知∠AEB=∠FEB,∠DEG=∠BEG而∠BEG=45°+∠α因为∠AEB+∠BEG+∠DEG=180°所以45°+245°+∠α=180°∠α=°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关;要抓住折叠前后图形之间的对应关系2将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ如图④,求∠MNF的大小.由题意得出:∠NMF=∠AMN=∠MNF,∴MF=NF,由对称性可知,MF=PF,∴NF=PF,而由题意得出:MP=MN,又MF=MF,∴△MNF≌△MPF,∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,即3∠MNF=180°,∴∠MNF=60°,在矩形中的折叠问题,通常会出现“角平分线+平行线”的基本结构,即以折痕为底边的等腰三角形21.直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、点F.探究:如果折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少写出你的计算过程,并画出符合条件的后的图形.∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∴∠FDA=∠CFD=°,∠DEB=2x°,分类如下:①当DE=DB时,∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+°+x=4x,解得:x=°.此时∠B=2x=45°;见图形1,说明:图中AD应平分∠CAB.②当BD=BE时,则∠B=180°-4x°,由∠CDE=∠DEB+∠B得:45++x=2x+180-4x,解得x=°,此时∠B=180-4x°=30°.图形2说明:∠CAB=60°,∠CAD=°.③DE=BE时,则∠B=由∠CDE=∠DEB+∠B的,45++x=2x+此方程无解.∴DE=BE不成立.综上所述∠B=45°或30°先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可22.下列图案给出了折叠一个直角边长为2的等腰直角三角形纸片图1的全过程:首先对折,如图2,折痕CD交AB于点D;打开后,过点D任意折叠,使折痕DE交BC于点E,如图3;打开后,如图4;再沿AE折叠,如图5;打开后,折痕如图6.则折痕DE和AE长度的和的最小值是过D点作DF∥BC,交AC于F,作A点关于BC的对称点A′,连接DA′,则DA′就是DE和AE的最小值.∵D点是AB的中点,∴DF=1,FC=1,∴FA′=3∴DA′==∴折痕DE和AE长度的和的最小值是本题经过了三次折叠,注意理清折叠过程中的对称关系,求两条线段的和的最小值问题可以参见文章23.小华将一条1如图1,沿它对称轴折叠1次后得到如图,再将图沿它对称轴折叠后得到如图3,则图3中一条腰长;同上操作,若小华连续将图1折叠n次后所得到如图n+1一条腰长为多少.解:每次折叠后,腰长为原来的故第2次折叠后得到的等腰直角三角形的一条腰长为2-则小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形的一条腰长为n本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.24.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法,第n次折叠后的折痕与BD 交于点O n,则BO1=,BO n=第一次折叠时,点O1是BD的中点,则BO1=DO1第二次折叠时,点O2是BD1的中点,则BO2=D1O2第三次折叠时,点O3是BD2的中点,则BO3=D2O3因为AB=,BC=,所以BD=4第一次折叠后,有BO1=DO1∴BO1=2第二次折叠后,有BO2=D1O2∴BO2===第三次折叠后,有BO3=D2O3∴BO3===即当n=1时,BO1=2==当n=2时,BO2===当n=3时,BO3===则第n次折叠后,BO n=问题中涉及到的折叠从有限到无限,要明白每一次折叠中的变与不变,充分展示运算的详细过程;在找规律时要把最终的结果写成一样的形式,观察其中的变与不变,特别是变化的数据与折叠次数之间的关系25.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n-1D n-2的中点为D n-1,第n次纸片折叠,使A与点D n-1重合,折痕与AD交于点P n n>2,则AP6长AD=第一次折叠后,AP1=P1D,P1D1=D1D∴AP1==第二次折叠后,AP2=P2D1,P2D2=D2D1∴AP2====第三次折叠后,AP3=P3D2∴AP3=====即当n=1时,AP1==当n=2时,AP2==当n=3时,AP3==则第n次折叠后,AP n=故AP6=此题考查了翻折变换的知识,解答本题关键是写出前面几个有关线段长度的表达式,从而得出一般规律,注意培养自己的归纳总结能力26.阅读理解如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠B n A n C的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现1△ABC中,∠B=2∠C,经过两次,∠BAC是不是△ABC的好角填“是”或“不是”.2小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C不妨设∠B>∠C之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C不妨设∠B>∠C之间的等量关系为.∠B=n∠C应用提升3小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.∴BC ×4=×,BC= ∴OC=OB –BC=4-=,则C0, 2如右图,BC=B'C B'C=BC=OB –OC=4–y 在Rt △OB'C 中根据勾股定理有:y 2+x 2=4-y 2所以y=-+2∵当0≤x ≤2时,抛物线的值随x 的增大而减小 当x=0时,y=2 当x=2时,y= ∴≤y ≤2 3如右图由DB''∥OB 得,∠2=∠3 由对称性质得,∠1=∠2 ∴∠2=∠3,则CB''∥BA ∴△OB''C ∽△OAB ∴OC=2OB'' 设OB''=m,则OC=2m 所以2m=-+2解得m=-8±,∵m >0,∴m=-8+ 则点C 的坐标为0,-16折痕是对应点连线的垂直平分线四、圆中的折叠30.如图,正方形ABCD 的边长为2,⊙O 的直径为AD,将正方形的BC 边沿EC 折叠,点B 落在圆上的F 点,求BE 的长连接OC 、OF,则△OCF ≌△OCDSSS,∴∠OFC=∠ODC=90°, 所以∠OFE=180°,即点O 、F 、E 在一条直线上 设BE=x,则EF=x,AE=2–x,OE=1+x 在Rt △AEO 中,AE 2+AO 2=OE 2所以2-x 2+1=1+x 2 解得:x=用对称关系构造勾股定理,再用勾股定理列方程求解是在折叠问题中求线段长度的常用方法31.如图,将半径为8的⊙O 沿AB 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D,则折痕AB 长为解:延长CO 交AB 于E 点,连接OB, ∵CE ⊥AB, ∴E 为AB 的中点,由题意可得CD=4,OD=4,OB=8, DE=8×2-4=6 OE=6-4=2,在Rt △OEB 中,根据勾股定理可得:AB=注意折叠过程中形成的对应边,利用勾股定理求解32.如图,将弧BC 沿弦BC 折叠交直径AB 于点D,若AD=5,DB=7,则BC 的长是多少连接CA、CD;根据对称的性质,得:弧CB=弧BDC∴∠CAB=∠CBD+∠BCD;∵∠CDA=∠CBD+∠BCD,∴∠CAD=∠CDA,即△CAD是等腰三角形;过C作CE⊥AB于E,则AE=DE=;∴BE=BD+DE=;在Rt△ACB中,CE⊥AB,△ABC∽△CBE,得:BC2=BEAB=×12=114;故BC=此题考查的是对称的性质、圆周角定理、以及相似三角形的判定和性质;能够根据圆周角定理来判断出△CAD是等腰三角形,是解答此题的关键33.已知如图:⊙O的半径为8cm,把弧AmB沿AB折叠使弧AmB经过圆心O,再把弧AOB沿CD折叠,使弧COD经过AB的中点E,则折线CD的长为作CD关于C’D’的对称线段C’D’,连接OE并延长交CD于点F,交C′D′于点F′,交弧AmB于点G,根据对称的性质得出OF′=6,再由勾股定理得出C’F’=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、简介
七年级上册数学角折叠是一种数学技巧,它可以帮助学生更好地理解数学概念。

七年级上册数学角折叠通过将数学概念组织成一个有结构的折叠图,使学生更容易理解数学概念。

这种折叠图可以帮助学生更好地记住数学概念,并且可以帮助学生更好地分析和解决数学问题。

二、七年级上册数学角折叠的原理
七年级上册数学角折叠是一种数学技巧,它
是基于一种叫做“角折叠”的数学原理。

角折叠原理是指,当一个多边形被折叠时,其内部的角会根据折叠的方式发生变化。

这种变化可以使多边形的角变成更小的角,也可以使多边形的角变成更大的角。

因此,通过七年级上册数学角折叠,学生可以更容易地理解数学概念,并且可以更容易地记住数学概念。

三、七年级上册数学角折叠的基本步骤
1. 理解数学概念:首先,学生需要理解数学概念,包括多边形的边和角,以及多边形的性质,如对称性、平行性等。

2. 把多边形折叠成角:其次,学生需要把多边形折叠成角,这样就可以更容易地观察多边形的角。

3. 观察多边形的角:然后,学生可以观察多边形的角,并记录下多边形的角的大小。

4. 分析多边形的性质:最后,学生可以分析多边形的性质,如对称性、平行性等,以便更好地理解数学概念。

四、七年级上册数学角折叠的优点
1. 可以帮助学生更好地理解数学概念:七年级上册数学角折叠可以帮助学生更好地理解
数学概念,因为它可以使学生更容易地理解
多边形的角和多边形的性质。

2. 可以帮助学生更好地记住数学概念:七年
级上册数学角折叠可以帮助学生更好地记住
数学概念,因为它可以使学生更容易地记住
多边形的角和多边形的性质。

3. 可以帮助学生更好地分析和解决数学问题:七年级上册数学角折叠可以帮助学生更好地
分析和解决数学问题,因为它可以使学生更
容易地分析多边形的角和多边形的性质,从
而更容易地解决数学问题。

五、七年级上册数学角折叠的练习
1. 多边形练习:学生可以练习画多边形,并观察多边形的角的大小,以便更好地理解数学概念。

2. 角折叠练习:学生可以练习把多边形折叠成角,以便更好地理解数学概念。

3. 性质分析练习:学生可以练习分析多边形的性质,如对称性、平行性等,以便更好地理解数学概念。

4. 问题解决练习:学生可以练习解决数学问题,以便更好地理解数学概念。

六、结论
七年级上册数学角折叠是一种有效的数学技巧,它可以帮助学生更好地理解数学概念,
并且可以帮助学生更好地记住数学概念,以
及更好地分析和解决数学问题。

通过练习,
学生可以更好地掌握七年级上册数学角折叠,从而更好地理解数学概念。

相关文档
最新文档