重复测量数据方差分析

合集下载

心理学统计第五部分重复测量方差分析

心理学统计第五部分重复测量方差分析

心理学统计第五部分重复测量方差分析在心理学研究中,有时候研究者需要评估一个或多个因素对参与者的多个测量结果的影响。

这种情况下,重复测量方差分析(Repeated Measures Analysis of Variance,简称为RM ANOVA)是一种常用的统计方法。

重复测量方差分析是一种比较多个组内变量平均数差异的方法,它比较了每个组内变量的差异以及每个组间变量的差异。

与传统的方差分析不同,重复测量方差分析考虑了相同参与者在不同条件下的多次测量结果,因此能够更准确地评估因素对测量结果的影响。

首先,我们需要明确的是,在重复测量方差分析中,我们的因变量是一个连续的测量结果,而自变量是一个或多个处理条件。

例如,我们可能想要评估一个新药物是否对人们的注意力产生影响,我们可以将注意力测量结果作为因变量,而药物与安慰剂作为自变量。

重复测量方差分析有三个基本的假设。

首先,我们假设不同处理条件下的测量结果的总平均数相等,即每组的平均值相等。

其次,我们假设各个处理条件下的测量结果有一定的方差。

最后,我们假设不同处理条件下的测量结果相互独立。

重复测量方差分析有一些优点和注意事项。

首先,这种方法可以减少误差变异,因为我们可以通过比较同一参与者在不同条件下的测量结果来消除参与者间的差异。

其次,重复测量方差分析可以提高统计功效,以便检测到小的差异。

然而,我们需要注意确保多次测量结果之间的独立性,以及在数据分析中正确处理可能的违反方差齐性和正态分布的情况。

总结起来,重复测量方差分析是一种常用的心理学统计方法,用于评估一个或多个因素对参与者的多个测量结果的影响。

它是一种有效的方法,可以提供关于不同处理条件之间差异的信息。

在分析数据时,我们需要检查数据的正态性和方差齐性,并使用适当的修正方法来应对违反这些假设的情况。

重复测量方差分析为心理学研究提供了一个强有力的统计工具,使得研究者能够更好地理解和解释影响行为和心理过程的因素。

重复测量方差分析

重复测量方差分析

重复测量方差分析1. 引言重复测量方差分析(Repeated Measures Analysis of Variance, RM-ANOVA)是一种统计方法,用于分析在不同时间点或不同处理条件下对同一组个体或样本进行多次测量的数据。

通过比较不同时间点或处理条件下的测量结果,我们可以确定是否存在显著的差异,并了解时间或处理对测量结果的潜在影响。

本文档将介绍重复测量方差分析的基本原理、假设条件、计算方法和结果解读,并提供使用Markdown格式编写重复测量方差分析报告的示例。

2. 基本原理重复测量方差分析的基本原理是基于方差分析(ANOVA)方法,但相对于普通的单因素方差分析,重复测量方差分析考虑了测量数据间的相关性。

在重复测量设计中,同一个个体或样本在不同时间点或处理条件下进行多次测量,因此测量数据之间存在一定的相关性。

为了解决相关性的问题,重复测量方差分析使用了独特的矩阵分解方法,将总体方差分解为组内方差和组间方差。

通过计算组间方差与组内方差的比值,可以判断不同时间点或处理条件下的测量结果是否存在显著差异。

3. 假设条件在进行重复测量方差分析之前,需要满足以下假设条件:•正态性假设:每个时间点或处理条件下的测量结果应当服从正态分布。

•同方差性假设:每个时间点或处理条件下的测量结果应具有相同的方差。

•相关性假设:各个时间点或处理条件下的测量结果之间应具有一定的相关性。

如果数据不满足正态性、同方差性或相关性假设,需要采取适当的数据转换、方差齐性检验或相关性分析等方法进行处理。

4. 计算方法重复测量方差分析的计算方法可以通过计算F统计量来进行。

具体步骤如下:步骤1:计算总体方差首先计算总体方差SSTotal,即测量数据的总体波动情况。

步骤2:计算组间方差然后计算组间方差SSBetween,即不同时间点或处理条件下的测量结果之间的差异。

步骤3:计算组内方差接下来计算组内方差SSWithin,即测量数据在同一个时间点或处理条件下的波动情况。

重复测量资料的方差分析

重复测量资料的方差分析

ˆ ˆ ˆ2 2k 式中中的 s 是协方差矩阵中的第 k 行第 l 列元素, s = ( = (∑ s ) / a 是主对角线元素的平均值, s = (∑ s ) / a 是第 k 行的平均值。

ε ˆ 的取值在 1.0 与 1/(a -1)之间。

ε =ˆˆ ˆ分子自由度ν 1 =ν 1 ⨯ε 分母自由度ν 2 =ν 2 ⨯ε 。

具体计算时可用或ε 代替。

用 调整所得的ν 1 及ν 2 的 F 值查临界值表,得 F α (ν ' ,ν ' ) 。

由于ε≤ 1.0,所以调整后的重复测量资料方差分析重复测量(repeated measure )是指对同一观察对象的同一观察指标在不同时间 点上进行的多次测量,用于分析该观察指标在不同时间上的变化特点。

这类测量 资料在临床和流行病学研究中比较常见,例如,为研究某种药物对高血压病人的 治疗效果,需要定时多次测量受试者的血压,以分析其血压的变动情况。

1、 重复测量资料方差分析中自由度调整方法1.调整系数 ε 的计算有两个调整系数,第一个是 Greenhouse-Geisser 调整系数 ε (G - G ε ) ,计算 公式为ε =a 2(s kl - s 2) 2(a -1)[∑ ∑ (s kl ) 2 - (2a )(∑ (s 2 ) 2 ) + a 2 (s 2 ) 2 ]k l kkl 2 2 ∑∑ s k l 2 kl ) / a 2 是所有元素的总平均值, s 2 kk l2 2 ll2 2 kkll 第 2 个系数是 Huynh-Feldt 调整系数 ε (H - F ε ) 。

研究表明,当 ε 真值在 0.7 以上时,用 ε 进行自由度调整后的统计学结论偏于保守,故 Huynh 和 Feldt 提 出用平均调整值 ε 值进行调整。

ε 值的计算公式为ng (a - 1)ε - 2 (a - 1)[(n - 1)g - (a - 1)ε ]式中中的 g 是对受试对象的某种特征(如年龄或性别)进行分组的组数,n 是每组的观察例数。

重复测量设计的方差分析

重复测量设计的方差分析
区组内实验单位彼此不独立。
u 随机区组设计 ●处理因素在区组内随机分配; 每个区组内实验单位彼此独立。
第二节
重复测量数据 的两因素两水平分析
高血压患者治疗前后的舒张压(mmHg)
处理组 a1
对照组(安慰剂组)a2
顺序号 治疗前 治疗后 合计(Mj) 顺序号 治疗前 治疗后 合计(Mj)
●处理因素在区组内随b机1分配; b2
118
124
-6
132
122
10
134
132
2
114
96
18
118
124
-6
128
118
10
118
116
2
132
122
10
120
124
-4
134
128
6
1248
1206
42
124.8
120.6
4.2
7.90
9.75
8.02
三、重复测同相量一关受的设试。计者的(单血样因重素复测)量的结果是高度
受试者血糖浓度(mmol/L)
214
17
118
明“服8药”有效; 138
122
260
18
132
重复测量设计与随机区组设计区别
降压药9物与安慰剂间疗12效6差别无统计学1意08义;
234
19
120
注若意球事 对1项称0 1性、质单不因能素满实足1验2,重4则复方测差量分数析据的1分F0析值6是偏大的,2增3大0了犯第一类错2误0 的概率。 134
重复测量设计的方差分析
讲课内容
第一节 重复测量资料的数据特征 第二节 重复测量数据的两因素两水平分析

方差分析三重复测量资料的方差分析

方差分析三重复测量资料的方差分析

缺点
实验成本高
需要进行多次测量,增加了实验成本和时间。
数据处理复杂
三重复测量资料的方差分析需要处理大量的数据,并且需要进行复 杂的统计分析,对数据分析的要求较高。
样本量要求高
为了获得更可靠的结果,需要较大的样本量,增加了实验难度。
06
三重复测量资料的方差分析的未来 发展
研究方向
1 2
拓展应用领域
通过比较组间方差和组内 方差的差异,判断各组之
间的差异是否显著。
01
02
03
04
05
1. 建立假设
确定要检验的原假设(H0) 和备择假设(H1)。
3. 计算方差
根据数据计算组间方差和 组内方差。
5. 解读结果
根据统计结果解释实验结 果,确定处理因素对实验 结果的影响是否显著。
03
三重复测量资料的方差分析
感谢您的观看
THANKS
5. 结果解释
根据模型的拟合结果, 解释三重复测量资料 的变化情况,并给出 相应的结论和建议。
04
三重复测量资料的方差分析实例
实例一:药物效果研究
总结词
药物效果研究是三重复测量资料方差分析的重要应用领域之一,主要用于评估药物治疗前后的效果差 异。
详细描述
在药物效果研究中,通常会对同一组受试者在药物治疗前、治疗中、以及治疗后的不同时间点进行测 量,以评估药物对受试者的影响。通过三重复测量资料的方差分析,可以比较不同时间点上受试者的 生理指标、症状改善程度等方面的差异,从而为药物的疗效提供科学依据。
02
方差分析概述
方差分析的定义
方差分析(ANOVA)是一种统计方 法,用于比较两个或多个组之间的平 均值差异是否显著。

重复测量数据的统计方法

重复测量数据的统计方法

重复测量数据的统计方法重复测量数据的统计方法是指对同一变量进行多次测量所得到的数据进行分析和统计的方法。

在科学研究、生产实践和社会调查中,常常需要对同一指标进行多次观测,例如实验重复测量、调查问卷中多次回答同一个问题等。

重复测量数据的统计方法可以帮助研究者更准确地估计数据的平均值、方差和其他统计指标,从而提高数据分析的可靠性和科学性。

在进行重复测量数据的统计分析时,常用的方法包括重复测量方差分析、重复测量t检验、可重复性分析和相关性分析等。

下面将分别对这些方法进行详细介绍。

首先,重复测量方差分析(Repeated measures analysis of variance,简称RM-ANOVA)是一种常用的分析重复测量数据的方法。

它通过对多个测量间的变异进行分析,判断测量效应是否显著。

RM-ANOVA 通常分为单因素重复测量方差分析和多因素重复测量方差分析两种。

在进行RM-ANOVA分析时,需要对数据的正态性进行检验,并对数据进行变换或采用非参数方法进行分析。

此外,RM-ANOVA还可用于分析数据的交互作用,即测量效应是否受到其他因素的影响。

其次,重复测量t检验(Repeated measures t-test)是一种用于比较两个或多个相关样本均值是否存在显著差异的统计方法。

它适用于重复测量数据且样本数较小的情况。

重复测量t检验的原理是对多次测量的差值进行统计分析,并与一个已知平均差异的理论值进行比较。

通过比较差异的大小和统计显著性水平,来判断差异是否真实存在。

第三,可重复性分析(Intraclass correlation coefficient,简称ICC)是一种用来评估重复测量数据可靠性和一致性的方法。

ICC通常通过计算同一个变量在不同测量间的相关性来评估数据的可重复性。

ICC的值介于0和1之间,数值越接近1说明数据的可靠性越高。

可重复性分析可用于评估测量工具的稳定性、不同测量者之间的一致性以及相同测量者在不同时间点的一致性等。

重复测量数据方差分析

重复测量数据方差分析

74.4
77.0
75.2 77.4
82.6
80.4
81.2 79.6
68.6
65.0
63.2 63.4
79.0
77.0
73.8 72.5
69.4
66.8
64.4 60.8
72.6
71.0
68.2 70.2
72.4
72.6
72.8 72.6
75.6
73.4
73.4 72.2
80.0
78.0
76.4 74.8
7.90
9.75 8.02
经检验处理组与对照组的差值 d 方差不齐(F S12 / S22 6.58 , P 0.01),不符合两均数比较 t 检验的前提条件。
设置对照旳前后测量设计
前后测量数据间存在明显差别时,并不能阐明这种差 别是由前后测量之间施加旳处理所产生,还是因为存 在于前后两次测量之间旳时间效应所致。
比较
表9-2 两种措施对乳酸饮料中脂肪含量旳测定成果(%)
编号
1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法
0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 0.870
脂肪酸水解法
0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
受试 对象j
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
剂型 k
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
服药后测定时间i(周)

重复测量方差分析

重复测量方差分析

重复测量方差分析1.理论重复测量:指对同一批研究对象先后施加不同的实验(或在不同的场合)进行测量。

重复测量方差分析:研究在不同的实验或(不同场合)之间是否有差异,或条件和处理间交互项是否有差异。

变量应满足:因变量为连续型随机变量,因素为分类变量。

正态性:不同条件下的个体取自相互独立的随机样本,其总体需满足近似正态分布。

方差齐性:不同条件下的总体方差相等。

满足球形假设:因变量的方差-协方差矩阵满足球形交互项项两两比较结果需要借助语法。

图1交互项两两比较语法2.重复测量方差分析操作步骤操作步骤第一步:首先将数据导入spss中并进行赋值,后点击分析、一般线性模型、重复测量。

图2重复测量方差分析操作步骤第一步操作步骤第二步:进入图中对话框后首先定义主体因子名及实验次数点击添加,后添加测量名称(先在测量名称框中输入名称、后点击添加)点击定义。

图3定义因子操作步骤第三步:定义完成后进入图中对话框后、先将对应的变量放入对应的变量框中,点击事后比较将因子框内的因子放入事后比较框中,勾选假定等方差(LSD)、不假定等方差(塔姆黑尼),点击继续。

图4事后比较勾选操作步骤第四步:点击选项将因子框中的因子放入平均值框中,勾选描述统计、齐性检验,点击继续、确定。

图5选项勾选然后重复测量方差分析的主体间因子、描述统计、等同性检验、主体内效应检验、主体因子事后比较结果就出来了。

图6描述统计结果图7主体内效应操作步骤第一步:点击分析、一般线性模型、重复测量。

图8操作步骤第一步第二步:点击定义。

图9点击定义第三步:进入图中对话框后,点击粘贴。

图10点击粘贴第四步:进入语法编辑窗:在红色框内放入对应的语法(可参考图中语法进行编辑),后选中语法点击红色框内的绿色箭头。

图11语法编写5.交互项结果然后重复测量方差分析的主体因子和因子交互项的主体内因子、主体间因子、描述统计、博克斯等同性酱油结果就出来了。

图12描述统计主体内效应检验、主体内对比检验、误差方差的莱文等同性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验设计
处理——A因素:g个水平 a1 , a2 ,ag 每个水平 n个 试验对象 时间——B因素:m个时点 b1 , b2 ,bm 试验数据Xijk i=1,2, … ,g j=1,2, … ,m k=1,2, … ,n 试验数据共gmn个
方差分析
b1 a1 a2 b2 „ bj
合计
X 221 X 222 Tij ( X ij ) X 22 n
77.0
80.4 65.0 77.0 66.8 71.0 72.6 73.4 78.0
75.2
81.2 63.2 73.8 64.4 68.2 72.8 73.4 76.4
77.4
79.6 63.4 72.5 60.8 70.2 72.6 72.2 74.8
32
33 34 35 36 37 38 39 40
一、重复测量资料的数据特征
目的:推断处理、时间、处理×时间作用于试
验对象的试验指标的作用。
资料特征:

处理因素 时间因素
g (≥1 )个水平,每个水平有n个
试验对象,共计 gn个试验对象。

同一试验对象在m(≥2 )个时
点获得m个测量值,共计gnm个测量值。

方法:方差分析
前后测量设计

前后测量设计资料是重复测量资料中最为常见 的资料类型,即g=1, m=2, 如表9-1。 和配对设计的数据形式相同,但两者属于完全 不同的实验设计类型。区别如下: 1. 是否随机分配处理(分组); 2. 差值的独立性问题; 3. 数据处理方式的差异。
受试 对象j
1 2
剂型 k
1 1
服药后测定时间i(周)
0 84.4 105.0 8 82.2 100.8 16 82.2 97.4 24 83.0 96.6
受试 对象j
21 22
剂型 k
2 2
服药后测定时间i(周)
0 64.4 91.0 8 61.4 88.4 16 61.8 87.4 24 62.0 89.6
脂肪酸水解法 0.580 0.509 0.500 0.316 0.337 0.517 0.454 0.512 0.997 0.506
差值 d 0.260 0.082 0.174 0.316 0.350 0.461 0.296 0.218 0.203 0.364
与配对设计设计的区别
1. 配对设计中同一对子的两个实验单位可 以随机分配处理,两个实验单位同期观察试验
Ai ( X i )
┆ ai
合计
X i1k
B j(X j )
X i 2k

X imk Mik ( X ik )
X
重复测量资料的方差分析

例9-4 为研究减肥新药盐酸西布曲明片和盐酸西布曲 明胶囊的减肥效果是否不同,以及肥胖患者服药后不 同时间的体重随时间的变化情况。采用双盲双模拟随 机对照试验,将体重指数BMI 27的肥胖患者40名随机 等分成两组,一组给予盐酸西布曲明片+模拟盐酸西布 曲明胶囊,另一组给予盐酸西布曲明胶囊+模拟盐酸西 布曲明片。所有患者每天坚持服药,共服药6个月(24 周),受试期间禁用任何影响体重的药物,而且受试对 象行为、饮食及运动与服药前的平衡期均保持一致。 分别于平衡期(0周)、服药后的8周、16周、24周测定肥 胖患者的体重(kg)得表9-13的资料。
结果,可以比较处理组间差别。
前后测量设计不能同期观察试验结果,虽
然可以在前后测量之间安排处理,但本质上比
较的是前后差别,推论处理是否有效是有条件
的,即假定测量时间对观察结果没有影响。
2. 配对 t 检验要求同一对子的两个实验 单位的观察结果分别与差值相互独立,差值服 从正态分布。
前后测量设计前后两次观察结果通常与
差值 16 14 10 12 20 18 18 16 18 18 16.0 3.13
S
比较
表9-2 两种方法对乳酸饮料中脂肪含量的测定结果(%)
编 号 1 2 3 4 5 6 7 8 9 10
哥特里-罗紫法 0.840 0.591 0.674 0.632 0.687 0.978 0.750 0.730 1.200 差别时,并不能说明这种差 别是由前后测量之间施加的处理所产生,还是由于存 在于前后两次测量之间的时间效应所致。

为解决上述问题,可通过设置对照组(如安慰剂对照) 来排除时间效应的影响。 设置对照后的数据除了存在前后测量的分组因素外, 还存在另外一个处理因素对数据进行分组,即对照组 和试验组。
3
4 5 6 7 8 9 10 11
1
1 1 1 1 1 1 1 1
63.8
86.2 75.6 61.2 67.8 77.2 73.2 65.4 80.0
62.0
85.5 73.4 60.4 66.0 73.6 72.2 63.6 77.0
61.6
83.0 74.0 60.8 63.4 72.6 72.2 62.6 72.4
重复测量资料的方差分析

重复测量资料和随机区组设计资料的区别:
(1)重复测量资料中同一受试对象(看成区组)的数据高度 相关,无论哪位受试对象服用盐酸西布曲明片剂或是 胶囊,其服药后8周、16周和24周的体重均和前面时 间点(含服药前的0周)的体重相关。表9-14为分不同剂 型后使用统计软件包计算得到的各时点简单相关系数 r,从中可以看出,不同时点间相关系数介于0.850 ~0.989之间,其P值全为0.000,均有统计学意义, 说明不同时点数据其相关性较强。
表9-3 高血压患者治疗前后的舒张压(mmHg) 处 理 组 对 照 组 顺序号 顺序号 差值 ( d ) 治疗前 治疗后 治疗前 治疗后 差值 ( d ) 1 130 114 11 118 124 2 124 110 12 132 122 3 136 126 13 134 132 4 128 116 14 114 96 5 122 102 15 118 124 6 118 100 16 128 118 7 116 98 17 118 116 8 138 122 18 132 122 9 126 108 19 120 124 10 124 106 20 134 128
意义及计 算方法;
3.熟悉多个均数间两两比较的意义及方法;
4.了解方差齐性检验和t’检验的意义及方法;
5.熟悉变量变换的意义和方法。
第四节 重复测量资料的方差分析
重复测量资料:
• 重复测量资料是同一受试对象的同一个观察指标在
不同时间点上进行多次测量所得的资料,常用来分 析该观察指标在不同时间点上的变化特点。这类资 料在临床试验和流行病学研究中较常见。 重复测量资料的反应变量(即被重复测量的观察指 标)可以为连续型(定量指标)或离散型(定性或 分类指标)。 连续型的重复测量资料较为常见,可以采用方差分 析方法进行处理,离散型重复测量资料比较少见, 分析方法更为复杂。此处我们主要讨论连续型重复 测量资料的统计学处理问题。
72.8
69.8 62.8 92.6 62.6 62.6 69.8 81.4 77.4
71.6
68.4 60.8 95.5 61.6 62.0 69.4 78.0 71.0
12
13 14 15 16 17 18 19 20
1
1 1 1 1 1 1 1 1
74.4
82.6 68.6 79.0 69.4 72.6 72.4 75.6 80.0

表9-1 高血压患者治疗前后的舒张压(mmHg)
编 号 1 2 3 4 5 6 7 8 9 10
X
治疗前 130 124 136 128 122 118 116 138 126 124 126.2 7.08
治疗后 114 110 126 116 102 100 98 122 108 106 110.2 9.31
60.4
81.8 73.0 60.2 63.6 72.0 74.6 60.8 69.4
23
24 25 26 27 28 29 30 31
2
2 2 2 2 2 2 2 2
76.0
71.0 69.4 89.9 66.8 63.4 70.0 86.6 90.4
76.2
72.0 66.6 87.4 63.6 61.2 67.6 84.0 84.4
二、设立对照的前后测量设计
表 9-1 中高血压患者治疗后的舒张压平均下 降 了 16 mmHg , 虽 然 经 配 对 t 检 验 :
t 16.18, P 0.01 ,也未必能说明治疗有效,因为
住院休息、 环境和情绪的改变同样可以使血压恢 复平稳。因此,确定疗效的前后测量设计必须增 加平行对照,如将 20 位轻度高血压患者随机分 配到处理组和对照组,试验结果见表 9-3。
• •
每一根线代表1位病人
实例举例
血药浓度(μ mol/L)
180 150 120 90 60 30 0
图 10. 附 2
旧剂型 新剂型
4
8
时间(小时)
12
某药新旧剂型血药浓度随时间的变化
重复测量设计的优缺点
• 优点: 每一个体作为自 身的对照,克服了个 体间的变异。分析时 可更好地集中于处理 效应. 因重复测量设计 的每一个体作为自身 的对照,所以研究所 需的个体相对较少, 因此更加经济。 • 缺点: 滞留效应(Carry-over effect) 前面的处理效应有可能 滞留到下一次的处理. 潜隐效应(Latent effect) 前面的处理效应有可能 激活原本以前不活跃的效 应. 学习效应(Learning effect) 由于逐步熟悉实验,研 究对象的反应能力有可能 逐步得到了提高。
卫生统计学(第五版)
卫生统计学与数学学教研室
第九章
方差分析
相关文档
最新文档