一次函数的定义附答案
八年级下数学刷题答案

八年级下数学刷题答案第二十章 一次函数第一节 一次函数的概念 20.2一次函数的概念【知识要点】1.一次函数的概念一般地,解析式形如(0)y kx b k =+≠的函数叫一次函数,这里特别强调k ≠0,如果0k =,则解析式就是一个常值函数,不再是一次函数,而b 则可取零也可以不取零。
当k =0且0b =时,则解析式变成0y =,它是特殊的常值函数,其图像即为x 轴,若k =0,0b ≠时,它是常值函数,其图像是一条平行于x 轴的直线。
一般地,对于任意一个常值函数,它的图像是一条垂直于x 轴的直线。
正比例函数的特殊的一次函数。
2.待定系数法求一次函数解析式 求一次函数解析式的一般步骤:(1) 代入将两个变量 x 、y 的两组对应值分别代入(0)y kx b k =+≠中,注意代入字母的值不要混淆,若这一步出错,后面的计算是徒劳的。
(2) 解这个二元一次方程组,得k 、b 的值。
(3) 将k 、b 代入(0)y kx b k =+≠中,求得一次函数解析式。
需要注意的是,经过两个点可以确定一条直线,但是只有当这两个点的横坐标不相等、纵坐标也不相等时,才能确定一个一次函数图像。
3. 一次函数的定义域每一个函数都有它的定义域,一次函数的定义域是一切实数,也可以是部分实数。
用解析法给出一次函数时,如果对函数的定义域不加以说明,那么就意味着定义域由解析式确定为一切实数,如果给出的这个一次函数的定义域不是一切实数,那么必须指明。
【典型例题】1. 一次函数的概念【例1】下列解析式中,哪些是一次函数?① 15y x=+ ②y kx b =+ ③2(1)y k x b =++ ④163s t =+⑤8h t = ⑥1x y x+= ⑦3m n = ⑧32q m =-【分析】可以根据一次函数的定义来区分。
【解答】一次函数有③、⑤、⑦、⑧。
【点评】②、③中,为什么③是一次函数而②不是呢,因为一次函数(0)y kx b k =+≠电脑定义中k 必须不等于零,②中没有对k 作说明,如果k 等于零,则不能成为一次函数,而在③中,由于一次项系数是21k +,而不管k 取何值,21k +均不等于零;本题要注意抓住一次函数定义的实质。
一次函数

一次函数知识点聚焦一、函数的概念定义:在某一变化过程中,可以取不同数值的量,叫做变量,例如x 和y ,对于x 的每一个值,y 都有惟一..的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 二、一次函数概念:1.一次函数的概念:一般地,如果y =kx +b(k 、b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =0时,一次函数y =kx +b 就成为y =kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数.由定义知:y 是x 的一次函数⇔它的解析式是y =kx +b ,其中k 、b 是常数,且k ≠0.2.一次函数解析式y =kx +b(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)常数项b 可为任意实数.3.正比例函数解析式y =kx(k ≠0)的结构特征:(1)k ≠0;(2)x 的次数是1;(3)没有常数项或者说常数项为0.4. 正比例函数是一次函数,但一次函数y =kx +b(k ≠0)不一定是正比例函数,只有当b=0时才是正比例函数。
三、一次函数的图像1.一次函数y =kx +b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线.2.正比例函数y =kx(k ≠0)的图象是经过点(0,0)和(1,k)的一条直线.注意:画一次函数的图像,只需要过图像上两点作直线即可,一般取(0,b )、(-b k,0)两点。
四、一次函数图像的性质1. 一次函数y =kx +b ,当k >0时,y 随x 的增大而增大,图象一定经过第一、三象限;当k <0时,y 随x 的增大而减小,图象一定经过第二、四象限.b>0时,直线交y 轴正半轴,b<0时,直线交y 轴负半轴。
2.一次函数y=kx+b(k ≠0)的图象是经过点(0,b)且平行于直线y=kx (k ≠0)的一条直线3. 平移规律在原有函数的基础上“k 值正右移,负左移;b 值正上移,负下移”。
5.3 一次函数(答案版)

第5章一次函数一次函数知识提要1.一次函数与正比例函数:一般地,函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数.当b=0时,一次函数y=kx+b就成为y=kx,叫做正比例函数,常数k叫做比例系数.2.待定系数法:一般地,已知一次函数的自变量与函数的两对对应值,可以按以下步骤求这个一次函数的表达式:(1)设所求的一次函数表达式为y=kx+b,其中k,b是待确定的常数,k≠0.(2)把两对已知的自变量与函数的对应值分别代入y=kx+b,得到关于k,b的二元一次方程组.(3)解这个关于k,b的二元一次方程组,求出k,b的值.(4)把求得的k,b的值代入y=kx+b,就得到所求的一次函数表达式.典型例题例1:已知函数y=(m-4)x+m2-16.(1)m为何值时,这个函数是一次函数;(2)m为何值时,这个函数是正比例函数.解:(1)根据一次函数的定义,得m-4≠0,∴m≠4时,这个函数是一次函数;(2)根据正比例函数的定义,得m-4≠0且m2-16=0,∴m=-4时,这个函数是正比例函数.例2:设有三个变量x,y,z,其中y是x的正比例函数,z是y的正比例函数.(1)求证:z是x的正比例函数;(2)如果z=1时,x=4,求出z关于x的函数关系式.解:(1)证明:设y =kx (k ≠0),z =ny (n ≠0),则有z =knx ,故z 是x 的正比例函数;(2)将z =1,x =4代入z =knx ,得1=4kn ,解得kn =14,则z =14x .一、选择题 1.下列y 关于x 的函数中,是正比例函数的为( C )A .y =x 2B .y =2xC .y =x 2D .y =x +122. 下列函数(1)y =πx ;(2)y =2x -1;(3)y =22-3x ;(4)y =x 2-1中,是一次函数的有( B )A .4个B .3个C .2个D .1个【解析】B 函数(1)y =πx ;(2)y =2x -1;(3)y =22-3x 符合一次函数的一般形式,故(1),(2),(3)正确;(4)y =x 2-1不符合一次函数的一般形式,故(4)不符合题意.3. 已知函数y =(k -1)xk 2+1为一次函数,则k 的值为( C )A .k ≠±1B .k =±1C .k =-1D .k =1【解析】C 根据一次函数的定义,得k 2=1且k -1≠0,解得k =±1且k ≠1,∴k =-1.4. 若y=x+2-3b 是正比例函数,则b 的值是 ( B )A . 0B .32C .-32D .-23 【解析】 B 由正比例函数的定义可得:2-3b=0,解得:b=32. 5. 某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x 升.如果每升汽油2.6元,求油箱内汽油的总价y (元)与x (升)之间的函数关系是(D )A .y=2.6x (0≤x≤20)B .y=2.6x+26(0<x <30)C .y=2.6x+10(0≤x <20)D .y=2.6x+26(0≤x≤20)【解析】D 依题意有y=(10+x )×2.6=2.6x+26,0≤汽油总量≤30,则0≤x≤20.6. 已知y =(m -3)x|m|-2+1是一次函数,则m 的值是( A )A .-3B .3C .±3D .±2练习【解析】A 由y =(m -3)x|m|-2+1是一次函数,得⎩⎪⎨⎪⎧|m|-2=1,m -3≠0,解得m =-3. 7. 某水池现有水100m 3,每小时进水20m 3,排水15m 3,t 小时后水池中的水为Qm 3,它的解析式为( C )A .Q=100+20tB .Q=100-15tC .Q=100+5tD .Q=100-5t【解析】C 由题意得:Q=100+20t -15t=100+5t8. 小林购买一部手机想入网,中国联通130网收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免,小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3h 以上,则小林应选择(A )更省钱.A .中国联通B .“神州行”储值卡C .一样D .无法确定【解析】A 设通话时间为x 分钟,则联通收费为(0.4x+36)元,神州行收费为0.6x 元, 3h=180分钟,得通话时间在3小时时联通收费为0.4×180+36=108元,神州行收费为0.6×180=108元,即通话时间在3小时时,收费一样.而在3h 以上时0.4x+36<0.6x ,故选择联通.9.一个贮水池中贮水100 m 3,若每分钟排水2 m 3,则排水时间t (单位:min)与排水量y (单位:m 3)之间的函数关系式为( A )A .y =2tB .y =100+2tC .y =100-2tD .y =1002t【解析】A ∴排水速度是每分钟排水2 m 3,∴排水量y 随排水时间t 的变化关系式为y =2t .二、填空题1.已知函数y=(k+2)x+k 2﹣4,当k≠-【解析】根据一次函数定义得,k+2≠0,解得k≠-2.2. (凉山州中考)已知函数y =2x2a +3+a +2b 是正比例函数,则a =_-1_____,b =21____. 3. 设0<k <1,关于x 的一次函数y=kx+ k1 (1-x),当1≤x≤2时y 的最大值是k______. 【解析】原式可化为:y=(k -k 1 )x+ k 1,∴0<k <1,∴k - k1<0,∴y 随x 的增大而减小,∴1≤x≤2,∴当x=1时,y 最大=k .故答案为:k .4. 从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t 分钟(t >3)应交电话费(0.1t -0.1)______元.【解析】依题意得,打电话t 分钟(t >3)应交电话费为:0.1(t -3)+0.2=(0.1t -0.1)元5. 小英存入银行2000元人民币,年利率为x ,两年到期时,本息和为y 元,则y 与x 之间的函数关系式是______,若年利率为7%,两年到期时的本息和为______元. 【解析】∴本息和=本金×(1+利率),∴一年后的本息和为:2000×(1+x ),两年后本息和y=2000×(1+x )(1+x )=2000(1+x )2,当x=7%时,y=2289.8元.故答案为:y=2000(1+x )2,2289.8.6. 某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系________.【解析】⎩⎨⎧>+≤≤=)20(10020)200(25x x x x y 根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y 与购书数x 的函数关系式,再进行整理即可得出答案: 根据题意得:⎩⎨⎧>-⨯+⨯≤≤=)20)(20250.82052)200(25x x x x y (,即⎩⎨⎧>+≤≤=)20(10020)200(25x x x x y 。
一次函数难题经典例题及答案

一次函数难题经典例题及答案知识点一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b ……①和y2=kx2+b ……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。
s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
第12讲一次函数

考点知识精讲
考点三 一次函数图象的性质
一次函数y=kx+b,当k>0时,y随x的增大而 增大 ,图象一定经 过第 一、三 象限;当k<0时,y随x的 增大 而减小,图象一定经过第 二、四 __________象限. 考点四 一次函数的应用
用一次函数解决实际问题的一般步骤为:①设定实际问题中的变量 ;②建立一次函数关系式;③确定自变量的取值范围;④利用函数性质解 决问题;⑤答.
第12讲 一次函数
考点知识精讲
考点一 一次函数的定义
一般地,如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b= 0 时,一次函数y=kx+b就成为 y=kx(k是常数,
正比例函数. k≠0),这时,y叫做x的______________. 1.由定义知:y是x的一次函数⇔它的解析式是 y=kx+b ,其中k 、b是常数,且k≠0. 2.一次函数解析式y=kx+b(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是1;(3)常数项b可为任意实数. 3.正比例函数解析式y=kx(k≠0)的结构特征: (1)k ≠ 0;(2)x的次数是 1 ;(3)没有常数项或者说常数项为 0 .
6.如右图所示,直线l过A、B两点,A(0,-1),
B(1,0),则直线l的解析式为
y=x-1 .
举
一
反
三
7.小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山 顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路
长的2倍.小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为180
b =5 , 2 解得 k=1, 4
1 5 所以 y 乙= x+ . 4 2
专题12 一次函数(知识点串讲)(解析版)

专题12 一次函数知识网络重难突破一. 一次函数的认识一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.正比例函数也是一次函数,是一次函数的特殊形式.典例1.(2018春•青龙县期末)下列关系式中:y=﹣3x+1、y、y=x2+1、y x,y是x的一次函数的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:函数y=﹣3x+1,y,y=x2+1,y x中,是一次函数的是:y=﹣3x+1、y x,共2个.故选:B.【点睛】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断得出答案.本题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.典例2.(2018春•颍东区期末)已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1【答案】B【解析】解:由题意可知:解得:m =﹣1 故选:B .典例3.(2018秋•浦东新区期末)已知函数y =(m ﹣1)x+m 2﹣1是正比例函数,则m =____. 【答案】﹣1【解析】解:由正比例函数的定义可得:m 2﹣1=0,且m ﹣1≠0, 解得:m =﹣1, 故答案为:﹣1.【点睛】由正比例函数的定义可得m 2﹣1=0,且m ﹣1≠0.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y =kx 的定义条件是:k 为常数且k ≠0,自变量次数为1. 典例4.(2017秋•沙坪坝区校级期末)若函数y =(k ﹣2)x |k|﹣1是正比例函数,则k =____.【答案】-2【解析】解:∵函数y =(k ﹣2)x |k|﹣1是正比例函数,∴,解得k =﹣2, 故答案为:﹣2.【点睛】根据正比例函数的定义可得|k|﹣1=1,且k ﹣2≠0,再解方程即可.此题主要考查了正比例函数的定义,关键是掌握形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数.二. 一次函数的图象与性质1.一次函数y =kx +b(k≠0)的图象是一条经过点(0,b )、()的直线,一次函数y =kx +b 的图象也称为直线y =kx +b. 2.一次函数y =kx +b 的性质(1)增减性⎩⎪⎨⎪⎧k >0,y 随x 的增大而增大k <0,y 随x 的增大而减小(2)图象所过象限⎩⎪⎨⎪⎧k >0,b >0:第一、二、三象限k >0,b <0:第一、三、四象限k <0,b >0:第一、二、四象限k <0,b <0:第二、三、四象限(3)倾斜度⎩⎪⎨⎪⎧|k|越大,直线越接近y 轴|k|越小,直线越远离y 轴典例1.(2017秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为( )A .a <b <cB .c <a <bC .c <b <aD .a <c <b【答案】D【解析】解:根据三个函数图象所在象限可得a <0,b >0,c >0, 再根据直线越陡,|k|越大,则b >c . 则b >c >a , 即a <c <b . 故选:D .【点睛】根据直线所过象限可得a <0,b >0,c >0,再根据直线陡的情况可判断出b >c ,进而得到答案.此题主要考查了正比例函数图象,关键是掌握:当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小.同时注意直线越陡,则|k|越大典例2 .(2018秋•雅安期末)直线l 1:y =kx+b 与直线l 2:y =bx+k 在同一坐标系中的大致位置是( )A .B .C.D.【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A、由图可得,y1=kx+b中,k<0,b<0,y2=bx+k中,b>0,k<0,b、k的取值矛盾,故本选项错误;B、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b>0,k>0,b的取值相矛盾,故本选项错误;C、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k>0,k的取值相一致,故本选项正确;D、由图可得,y1=kx+b中,k>0,b<0,y2=bx+k中,b<0,k<0,k的取值相矛盾,故本选项错误;故选:C.【点睛】根据一次函数的系数与图象的关系依次分析选项,找k、b取值范围相同的即得答案.本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.典例3.(2018春•武昌区期末)已知一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,则m的取值范围是()A.m<4 B.m<4 C.m≤4 D.m【答案】B【解析】解:根据题意得,解得m<4.故选:B.【点睛】依据一次函数y=(m﹣4)x+2m+1的图象不经过第三象限,可得函数表达式中一次项系数小于0,常数项不小于0,进而得到m的取值范围.本题考查了一次函数与系数的关系:对于一次函数y =kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.典例4.(2018春•德阳期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C【解析】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.【点睛】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.典例5.(2018春•大余县期末)下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn <0)图象的是()A.B.C.D.【答案】B【解析】解:A、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;B、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项正确;C、根据图中正比例函数y=nx的图象知,n<0;∵m,n是常数,且mn<0,∴m>0,∴一次函数y=mx+n的图象经过第一、三、四象限;故本选项错误;D、根据图中正比例函数y=nx的图象知,n>0;∵m,n是常数,且mn<0,∴m<0,∴一次函数y=mx+n的图象经过第一、二、四象限;故本选项错误;故选:B.【点睛】根据正比例函数的图象确定n的符号,然后由“两数相乘,同号得正,异号得负”判断出n的符号,再根据一次函数的性质进行判断.本题综合考查了正比例函数、一次函数图象与系数的关系.一次函数y=kx+b(k≠0)的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.典例6.(2018春•镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【答案】见解析【解析】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m.【点睛】(1)根据函数图象经过原点可得m﹣3=0,且2m+1≠0,再解即可;(2)根据题意可得m﹣3=﹣2,解方程即可;(3)根据两函数图象平行,k值相等可得2m+1=3;(4)根据一次函数的性质可得2m+1<0,再解不等式即可.此题主要考查了一次函数的性质,关键是掌握与y轴的交点就是y=kx+b中,b的值,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.典例7.(2018春•确山县期末)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是______;(2)列表,找出y与x的几组对应值.其中,b=___;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:__________.【答案】见解析【解析】解:(1)∵x无论为何值,函数均有意义,∴x为任意实数.故答案为:任意实数;(2)∵当x=﹣1时,y=|﹣1﹣1|=2,∴b=2.故答案为:2;(3)如图所示;(4)由函数图象可知,函数的最小值为0.故答案为:函数的最小值为0(答案不唯一).【点睛】(1)根据一次函数的性质即可得出结论;(2)把x=﹣1代入函数解析式,求出y的值即可;(3)在坐标系内描出各点,再顺次连接即可;(4)根据函数图象即可得出结论.本题考查的是一次函数的性质,根据题意画出函数图象,利用数形结合求解是解答此题的关键.三. 待定系数法求一次函数解析式用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.用待定系数法求一次函数解析式的步骤如下:①设一次函数解析y=kx+b(k≠0);②代入两个已知点的坐标,得到关于k、b的方程组;③解方程组得到k、b的值;④写出一次函数的解析式.若一次函数为正比例函数,则b=0,只需代入一个点的坐标,求出系数k即可.典例1.(2018秋•蚌埠期末)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2 B.﹣2 C.3 D.﹣3【答案】A【解析】解:∵y与(x﹣2)成正比例,∴设y=k(x﹣2),由题意得,﹣2=k(1﹣2),解得,k=2,则y=2x﹣4,当x=3时,y=2×3﹣4=2,故选:A.【点睛】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.典例2.(2018春•泸县期末)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.【答案】y x或y x【解析】解:直线l的解析式为:y=kx,对于直线y=x+4的解析式,当x=0时,y=4,y=0时,x=﹣4,∴A(﹣4,0)、B(0,4),∴OA=4,OB=4,∴S△AOB4×4=8,当直线l把△AOB的面积分为S△AOC:S△BOC=2:3时,S△AOC,作CF⊥OA于F,CE⊥OB于E,∴AO•CF,即4×CF,∴CF.当y时,x,则k,解得,k,∴直线l的解析式为y x;当直线l把△ABO的面积分为S△AOC:S△BOC=3:2时,同理求得CF,解得直线l的解析式为y x.故答案为y x或y x.【点睛】根据直线y=x+4的解析式可求出A、B两点的坐标,当直线l把△ABO的面积分为S△AOC:S=2:3时,作CF⊥OA于F,CE⊥OB于E,可分别求出△AOB与△AOC的面积,再根据其面积△BOC公式可求出两直线交点的坐标,从而求出其解析式;当直线l把△ABO的面积分为S△AOC:S△BOC=2:3时,同(1).本题考查的是待定系数法求一次函数的解析式,掌握待定系数法求一次函数解析式的一般步骤是解题的关键,涉及到三角形的面积公式及分类讨论的方法.典例3.(2018春•茌平县期末)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【答案】见解析【解析】解:(1)设y与x的函数关系式为y=kx+b,把A(﹣1,﹣1)B(1,﹣3)带入得:﹣k+b=﹣1,k+b=﹣3,解得:k=﹣1,b=﹣2,∴一次函数表达式为:y=﹣x﹣2;(2)设直线与x轴交于C,与y轴交于D,把y=0代入y=﹣x﹣2,解得x=﹣2,∴OC=2,把x=0代入y=﹣x﹣2,解得:y=﹣2,∴OD=2,∴S△COD OC×OD2×2=2;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,由对称知:A1(﹣1,1),设直线A1B解析式为y=ax+c,得﹣k+b=1,k+b=﹣3,解得:k=﹣2,b=﹣1,∴y=﹣2x﹣1,另y=0得﹣2x﹣1=0,解得:x,∴P(,0).【点睛】(1)设y=kx+b,把A与B坐标代入求出k与b的值,即可确定出一次函数解析式;(2)分别令x与y为0求出y与x的值,确定出OC与OD的长,即可求出三角形COD面积;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,利用待定系数法求出直线A1B 解析式,确定出P点坐标即可.此题考查了待定系数法求一次函数解析式,一次函数图象上的点的坐标特征,以及轴对称﹣最短线路问题,熟练掌握待定系数法是解本题的关键.典例4.(2018春•郾城区期末)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.【答案】见解析【解析】解:(1)∵点A(3,0),AB=5∴BO 4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴BC×AO=9∴BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y x﹣2.【点睛】(1)先根据勾股定理求得BO的长,再写出点B的坐标;(2)先根据△ABC的面积为9,求得CO的长,再根据点A、C的坐标,运用待定系数法求得直线l2的解析式.本题主要考查了两条直线的交点问题,解题的关键是掌握勾股定理以及待定系数法.注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,反之也成立.四. 一次函数的图象变换1.一次函数平移的方法:左加右减,上加下减.2.一次函数图象的常见对称变换:对于直线y=kx+b(k≠0,且k,b为常数),①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b(关于x轴对称,横坐标不变,纵坐标是原来的相反数);②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b(关于y轴对称,纵坐标不变,横坐标是原来的相反数);③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b(关于原点对称,横、纵坐标都变为原来的相反数).典例1.(2018春•永清县期末)若一次函数y=kx+b(x≠0)(k≠0)与一次函数y的图象关于x 轴对称,则一次函数y=kx+b的解析式为_____.【答案】y x﹣1【解析】解:∵y=kx+b与y x+1关于x轴对称,∴b=﹣1,∴k,∴y x﹣1.故答案为:y x﹣1.【点睛】根据一次函数y=kx+b(k≠0)与函数y x+1的图象关于x轴对称,解答即可.本题考查的是一次函数的图象与几何变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.典例2.(2018春•松滋市期末)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣5【答案】B【解析】解:在y=x﹣3(x>1)中,令x=2,则y=﹣1,若直线y=2x+b经过(2,﹣1),则﹣1=4+b,解得b=﹣5;在y=x﹣3(x>1)中,令x=1,则y=﹣2,点(1,﹣2)关于x=2对称的点为(3,﹣2),若直线y=2x+b经过(3,﹣2),则﹣2=6+b,解得b=﹣8,∵关于x的函数y=2x+b的图象与此图象有两个公共点,∴b的取值范围是﹣8<b<﹣5,故选:B.【点睛】根据直线y=2x+b经过(2,﹣1),可得b=﹣5;根据直线y=2x+b经过(3,﹣2),即可得到b=﹣8,依据关于x的函数y=2x+b的图象与此图象有两个公共点,即可得出b的取值范围是﹣8<b<﹣5.解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y=kx+b.巩固练习1.(2017秋•简阳市期末)下列函数关系中表示一次函数的有()①y=2x+1 ②③④s=60t⑤y=100﹣25x.A.1个B.2个C.3个D.4个【答案】D【解析】解:①y=2x+1是一次函数;②y自变量次数不为1,不是一次函数;③y x是一次函数;④s=60t是正比例函数,也是一次函数;⑤y=100﹣25x是一次函数.故选:D.2.(2018春•柳林县期末)已知一次函数y=kx+b,若k•b<0,则该函数的图象可能()A.B.C.D.【答案】A【解析】解:∵在一次函数y=kx+b中k•b<0,∴y=kx+b的图象在一、三、四象限或一、二、四象限.故选:A.3.(2018春•德阳期末)对于函数y下列说法正确的是()A.当x<3时,y随x的增大而增大B.当x>3时,y随x的增大而减小C.当x<0时,y随x的增大而减小D.当x=4时,y=﹣2【答案】C【解析】解:A、当x<3时,y随x的增大而减小,错误;B、当x>3时,y随x的增大而增大,错误;C、当x<0时,y随x的增大而减小,正确;D、当x=4时,y=1,错误;故选:C.4.(2018春•遵义期末)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.【答案】B【解析】解:分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选:B.5.(2018春•诸城市期末)若一次函数y=(3﹣m)x+5的函数值y随x的增大而减小,则()A.m>0 B.m<0 C.m>3 D.m<3【答案】C【解析】解:根据题意得3﹣m<0,解得m>3.故选:C.6.(2017秋•蜀山区期末)已知n>m,在同一平面直角坐标系内画出一次函数y=nx+m与y=mx+n的图象,则有一组m,n的取值,使得下列4个图中的一个为正确的是()A.B.C.D.【答案】B【解析】解:A、m<0,n>0,则y=mx+n过第一、二、四象限,y=nx+m经过第一、三、四象限;所以A错误;B、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以B正确;C、两直线与x轴的交点坐标为(,0)和(,0),所以C错误;D、m>0,n>0,则y=mx+n过第一、二、三象限,y=nx+m经过第一、二、三象限;所以D错误.故选:B.7.(2018春•繁昌县期末)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是___.【答案】y x【解析】解:设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x 轴于点C,如图所示.∵正方形的边长为1,∴OB=3.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB,∴OC,∴点A的坐标为(,3).设直线l的解析式为y=kx,∵点A(,3)在直线l上,∴3k,解得:k,∴直线l解析式为y x.故答案为:y x.8.(2018春•营山县期末)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B 的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为()A.80 B.88 C.96 D.100【答案】B【解析】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.9.(2018春•廉江市期末)已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(,1)是否在这个函数的图象上,为什么?12 【答案】见解析【解析】解:(1)由图可知点A(﹣1,2),代入y=kx得:﹣k=2,k=﹣2,则正比例函数解析式为y=﹣2x;(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,解得:m=﹣1;(3)当x时,y=﹣2×()=3≠1,所以点P不在这个函数图象上.。
一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。
本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。
一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。
在这个函数中,x 的次数为 1,因此称为一次函数。
其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。
二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。
在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。
当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。
2.截距截距是指函数图像与坐标轴的交点。
在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。
当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。
3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。
当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。
三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。
解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。
2.已知函数 y=-x+7,求当 x=5 时的函数值。
解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。
3.已知函数 y=3x-2,求函数的斜率。
解:函数的斜率是 3。
初中数学一次函数讲义

(0,0)的一条直线;一次函数 y=kx+b 与 x 轴交点坐标为
,与 y 轴交
点坐标为(0,b)。 (3)根据几何知识:经过两点能画出一条直线,并且只能画一条直线。即两点确定一
条直线,所以画 一次函数的图象时,只要先描出两点,再连成直线即可。
3、一次函数性质及图象特征 一次函数的性质表达了函数的变化规律及图象的变化趋势,函数的性质是由自变量的系
一次 函数
y=kx+b(k≠0)
k、b
的符 b>0
号
k>0 b<0
b=0
b>0
k<0
b<0
b=0
图象
增减 性
y 随 x 的增大而增大
y 随 x 的增大而减少
一次函数与一元一次不等式(或方程) 一次函数 y=kx+b(k≠0)的图象是直线,当 kx+b>0 时,表示图象在 x 轴上方的部分;
当 kx+b=0 时,表示直线与 x 轴的交点;当 kx+b<0 时,表示图象在 x 轴下方的部分。 事实上,既可以运用函数图象解不等式和方程,也可以运用解不等式帮助研究函数问题,
函数不一定是正比例函数。
2、用待定系数法求解一次函数解析式 先设出式子中的未知系数,再根据已知条件列出方程(组)求出未知系数,从而得到所
求结果的方法,叫做待定系数法。待定系数法是一种很重要的数学方法,是求函数解析式常 用的方法。
待定系数法的基本思想是方程思想,就是把具有某种确定关系的数学问题,通过引入一 些待定的系数,转化为方程(组)来解决,题目中含有几个待定的系数,一般就需列出几个 含有待定系数的方程,本单元构造方程一般有下列几种情况:
解:设 y=kx+b,根据题意,得 20=b……①,44=3k+b……②。 将①式代入②式,得 k=8,所以,y 与 x 之间的关系式为 y=8x+20。 当 y=92 时,92=8x+20,解得 x=9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.3.1一次函数的定义一.选择题(共8小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.下列函数中,一次函数是()A.y=8x2B.y=x+1 C.;D.3.在地表以下不太深的地方,温度y(℃)与所处的深度x(km)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是()A.正比例函数B.反比例函数C.二次函数D.一次函数4.下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x25.若y=是一次函数,则m的值为()A.0 B.﹣1 C.0或﹣1 D.±16.如果y=(m﹣1)x2﹣m2+3是一次函数,那么m的值是()A.1 B.﹣1 C.+1 D.±7.函数,一次函数和正比例函数之间的包含关系是()A. B.C.D.8.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个二.填空题(共7小题)9.已知关于x的函数y=(m﹣5)x+m+1是一次函数,则m=_________,直线y=(m﹣5)x+m+1不经过第_________象限.10.一般的,如果两个变量x与y之间的函数关系式可以表示为_________的形式,那么称y是x的一次函数.当_________时,y是x的正比例函数.11.若y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,则a﹣b=_________.12.若函数是正比例函数,则常数m的值是_________.13.已知函数y=(m﹣1)+1是一次函数,则m=_________.14.已知函数y=3x+1,当自变量增加3时,相应的函数值增加_________.15.当x=_________时,函数y=(m﹣2)x+(m﹣2)x+1是一次函数.三.解答题(共6小题)16.当m是何值时,函数y=(m+2)x+m+1是:(1)一次函数;(2)是正比例函数.17.已知函数y=(2﹣m)x+2m﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?18.试将函数3x+2y=1改成y=kx+b的形式,并指出k和b的值.19.已知一次函数y=(5m﹣3)x2﹣n+m+n,①求m、n的值和取值范围;②若函数经过原点,求m、n的值.20.已知函数是一次函数,求k和b的取值范围.21.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?17.3.1一次函数的定义参考答案与试题解析一.选择题(共8小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A. 1 B.2 C.3 D. 4考点:一次函数的定义.分析:根据一次函数的定义条件进行逐一分析即可.解答:解:①y=x是一次函数,故①符合题意;②y=是一次函数,故②符合题意;③y=自变量次数不为1,故不是一次函数,故③不符合题意;④y=2x+1是一次函数,故④符合题意.综上所述,是一次函数的个数有3个,故选:C.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.下列函数中,一次函数是()A.y=8x2B.y=x+1 C.;D.考点:一次函数的定义.分析:一次函数y=kx+b的定义条件逐一分析即可.解答:解:A、自变量次数不为1;B、是一次函数;C、不符合一次函数的形式;D、分母中含有未知数不是一次函数.故选B.点评:解题关键是掌握一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.3.在地表以下不太深的地方,温度y(℃)与所处的深度x(km)之间的关系可以近似用关系式y=35x+20表示,这个关系式符合的数学模型是()A.正比例函数B.反比例函数C.二次函数D.一次函数考点:一次函数的定义.分析:根据一次函数的定义解答即可.解答:解:∵关系式y=35x+20符合一次函数的形式,∴这个关系式符合的数学模型是一次函数.故选D.点评:本题考查一次函数的定义,即形如y=kx+b,(k≠0,k、b为常数)的函数叫一次函数.4下列关于x的函数中,是一次函数的是()A.y=3(x﹣1)2+1 B.y=x+C.y=﹣x D.y=(x+3)2﹣x2考点:一次函数的定义.分析:化简后,看是否符合y=kx+b(k≠0)的形式即可.解答:解:A、y=3(x﹣1)2+1自变量次数不为1,故不是一次函数,不符合题意;B、y=x+不符合一次函数的一般形式,不符合题意;C、y=﹣x不符合一次函数的一般形式,不符合题意;D、化简后可得y=6x+9,符合一次函数的一般形式,符合题意;故选D.点评:掌握一次函数的一般形式是关键,注意判断函数应化简后再判断.5.若y=是一次函数,则m的值为()A.0 B.﹣1 C.0或﹣1 D.±1考点:一次函数的定义.分析:根据形如y=kx+b (k、b为常数,k≠0)是一次函数,可得答案.解答:解:由y=是一次函数,得,解得m=﹣1,故选:B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.6.如果y=(m﹣1)x2﹣m2+3是一次函数,那么m的值是()A. 1 B.﹣1 C.+1 D.±考点:一次函数的定义.分析:根据一次函数的一次项的系数不等于零,可得不等式,根据解不等式,可得答案.解答:解:y=(m﹣1)x2﹣m2+3是一次函数,得.解得m=1(不符合题意要舍去),m=﹣1,故选:B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.7.函数,一次函数和正比例函数之间的包含关系是()A.B.C.D.考点:一次函数的定义.专题:数形结合.分析:根据函数、正比例函数及一次函数的定义解答.解答:解:函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量.根据函数的定义知,一次函数和正比例函数都属于函数的范畴;一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.当b=0时,则成为正比例函数y=kx;所以,正比例函数是一次函数的特殊形式;故选A.点评:本题主要考查了一次函数、正比例函数的定义.解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.8.下列函数关系式:①y=﹣x;②y=2x+11;③y=x2+x+1;④.其中一次函数的个数是()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义解答即可.解答:解:①y=﹣x是一次函数;②y=2x+11是一次函数;③y=x2+x+1是二次函数;④是反比例函数.故选B.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.二.填空题(共7小题)9.已知关于x的函数y=(m﹣5)x+m+1是一次函数,则m=﹣5,直线y=(m﹣5)x+m+1不经过第一象限.考点:一次函数的定义;一次函数图象与系数的关系.分析:一次函数的系数m﹣5≠0,自变量x的次数m2﹣24=1,据此解答m、n的值.解答:解:(1)m﹣5≠0,m≠5;m2﹣24=1m=±5,所以m=﹣5;(2)∵m=﹣5,∴y=﹣10x﹣4,﹣10<0,﹣4<0,图象过二、三、四象限,∴不经过第一象限.故答案为:﹣5,一.点评:本题主要考查了一次函数的定义:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.还考查了一次函数的图象与性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x 的增大而减小.10.一般的,如果两个变量x与y之间的函数关系式可以表示为y=kx+b(k≠0,k、b是常数)的形式,那么称y是x的一次函数.当b=0时,y是x的正比例函数.考点:一次函数的定义;正比例函数的定义.分析:根据一次函数的定义和正比例函数的定义解答.解答:解:一般的,如果两个变量x与y之间的函数关系式可以表示为y=kx+b(k≠0,k、b是常数)的形式,那么称y是x的一次函数.当b=0时,y是x的正比例函数.故答案为:y=kx+b(k≠0,k、b是常数);b=0.点评:本题考查了一次函数的定义,是基础题,熟记概念是解题的关键.11.若y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,则a﹣b=﹣3.考点:正比例函数的定义.分析:根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,即可列出有关a或b的方程,求出a、b值.解答:解:∵y=(a2﹣4)x2+(a+2)x+5﹣b是正比例函数,∴a2﹣4=0,5﹣b=0,且a+2≠0,解得a=2,b=5,则a﹣b=2﹣5=﹣3.故答案是:﹣3.点评:本题主要考查了正比例函数的定义,难度不大,注意基础概念的掌握.12.若函数是正比例函数,则常数m的值是﹣3.考点:正比例函数的定义.专题:待定系数法.分析:正比例函数的一般式为y=kx,k≠0.根据题意即可完成题目要求.解答:解:依题意得:,解得:m=﹣3.点评:本题考查了正比例函数的一般形式及其性质.13.已知函数y=(m﹣1)+1是一次函数,则m=﹣1.考点:一次函数的定义.专题:计算题.分析:根据一次函数的定义,令m2=1,m﹣1≠0即可解答.解答:若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).因而有m2=1,解得:m=±1,又m﹣1≠0,∴m=﹣1.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.14.已知函数y=3x+1,当自变量增加3时,相应的函数值增加9.考点:一次函数的定义.专题:计算题.分析:把x+3代入函数y=3x+1计算即可.解答:解:当自变量增加3时,y=3(x+3)+1=3x+10,则相应的函数值增加9.点评:本题主要考查了一次函数的增值问题,注意细心运算即可.15.当x=﹣2或时,函数y=(m﹣2)x+(m﹣2)x+1是一次函数.考点:一次函数的定义.分析:此题要分两种情况进行讨论:①m2﹣3=1且m﹣2≠0;②m2﹣3=0分别算出m的值即可.解答:解:由题意得:①m2﹣3=1,解得:m=±2,∵m﹣2≠0,∴m=﹣2,②m2﹣3=0,解得:m=,故答案为:﹣2或.点评:此题主要考查了一次函数的定义,关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.三.解答题(共6小题)16.当m是何值时,函数y=(m+2)x+m+1是:(1)一次函数;(2)是正比例函数.考点:一次函数的定义;正比例函数的定义.分析:(1)根据一次函数定义y=kx+b(k≠0)可得m+2≠0,再解即可.(2)根据正比例函数y=kx(k≠0)可得m+1=0,m+2≠0,再解即可.解答:解:(1)由题意得:m+2≠0,解得:m≠﹣2;(2)由题意得:m+1=0,m+2≠0,解得:m=﹣1.点评:此题主要考查了一次函数,关键是掌握一次函数的形式:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.17.已知函数y=(2﹣m)x+2m﹣3.求当m为何值时.(1)此函数为一次函数?(2)此函数为正比例函数?考点:一次函数的定义;正比例函数的定义.分析:(1)根据形如y=kx+b (k≠0)的形式是一次函数,可得答案;(2)根据形如y=kx (k≠0)的形式是正比例函数,可得答案.解答:解:(1)2﹣m≠0,即m≠2时,y=(2﹣m)x+2m﹣3是一次函数;(2)2m﹣3=0,且2﹣m≠0,即m=时,y=(2﹣m)x+2m﹣3是正比例函数.点评:本题考查了一次函数的定义,利用了一次函数的定义.18.试将函数3x+2y=1改成y=kx+b的形式,并指出k和b的值.考点:一次函数的定义.分析:把3x+2y=1通过移项、化系数为1化为y=kx+b的形式,对比求出k、b的数值即可.解答:解:由3x+2y=1,得2y=﹣3x+1,化系数为1,得y=﹣x+,则k=﹣,b=.点评:本题考查了一次函数的定义.任何二元一次方程都可以化为y=kx+b(k、b为常数,且k≠0)的形式,且以二元一次方程的解为坐标的所有点组成的图象与相应的一次函数的图象是相同的.19.已知一次函数y=(5m﹣3)x2﹣n+m+n,①求m、n的值和取值范围;②若函数经过原点,求m、n的值.考点:一次函数的定义;一次函数图象上点的坐标特征.分析:①根据一次函数的定义,x的次数等于1,且x的系数不等于0即可求解;②把(0,0)代入函数解析式即可求解.解答:解:①根据题意得:2﹣n=1,且5m﹣3≠0,解得:n=1且m≠;②函数的解析式是y=(5m﹣1)x+m+1,把(0,0)代入解析式得:m+1=0,解得:m=﹣1,则m=﹣1,n=1.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.20.已知函数是一次函数,求k和b的取值范围.考点:一次函数的定义.专题:计算题.分析:若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量),因而函数是一次函数的条件是k2﹣3=1,且k﹣2≠0.解答:解:根据题意得:k2﹣3=1,且k﹣2≠0,∴k=﹣2或k=2(舍去)∴k=﹣2.b是任意的常数.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.21.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?考点:一次函数的定义;正比例函数的定义.分析:(1)根据一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,据此求解即可;(2)根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,据此求解即可.解答:解:(1)根据一次函数的定义,得:2﹣|m|=1,解得m=±1.又∵m+1≠0即m≠﹣1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,解得m=±1,n=﹣4,又∵m+1≠0即m≠﹣1,∴当m=1,n=﹣4时,这个函数是正比例函数.点评:本题主要考查了一次函数与正比例函数的定义,比较简单.一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.。