@计量经济学主要公式
计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。
方差:变量的每个样本与均值的距离大小的概念。
标准差:对方差开根号就是标准差。
数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。
假设检验的步骤:第一步,设定假设条件。
原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。
第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。
第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。
第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。
如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。
第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。
通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。
计量经济学t统计量

计量经济学t统计量
在计量经济学中,t 统计量是用于推断回归系数是否显著的统计指标之一。
t 统计量的计算基于以下公式:
t = (b - β) / SE(b)
其中,b 表示回归系数的估计值,β表示回归系数的真实值(在假设检验中通常为零),SE(b) 表示回归系数估计值的标准误差。
t 统计量的分布遵循自由度为 n-k-1 的 t 分布,其中 n 是样本大小,k 是回归模型中解释变量的数量。
通过与 t 分布的临界值进行比较,可以判断回归系数是否显著。
如果计算得到的 t 统计量的值大于临界值,则拒绝零假设,即认为回归系数与零有显著差异,回归系数估计值是显著的;如果 t 统计量的值小于或等于临界值,则不能拒绝零假设,即认为回归系数与零没有显著差异,回归系数估计值不显著。
t 统计量在计量经济学中常用于进行假设检验,例如检验回归系数是否为零,检验变量间的线性关系是否存在等。
它提供了一种用于评估模型参数的显著性和可靠性的方法。
需要注意的是,t 统计量的使用需要满足一些前提条件,如样本大小足够、正态性假设等。
在实际应用中,需要对数据进行适当的诊断和检验,以确保 t 统计量的有效性。
希望这个解释对你有帮助。
如果你对 t 统计量或计量经济学有其他问题,我将很愿意继续为你提供帮助。
计量经济学常用公式___概述说明以及解释

计量经济学常用公式概述说明以及解释1. 引言1.1 概述计量经济学是经济学领域中的一门重要分支,通过运用统计方法和数学模型来研究经济现象,并进行数据分析和预测。
在计量经济学中,常常使用一系列公式来描述经济现象和建立经济模型,以便深入理解和解释实际问题。
本文旨在对计量经济学常用公式进行概述说明和解释。
1.2 文章结构本文主要分为五个部分进行论述,各部分内容如下:(1)引言:介绍文章的背景和目的;(2)常用公式概述:简要介绍什么是计量经济学常用公式以及其重要性和应用领域;(3)具体公式解释与应用:详细阐述几种常见的计量经济学公式类型及其解释与使用方法;(4)公式的限制和注意事项:探讨一些常见的限制条件以及处理方法,如多重共线性、异方差和遗漏变量问题;(5)结论:总结全文内容并展望进一步研究该主题的可能发展方向。
1.3 目的本文旨在对计量经济学中常用公式进行系统的概述和解释,以帮助读者更好地理解这些公式的应用和限制条件。
通过深入了解这些公式,读者可以更准确地分析经济数据、构建经济模型,并能够对实际问题进行预测和政策制定。
此外,本文还将对计量经济学常用公式的重要性进行总结并展望未来研究的方向,以期为相关领域的研究提供一定参考。
2. 常用公式概述:2.1 什么是计量经济学常用公式计量经济学常用公式是在计量经济学领域内被广泛使用的数学表达式,用于描述和分析经济现象中的关系和变动。
这些公式基于统计理论和经济学原理,通过对数据进行建模和分析,帮助研究者从观察到的现象中提取经济规律和洞察。
计量经济学常用公式通常涉及到回归模型、工具变量法、时间序列模型等。
2.2 公式的重要性和应用领域计量经济学常用公式在实证经济学研究中具有重要意义。
首先,通过建立数学模型,并运用相应的计量经验方法,可以从大规模的现实数据中揭示出变量之间相互影响的本质规律。
其次,这些公式可以作为检验理论假设合理性和预测现象发展趋势的有效工具。
最后,在政策评估与决策制定过程中,利用这些公式可以为决策者提供参考依据。
计量经济学主要公式

序公式名称计算公式号y t = β0 + β1 x t + u t1真实的回归模型2估计的回归模型y t =+x t +3真实的回归函E(y t) = β0 + β1 x t数4估计的回归函数=+x t5最小二乘估计公式6和的方差7σ2的无偏估计量= s2 =8和估计的方差9总平方和∑(y t -) 210回归平方和∑(-) 211误差平方和∑(y t -)2 = ∑()2 12可决系数(确定系数)13检验β0,β1 是否为零的t统计量14β1的置信区间-tα(T-2) ≤β1≤+tα(T-2)15单个y T+1的点预测=+x T+116E(y T+1)的区间预测17单个y T+1的区间预测18样本相关系数表3.4 多元线性回归模型的主要计算公式序号公式名称计算公式1 真实的回归模型Y= X β+ u2 估计的回归模型Y = X+3 真实的回归函数E(Y) = X β4 估计的回归函数= X5 最小二乘估计公式= (X 'X)-1X 'Y6 回归系数的方差Var() = σ2(X 'X)-17 σ2的无偏估计量= s2 ='/ (T - k)8 回归系数估计的方差() =(X 'X)-19 回归平方和SSR = = '- T10 总平方和SST = Y 'Y - T11 残差平方和SSE = '12 可决系数13 调整的可决系数14 F统计量15 t统计量16 点预测公式C = (1 x T+1 1 x T+1 2… x T+1 k-1 )= C = 0 +1 x T+1 1 + … + k-1 x T+1 k-117 E(y T+1) 的置信区间预测C±tα/2 (1, T-k)s18 单个y T+1的置信区间预测C±tα/2 (T-k)s19 预测误差e t = - y t, t= 1, 2, …, T20 相对误差PE = , t= 1, 2, …, T21 误差均方根22 绝对误差平均23 相对误差绝对值平均24 Theil系数25 偏相关系数是控制zt不变条件下的x t, y t的简单相关系数。
计量经济学主要公式

计量经济学主要公式1. 简介计量经济学是一门研究经济现象的定量分析方法。
在计量经济学中,有许多重要的公式被广泛应用于经济数据的分析和解释。
本文将介绍计量经济学中的一些主要公式,并对其进行解释和应用。
2. 最小二乘法估计最小二乘法估计是计量经济学中最常用的估计方法之一。
它用于确定数据之间的线性关系,并找到使得预测值与真实值之间的平方差最小化的最佳拟合线。
最小二乘法估计的公式如下:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1是待估计的参数,ε表示误差项。
最小二乘法估计的目标是最小化误差项的平方和,即使得∑ε^2最小化。
3. 弹性系数弹性系数是衡量变量之间相互影响程度的指标。
在计量经济学中,弹性系数经常被用来衡量因变量对自变量的变化的敏感度。
常见的弹性系数有价格弹性、收入弹性等。
弹性系数的计算公式如下:E = (ΔY / Y) / (ΔX / X)其中,E表示弹性系数,ΔY表示因变量的变化量,ΔX表示自变量的变化量,Y表示因变量的原始值,X表示自变量的原始值。
弹性系数的绝对值越大,表示变量之间的相互影响越大。
4. 汇总函数汇总函数用于描述宏观经济关系中的总量变量之间的关系。
计量经济学中常用的汇总函数包括线性汇总函数和非线性汇总函数。
线性汇总函数的一般形式如下:Y = a + b1X1 + b2X2 + ... + bnXn其中,Y表示因变量,X1、X2、…、Xn表示自变量,a表示截距,b1、b2、…、bn表示回归系数。
线性汇总函数可以用于宏观经济模型的建立和政策分析。
5. 假设检验假设检验是计量经济学中用于检验统计推断的一种方法。
通过对样本数据进行分析,假设检验可以判断统计推断是否具有显著性。
常用的假设检验有t检验、F检验等。
假设检验的一般步骤包括建立原假设和备择假设、计算检验统计量、确定临界值和进行推断。
假设检验的结果通常用p值来表示。
6. 时间序列分析时间序列分析是计量经济学中研究时间序列数据的方法。
计量经济学基础知识梳理(超全)

如果我们用100乘以上述方程,并记 logx logx1 logx0 那么,对x的微小变化,便有
100 logx %x
“微小”的含义取决于具体情况。
2.自然对数
近似计算的作用:
定义y对x的弹性(elasticity)为
y x % y x y % x
然对数,或简称为对数函数,记为
y logx
还有几种不同符号可以表示自然对数,最常用的是 lnx
或 loge x 。当对数使用几个不同的底数时,这些不同的
都用 logx 表示自然对数。
符号是有作用的。目前,只有自然对数最重要,因此我们
2.自然对数
y
y logx
x
图2.1.4 y=log(x) 的图形
2.自然对数
另一种关系式在应用经济学中也是有意义的:
y 0 1 logx
其中,x>0。若取y的变化,则有 y 1 logx ,这又可以 写为 y 1 100100 logx 。 利用近似计算,可得
y 1 100%x
当x增加1%时,y变化 1 100 个单位。
2.自然对数
对数可用于计量经济学应用中的各种近似计算。
1.对于x≈0,有log(1+x)≈x。这个近似计算随着x变
大而越来越不精确。 2.两对数之差可用作比例变化的近似值。令x0和x1为两
个正数,可以证明(利用微积分),对x的微小变化,有
logx1 logx0 x1 x0 x0 x x0
例: 对数工资方程
假设小时工资与受教育年数有如下关系: 根据前面所述方程,有
logwage 2.78 0.094edu
%wage 100 0.094edu 9.4edu
期末:计量经济学公式

序号 公式名 称 计 算 公式1 真实的回归模型 y t = β0 + β1 x t + u t2 估计的回归模型 y t =+x t +3 真实的回归函数 E(y t ) = β0 + β1 x t4 估计的回归函数 =+x t5最小二乘估计公式()()()∑∑∑∑∑∑--=---==-=2222221X n X Y X n Y X X X Y Y X X x y x b X b Y b ii i iiiii i6和的方差7 σ 2 的无偏估计量= s 2=8和估计的方差9总平方和TSS∑ (y t -) 210 回归平方和RSS ∑ (-) 211 误差平方和ESS ∑ (y t -)2 = ∑ ()212 可决系数(确定系数)=RSS/TSS13 检验β0,β1 是否为零的t 统计量14 β1的置信区间-t α (T -2) ≤β1 ≤+t α (T -2)15单个y T+1的点预测=+x T+116E(yT+1)的区间预测17单个yT+1的区间预测18样本相关系数表3.4 多元线性回归模型的主要计算公式+= X= (X 'X)-1X 'YVar(= s2 ='/ (T - k)() =(X 'X)-1= '= '= +… +C s==是控制z t不变条件下的x t, y t的简单相关系数。
是y t与的简单相关系数。
其中是y t对x t1,x t2,…x tk–12:随机误差项的性质(1)误差项代表了未纳入模型变量的影响;(2)即使模型中包括了决定数学分数的所有变量,其内在随机性也不可避免,这是做任何努力都无法解释的;(3)u代表了度量误差;(4)“奥卡姆剃刀原则”,即描述应该尽可能简单,只要不遗漏重要的信息。
3:解释回归结果的步骤(1)看整个模型的显著性,看F统计量的值;(2)看单个参数的显著性;(3)解释斜率的经济含义;(4)解释R²。
计量经济学主要公式一览表

数系关相复 与 ty 是 的 1–ktx,…,2tx,1tx 与 ty 数系关相偏
x…,2tx,1tx 对 ty 是
中其。数系关相单简的
62 52
。数系关相单简的 ty ,tx 的下件条变不 tz 制控是
数系 liehT
42
均平值对绝差误对相
32
均平差误对绝
22
根方均差误
12 02 91 81 71
+
X = Y
u + � X = Y
式 公 算 计
式公算计要主的型模归回性线元多 4.3 表
数系关相本样
81
测预间 区的 1+Ty 个单 71
测预 间区的)1+Ty(E
1+T
61
x
+
=
测预 点的 1+Ty 个单 51
)2-T(
�t
+
� 1�� )2-T( �t
间区信置的 1�
41
合拟的归回
1– kt
1
+
0
C =
式公测预点
61
)
1 -k 1+T
x …
2 1 +TFra bibliotekx1 1+T
x 1( = C
量计统 t
51
量计统 F
41
t
x 1� + 0� = )ty(E
+ tx + = ty
t
u + tx 1� + 0� = ty
式公 算 计
称 名式公
序
数系决可的整调
31
数系决可 ' = ESS 和方平差残 和方平总 = RSS = )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序
公式名称计算公式
号
y t = β0 + β1 x t + u t
1真实的回归模
型
2估计的回归模
型y t =+x t +
3真实的回归函
E(y t) = β0 + β1 x t
数
4估计的回归函
数=+x t
5最小二乘估计
公式
6
和的方
差
7σ2的无偏估
计量= s2 =
8
和估计
的方差
9总平方和
∑(y t -) 2
10回归平方和
∑(-) 2
11误差平方和
∑(y t -)2 = ∑()2 12可决系数(确
定系数)
13检验β0,β1 是
否为零的t统
计量
14β1的置信区间
-tα(T-2) ≤β1≤+tα(T-2)
15单个y T +1的点
预测=+x T+1
16E(y T+1)的区间
预测
17单个y T+1的区
间预测
18样本相关系数
表3.4 多元线性回归模型的主要计算公式
序号公式名称计算公式
1 真实的回归模型Y= X β+ u
2 估计的回归模型Y = X+
3 真实的回归函数E(Y) = X β
4 估计的回归函数= X
5 最小二乘估计公式= (X 'X)-1X 'Y
6 回归系数的方差Var() = σ2(X 'X)-1
7 σ2的无偏估计量= s2 ='/ (T - k)
8 回归系数估计的方差() =(X 'X)-1
9 回归平方和SSR = = '- T
10 总平方和SST = Y 'Y - T
11 残差平方和SSE = '
12 可决系数
13 调整的可决系数
14 F统计量
15 t统计量
16 点预测公式
C = (1 x T+1 1 x T+1 2… x T+1 k-1 )
= C = 0 +1 x T+1 1 + … + k-1 x T+1 k-1
17 E(y T+1) 的置信区间预
测
C±tα/2 (1, T-k)s
18 单个y T+1的置信区间预
测
C±tα/2 (T-k)s
19 预测误差e t = - y t, t= 1, 2, …, T
20 相对误差PE = , t= 1, 2, …, T
21 误差均方根
22 绝对误差平均
23 相对误差绝对值平均
24 Theil系数
25 偏相关系数是控制z
t不变条件下的x t, y t的简单相关系数。
26 y t与x t1,x t2,…,x tk–1的
复相关系数
是y t与的简单相关系数。
其中是y t对x t1,x t2,…x tk–1
回归的拟合。