22简单抽屉原理与最不利原则(二)强化--田芳宇

合集下载

简单点的抽屉原理yyf

简单点的抽屉原理yyf

13、班上有 50 名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本 或两本以上的书。
14、有若干堆分币,每堆分币中没有币值相同的分币。任意挑选多少堆分币,才能保证一定有两 堆分币的组成是相同的?
7
龙文教育·教务管理部
解:∵26÷25=1(个)„„1(个),有一个抽屉被抽出了两个数
∴从 1,3,5,„„,99 中任选 26 个数,其中必有两个数的和是 100。
练习 6:从前 25 个自然数中任意取出 7 个数,证明:取出的数中一定有两个数,这两个数中大数不
超过小数的 1.5 倍。
3
龙文教育·教务管理部
中小学 1 对 1 课外辅导专家
2、某班有 16 名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任 意两个学生总有某个月份是分在不同的小组里?
3、上体育课时,21 名男、女学生排成 3 行 7 列的队形做操.老师是否总能从队形中划出一个长
4 龙文教育·教务管理部
中小学 1 对 1 课外辅导专家
方形,使得站在这个长方形 4 个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果 不能,请举出实例.
6、从 1,2,3,…,99,100 这 100 个数中任意选出 51 个数.证明: (1)在这 51 个数中,一定有两个数互质; (2)在这 51 个数中,一定有两个数的差等于 50; (3)在这 51 个数中,一定存在 9 个数,它们的最大公约数大于 1.
7、从 1,2,3,…,49,50 这 50 个数中取出若干个数,使其中任意两个数的和都不能被 7 整除, 则最多能取出多少个数?
重点、难点
难点 【内容概述】
抽屉原理 1 将多于 n 件物品任意放到 n 个抽屉中,那么至少有一个抽屉中的物品不少于 2 件。 抽屉原理 2 将多于 m×n 件物品任意放到到 n 个抽屉中, 那么至少有一个抽屉中的物品不少于 (m+1) 件。 理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数 的倍数多,至于多多少,这倒无妨。 (2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有 些抽屉可以是空的,也不限制每个抽屉放物品的个数。 (3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能 有多个,但这里只需保证存在一个达到要求的抽屉就够了。 (4)将 a 件物品放入 n 个抽屉中,如果 a÷n=m„„b,其中 b 是自然数,那么由抽屉原理 2 就可 得到,至少有一个抽屉中的物品数不少于(m+1)件。

抽屉原理精解

抽屉原理精解

第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。

[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。

原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。

[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。

第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。

[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。

抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。

抽屉原理及其简单应用

抽屉原理及其简单应用

抽屉原理及其简单应用第一篇:抽屉原理及其简单应用抽屉原理及其应用摘要: 本文着重从抽屉的构造方法阐述抽屉原理,介绍了抽屉原理及其常见形式,并结合实例探讨了这一原理在高等数学和初等数论中的应用。

关键词: 组合数学;抽屉原理;抽屉构造1.引言抽屉原理也叫鸽笼原理, 它是德国数学家狄利克雷(P.G.T.Dirichlet)首先提出来的, 因此也称作狄利克雷原理.它是数学中一个基本的原理,在数论和组合论中有着广泛的应用。

在数学的学习研究中,我们也可以把它看作是一种重要的非常规解题方法,应用它能解决许多涉及存在性的数学问题。

2.抽屉原理的基本形式与构造2.1基本形式陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理Ⅰ 把多于n个的元素按任一确定的方式分成n个集合,则一定有一个集合中含有两个或两个以上的元素。

原理Ⅱ 把m个元素任意放到n(m>n)个集合里,则至少有一个集合里至少有k个元素,其中⎧m , 当n能整除m时,⎪⎪nk=⎨⎡m⎤⎪+1 , 当n不能整除m 时.⎢⎥⎪⎩⎣n⎦原理Ⅲ 把无穷个元素按任一确定的方式分成有穷个集合,则至少有一个集合中仍含无穷个元素。

2.2基本构造利用抽屉原理解题过程中首先要注意指明什么是元素,什么是抽屉,元素进入抽屉的规则是什么,以及在同一个盒子中,所有元素具有的性质。

构造抽屉是用抽屉原理解题的关键。

有的题目运用一次抽屉原理就能解决,有的则需反复用多次;有些问题明显能用抽屉原理解决,但对于较复杂的问题则需经过一番剖析转化才能用抽屉原理解决。

3.利用抽屉原理解题的常用方法3.1利用划分数组构造抽屉例1 在前12个自然数中任取七个数,那么, 一定存在两个数, 其中的一个数是另一个数的整数倍。

分析:若能把前12个自然数划分成六个集合, 即构成六个抽屉,使每个抽屉内的数或只有一个, 或任意的两个数, 其中的一个是另一个的整数倍,这样, 就可以由抽屉原理来推出结论。

抽屉原理的学习方法

抽屉原理的学习方法

抽屉原理的学习方法大家知道,两个抽屉要放置三只苹果,那么一定有两只苹果放在同一个抽屉里,更一般地说,只要被放置的苹果数比抽屉数目大,就一定会有两只或更多只的苹果放进同一个抽屉,可不要小看这一简单事实,它包含着一个重要而又十分基本的原则――抽屉原则.1.抽屉原则有几种最常见的形式:原则1 如果把n+k(k≥1)个物体放进n只抽屉里,则至少有一只抽屉要放进两个或更多个物体: ____原则本身十分浅显,为了加深对它的认识,我们还是运用反证法给予证明;如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原则虽简单,巧妙地运用原则却可十分便利地解决一些看上去相当复杂、甚至感到无从下手的问题,比如说,我们可以断言在我国至少有两个人出生的时间相差不超过4秒钟,这是个惊人的结论,该是经过很多人的艰苦劳动,统计所得的吧!不,只须我们稍动手算一下:不妨假设人的寿命不超过4万天(约110岁,超过这个年龄数的人为数甚少),则10亿人口安排在8亿6千4百万个“抽屉”里,根据原则1,即知结论成立.下面我们再举一个例子:例1 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。

把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原则1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同。

原则2 如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.证明同原则1相仿.若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。

原则1可看作原则2的物例(m=1)例2 正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同. 证明把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原则二,至少有三个面涂上相同的颜色。

四年级秋季班第五讲-简单抽屉原理、最不利原则教学内容

四年级秋季班第五讲-简单抽屉原理、最不利原则教学内容

四年级秋季班第五讲-简单抽屉原理、最不利原则第五讲简单抽屉原理、最不利原则知识框架一、对抽屉原理两个版本的认识原理要点:(1)物品数比抽屉数多1。

只有物品数比抽屉数多时抽屉原理才会成立。

(2)物品是“任意放”到抽屉中。

(3)其中“物品不少于2件”的抽屉是一定存在的,但是不确定是哪一个。

(4)原理的结论是:“至少有一个抽屉中的物品数不少于2件”,也可以这么说,“至少有2件物品在同一个抽屉中”。

原理讲解:抽屉原理1:将n+1个物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

只要有一个抽屉中的物品数不少于2件,抽屉原理1 就是成立的。

当我们可以往抽屉中任意放物品时,最不利的情形就是“平均分”,这样所有抽屉中的物品数都不会太多。

n+1个物品平均地放入n个抽屉,每个抽屉放一个,由于物品数比抽屉数多,就会余出一个物品。

最后,余出的这个物品放入某个抽屉,这个抽屉中就有了2个物品。

此外,其它情形,只要有一个抽屉是空的,那么就一定会有另外的抽屉中有2个或2个以上的物品。

例子:4只鸽子飞回三个鸟笼,有几种方法?每种方法中,都会有一个鸟笼中的鸽子数不少于2。

在有些地方抽屉原理又叫做“鸽笼原理”。

原理要点:(1)物品数比抽屉数多,抽屉原理1的情形包含于这个原理中;(2)解决的是抽屉的存在性;(3)在解题时,遇到“有一个抽屉中的物品数不少于A件”,其中A>2时,应使用抽屉原理2。

(4)原理的结论也可以理解为:“总有不少于m÷n件(或[m÷n]+1件)物品在同一个抽屉中。

”相同的即为“抽屉”。

原理讲解:最不利的情形就是“平均分”,这样每个抽屉中的物品数都不太多都是[m÷n]个。

若m÷n有余数,那么多出来的余数个物品也按照最不利的情形来分配,这样就能保证抽屉中的物品尽量地少。

也就是说这余数个物品也平均地往抽屉中放,这样有的抽屉会再放入一个物品,而有的就分不到,那么至少会有一个抽屉中的物品数不少于[m÷n]+1个。

小学奥数教案——抽屉原理(解析版)

小学奥数教案——抽屉原理(解析版)

小学奥数教案——抽屉原理(解析版)第一篇:小学奥数教案——抽屉原理(解析版)教案抽屉原理一本讲学习目标初步抽屉原理的方法和心得。

二概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。

三例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

抽屉原理和最不利原则

抽屉原理和最不利原则

抽屉原理和最不利原则一、抽屉原理抽屉原理(也被称为鸽笼原理)是数学中一种基本原理,它是由鸽笼和抽屉的类比而得名。

根据抽屉原理,如果n+1个物体被放置到n个容器之中,那么至少有一个容器内含有两个或者更多的物体。

换句话说,抽屉原理表明,当物体数量超过容器数量时,至少有一个容器将会装有多个物体。

这个原理可以应用于各种场景,例如,如果有11个学生坐在一排座位上,而只有10个座位,那么至少有一个学生将会没有座位坐。

抽屉原理在数学和计算机科学中有广泛的应用。

例如,在计算机科学中,抽屉原理可以用来证明哈希函数的碰撞概率、证明图的着色问题等等。

最不利原则是指在做决策时,应该假设每一项决策都是以对自己最不利的方式进行的。

也就是说,在进行决策时,应该考虑最不利的情况,并希望能够在最不利的情况下找到最好的解决方案。

最不利原则在决策分析和优化问题中具有重要作用。

通过考虑最不利的情况,可以防止决策者产生过于乐观或者主观的判断,从而更好地制定决策方案。

最不利原则可以应用于各种领域,例如商业决策、政治决策和战略决策等。

在商业决策中,经营者应该考虑到市场环境变化和竞争对手的行动,以保持企业的竞争力。

在政治决策中,政府领导者应该考虑到各种社会和经济因素,以制定合理的政策。

在战略决策中,军事指挥官应该考虑到敌方的最强势和最危险的行动,以便做出战略部署。

最不利原则帮助我们克服幻觉和假设,从而更加客观地进行决策。

通过考虑最不利的情况,我们能够更好地准备好应对各种风险和挑战,并找到最佳的解决方案。

总结:抽屉原理和最不利原则都是数学领域中的重要原则,它们在不同的背景下有着不同的应用。

抽屉原理通过简单的类比,帮助我们理解当物体数量超过容器数量时,必然会有一些容器装有多个物体的情况。

最不利原则则在决策分析和优化问题中起着重要的作用,通过考虑最不利的情况,可以制定出最佳的决策方案。

这两个原则都帮助我们在面对不同的问题和情境时,能够更加准确地进行分析和决策。

第1讲抽屉原理和最不利原理

第1讲抽屉原理和最不利原理

第1讲抽屉原理和最不利原理生活中常见这样的例子:把5只苹果放入4个果盘,那么一定有某个果盘中至少放有2只苹果,13名同学中至少有2人出生于同一个月……像这样,如果把n+k(k≥1)件物品放入n个抽屉,那么至少有一个抽屉中有2件或2件以上的物品,这就是抽屉原理1;进一步,如果把m×n+k(k≥1)件物品放入n个抽屉,那么至少有一个抽屉中有m+1件物品,这就是抽屉原理2。

实际上,这里的抽屉就是指这些物品可以分成几类,运用抽屉原理解决问题的关键就在于正确分类。

最不利原则主要说明的是一种从极端情况(最坏情况)入手,分析问题的一种思考方法。

例1今年燕山小学招收的一年级新生有230名,年龄在6岁至7岁之间,能否保证有20名或20名以上的小朋友在同一个月出生?为什么?试一试1在一条长100米的小路一旁植树101棵,证明:不管怎样种,总有两棵树的距离不超过1米。

例2有19个同学参加了三个课外活动小组,它们分别是数学组、美术组、电脑组,每人可参加一个组、两个组或三个组活动。

问:这些同学中至少有几个同学参加了相同的组?有22个同学参加了三个课外活动课程,它们分别是足球课、网球课、排球课,每人可参加一个课程、两个课程或三个课程活动。

问:这些同学中至少有几个同学参加了相同的课程?例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?试一试3把98本书分给五(3)班学生,如果其中至少有1人分到至少3本书,那么,这个班最多有多少人?例4一副扑克牌,共54张,问至少从中摸出多少张牌才能保证:(1)至少有5张牌的花色相同;(2)四种花色的牌都有;(3)至少有3张牌是红桃。

一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?课内练习1.某班有学生54人,他们的年龄都相同,那么,至少有多少人在同一周出生?至少有多少人在同一月出生?2.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?3.11名学生到老师家借书,老师家书房中有A,B,C,D四类书,每名学生最多可借两本不同类的书,最少借一本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
至少(必有)……是…… 苹果 抽屉 方法二:抽屉少苹果多
【课前练兵】 班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保 证至少有一个小朋友能得到不少于两本书?
甜甜大讲堂 最不利原则 ——最倒霉的,差一点就满足的
【例1】(难度系数 ) 在一个盒子里装着形状相同的三种口味的果冻,分别是苹果口味、 巧克力口味和香芋口味的,每种果冻都有20个,现在闭着眼睛从盒 子里拿果冻。请问: (1)至少要从中拿出多少个,才能保证拿出的果冻中有香芋口味的 ? (2)至少要从中拿出多少个,才能保证拿出的果冻中至少有两种口 味?
【例4】(难度系数 ) 口袋中有三种颜色的筷子各10根,问: ⑴至少取多少根才能保证三种颜色都取到? ⑵至少取多少根才能保证有2双颜色不同的筷子? ⑶至少取多少根才能保证有2双颜色相同的筷子?
【例5】(难度系数
)
将1只白手套、2只黑手套、3只红手套、8只黄手套和9只绿手套放入 一个布袋里,请问: ⑴一次至少要摸出多少只手套才能保证一定有颜色相同的两双手套 ? ⑵一次至少要摸出多少只手套才能保证一定有颜色不同的两双手套 ?(两只手套颜色相同即为一双)
甜甜大讲堂 板块:组合 小花回忆录
简单抽屉原理与最不利原则(二)
抽屉原理(鸽巢原理,狄利克雷原则)
将n件物品放入m个抽屉中,如果n÷m=a…b,其中b>0,那么 一定有一个抽屉中至少有a+1件物品。
将n件物品放入m个抽屉中,如果n÷m=a,那么一定有一个抽屉
中至少有a件物品。
抽屉关键字:“至少保证” 抽屉五步:找苹果 找抽屉 做除法 用原理 得结论 难点:寻找抽屉和苹果 小技巧:怎样找苹果和抽屉 方法一:先做翻译员 至少有一个⋯⋯不少于⋯⋯ 抽屉 苹果
1
【例2】(难度系数 ) 一副扑克牌54张,至少从中摸出多少张牌才能保证: ⑴至少有5张牌的花色相同; ⑵四种花色的牌都有; ⑶至少有3张牌是红桃; ⑷至少有2张梅花和3张红桃。
【例3】(难度系数 ) 一个布袋里有大小相同的颜色不同的一些球,其中红色的有10个, 白色的有9个,黄色的有8个,蓝色的有3个,绿色的有1个。那么一 次最少取出多少个球,才能保证有4个颜色相同的球?
2
【例6】(难度系数 ) ⑴从大街上至少选出多少人,才能保证至少有3人属相相同? ⑵为保证至少5个人的属相相同,但不保证有6人属相相同,那 么总人数应在什么范围内?
【例7】(难度系数 ) 幼儿园小朋友分200块饼干,无论怎样分都有人至少分到8块饼 干,这群小朋友至多有多少名?
【例8】(难度系数 ) 海天小学五年级学生身高的厘米数都是整数,并且在140厘米 到150厘米之间(包括140厘米到150厘米),那么,至少从多最不利原则——最倒霉的,差一点就满足的 倒霉蛋翻身 三步走: 1.保证什么 2.最坏怎样 3.保证有=“最倒霉”+1 逆用原理,正面检查
3
相关文档
最新文档