2018秋人教版九年级数学上册《第二十四章圆》检测题含答案

合集下载

人教版九年级上册第二十四章-圆 综合检测(含答案)

人教版九年级上册第二十四章-圆 综合检测(含答案)

人教版九年级上册第二十四章-圆综合检测一、选择题1.已知⊙O 半径为3,A 为线段PO的中点,则当OP=6时,点A与⊙O的位置关系为()A. 点在圆内B. 点在圆上C. 点在圆外D. 不能确定2.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A. 90°B. 120°C. 180°D. 135°3.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等4.在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定()A. 与x轴和y轴都相交B. 与x轴和y轴都相切C. 与x轴相交、与y轴相切D. 与x轴相切、与y轴相交5.如上图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若,则∠ABC的度数等于()A.B.C.D.6.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于()A. 1B. √3C. 2D. 2√37.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144°,则∠C的度数是()A. 14°B. 72°C. 36°D. 108°8.如图,在Rt△AOB中,∠AOB=90°,OA=OB=6,⊙O的半径为√6,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值是()A. 2√6B. 2√3C. 3√6D. 3√39.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A. OC//BDB. AD⊥OCC. △CEF≌△BEDD. AF=FD10.如图,从一块直径为4的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是()A. 12B. √2C. √22D. √2411.圆锥的底面半径r=6,高ℎ=8,则圆锥的侧面积是()A.15πB. 30πC. 45πD. 60π12.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB的长为()A.3.5cmB. 4cmC. 4.5cmD. 5cm 13.如图,抛物线y =14x2−4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 414.已知正方形MNOK和正六边形ABCDEF的边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……在这样连续6次旋转的过程中,点B,M间的距离可能是()A. 1.4B. 1.1C. 0.8D. 0.5二、填空题15.在半径为8π的圆中,60°的圆心角所对的弧长等于______.16.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为______.17.平面直角坐标系中,以原点O为圆心,2为半径作⊙O,则点A(2,2)与⊙O的位置关系为______.18.如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC=______.19.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD=______.三、解答题20.已知:如图,△ABC内接于⊙O,∠C=45°,AB=2,求⊙O的半径.21.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=√3,求⊙O的直径.第2页,共7页22.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过点F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2√3,求图中阴影部分的面积.23.已知∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D,E两点,设AD=x.①②(1)如图①,当x取何值时,⊙O与AM相切?(2)如图②,当x取何值时,⊙O与AM相交于B,C两点,且∠BOC=90°?24.在平面直角坐标系中,已知抛物线y=14x2+kx+c的图象经过点C(0,1),当x=2时,函数有最小值.(1)求抛物线的解析式;(2)直线l⊥y轴,垂足坐标为(0,−1),抛物线的对称轴与直线l交于点A.在x轴上有一点B,且AB=√2,试在直线l上求异于点A的一点Q,使点Q在△ABC的外接圆上;(3)点P(a,b)为抛物线上一动点,点M为坐标系中一定点,若点P到直线l的距离始终等于线段PM的长,求定点M的坐标.第4页,共7页答案1.【答案】B2.【答案】C3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】C11.【答案】D12.【答案】B13.【答案】C14.【答案】C15.【答案】8316.【答案】1017.【答案】圆外18.【答案】125°19.【答案】4√320.【答案】解:连结OB,OA,∵∠BCA=45°,∴∠BOA=90°,∵OB=OA,∴∠OBA=∠OAB=45°,∵AB=2,∴OB=OA=√2.答:⊙O的半径为√2.21.【答案】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC−∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=√3,∴2OA=2PD=2√3.∴⊙O的直径为2√3.22.【答案】(1)证明:连接OF,AO,∵AB=AF=EF,∴AB⏜=AF⏜=EF⏜,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB//OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵AB⏜=AF⏜=EF⏜,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=2√3,∴AF=4,∴AO=4,∵AF//BE,∴S △ABF=S△AOF,∴图中阴影部分的面积=60⋅π×42360=8π3.23.【答案】解:(1)如图1,过O作OF⊥AM于F,当OF=r=2时,⊙O与AM相切,此时OA=OF÷sin30°=4,故x=AD=2;(2)如图2,过O点作OG⊥AM于G当∠BOC=90°,∵OB=OC=2,∴BC=2√2,又∵OG⊥BC,∴BG=CG=√2,∴OG=12BC=√2,又∵∠A=30°,∴OA=2√2,∴x=AD=2√2−2.24.【答案】解:(1)∵图象经过点C(0,1),∴c=1,∵当x=2时,函数有最小值,∴对称轴x=2,∴−k2×14=2,解得k=−1,∴抛物线解析式为y=14x2−x+1;(2)由题意可知A(2,−1),设B(t,0),∵AB=√2,∴(t−2)2+1=2,∴t=1或t=3,∴B(1,0)或B(3,0),∵B(1,0)时,A、B、C三点共线,舍去,∴B(3,0),∴AC=2√2,BC=√10,∴AC2+AB2=10=BC2,∴∠BAC=90°,∴△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(32,12),半径为√102,设Q(x,−1),则有(x−32)2+(12+1)2=(√102)2,∴x=1或x=2(舍去),∴Q(1,−1);(3)设定点M(m,n),∵P(a,b)为抛物线上一动点,∴b=14a2−a+1,第6页,共7页∵P 到直线l 的距离等于PM , ∴(m −a)2+(n −b)2=(b +1)2,即a 2+m 2−2ma +n 2−(2n +2)b −1=0,即a 2+m 2−2ma +n 2−(2n +2)(14a 2−a +1)−1=0, ∴1−n 2a 2+(2n −2m +2)a +(m 2+n 2−2n −3)=0,∵a 为任意值上述等式均成立, ∴{1−n2=02+2n −2m =0m 2+n 2−2n −3=0, ∴{n =1m =2,∴定点M(2,1).。

人教版九年级上册单元检测:第二十四章圆(含答案)

人教版九年级上册单元检测:第二十四章圆(含答案)

人教版九年级上册单元检测:第二十四章圆(含答案)一.选择题1.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A.360πcm2B.720πcm2C.1800πcm2D.3600πcm2 2.如图,在⊙O中,直径CD⊥弦AB,若∠C=30°,则∠BOD的度数是()A.30°B.40°C.50°D.60°3.⊙O的半径为7,点P在⊙O外,则OP的长可能是()A.4 B.6 C.7 D.84.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°5.如图,AB是⊙O的直径,若∠BAC=30°,则∠D的度数是()A.30°B.45°C.60°D.75°6.下列说法正确的是()A.三点确定一个圆B.三角形的外心到三角形各顶点的距离相等C.相等的圆心角所对的弧相等D.圆内接四边形的对角互余7.已知圆O的半径是3,A,B,C三点在圆O上,∠ACB=60°,则弧AB的长是()A.2πB.πC.πD.π8.如图,△ABC为直角三角形,∠C=90°,AC=6,BC=8,以点C为圆心,以CA为半径作⊙C,则△ABC斜边的中点D与⊙C的位置关系是()A.点D在⊙C上B.点D在⊙C内C.点D在⊙C外D.不能确定9.如图,正六边形ABCDEF是半径为2的圆的内接六边形,则图中阴影部分的面积是()A.B.C.D.10.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC.若∠B=20°,则∠P等于()A.20°B.30°C.40°D.50°的面积11.如图,AB是⊙O的直径,且经过弦CD的中点H.已知,BD=5,则S△OCH 为()A.B.C.1 D.12.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,6),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3二.填空题13.扇形半径为3cm,弧长为5cm,则它的面积为cm2.14.如图点A是半圆上一个三等分点(靠近点N这一侧),点B是弧AN的中点,点P是直径MN上的一个动点,若⊙O半径为3,则AP+BP的最小值为.15.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.16.如图,正方形ABCD的边长为4,点O是AB的中点,以点O为圆心,4为半径作⊙O,分别与AD、BC相交于点E、F,则劣弧的长为17.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是.18.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为.三.解答题19.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠B=20°.(1)求∠APD的大小;(2)已知AD=4,求圆心O到BD的距离是多少?20.如图,已知直线l与⊙O相离,OA⊥l于点A,OA与⊙O相交于点P,点B在⊙O上,BP 的延长线交直线l于点C,且AB=AC.(1)直线AB与⊙O相切吗?请说明理由;(2)若OA=5,PC=2,求⊙O的半径.21.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AD于F,(1)求证:AD=CD.(2)若∠ADC=60°,BE=2,求⊙O的半径.22.如图,在Rt△ABC中,∠C=90°,O为AB边上一点,⊙O交AB于E,F两点,BC切⊙O于点D,且CD=EF=1.(1)求证:⊙O与AC相切;(2)求图中阴影部分的面积.23.如图,AB是⊙O的直径,CD是⊙O的切线,C是切点,∠ADC=90°,连接AC.(1)如图1,求证:AC平分∠BAD;(2)如图2.AD交⊙O于点E,若E是弧AC的中点,DE=1,求AC长.24.如图,四边形ABCD是⊙O的内接四边形,点F是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.(1)求证:AB=AC.(2)若BD=11,DE=2,求CD的长.25.如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)作DH⊥BC交BC的延长线于点H,连接CD,试判断线段AE与线段CH的数量关系,并说明理由.(3)若BC=4,AB=6,试求AE的长.参考答案一.选择题1.解:圆锥的侧面积=×80π×90=3600πcm2,故选:D.2.解:如图,连接AO,∵∠C=30°,∴∠AOD=60°,∵直径CD⊥弦AB,∴=,∴∠AOD=∠BOD=60°,故选:D.3.解:∵⊙O的半径为7,点P在⊙O外,∴OP>7,∵4、6、7都不符合,只有8符合,故选:D.4.解:∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.5.解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠BAC=30°,∴∠B=60°∴∠D=∠B=60°.故选:C.6.解:不在同一直线上的三点确定一个圆,A错误;三角形的外心到三角形各顶点的距离相等,B正确;在同圆或等圆中,相等的圆心角所对的弧相等,C错误;圆内接四边形的对角互补,D错误;故选:B.7.解:如图,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∴l===2π.故选:A.8.解:∵Rt△ABC中,∠C=Rt∠,AC=6,BC=8,∴AB==10,∵D为斜边AB的中点,CD=AB=5,d=5,r=6,∴d<r,∴点D与⊙C内,故选:B.9.解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣)=4π﹣6.故选:A.10.解:∵OC=OB,∴∠B CO=∠B=20°.∴∠AOC=40°∵AB是⊙O的直径,PA切⊙O于点A,∴OA⊥PA,即∠PAO=90°,∴∠P=90°﹣∠AOC=50°故选:D.11.解:如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵,BD=5,∴DH=4,∴BH=3,设OH=x,则OC=OB=x+3,在Rt△OCH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴S=OH•CH=OH•BH=××4=.△OCH故选:D.12.解:∵A、B、M、O四点共圆,∴∠BAO+∠BMO=180°,∵∠BMO=120°,∴∠BAO=60°,∵A(0,6),∴AO=6,∵在Rt△AOB中,∠AOB=90°,∠BAO=60°,AO=6,∴AB=2AO=12,∴⊙C的半径为6,故选:A.二.填空题13.解:设扇形的圆心角为n,则:5π=,得:n=300°.==cm2.∴S扇形故答案为:.14.解:作B点关于MN的对称点B′,连结OA、OB′、AB′,AB′交MN于P′,如图,∵P′B=P′B′,∴P′A+P′B=P′A+P′B′=AB′,∴此时P′A+P′B的值最小,∵点A是半圆上一个三等分点,∴∠AON=60°,∵点B是弧AN的中点,∴∠BPN=∠B′ON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′为等腰直角三角形,∴AB′=OA=3,∴AP+BP的最小值为3.故答案为3.15.解:如图,作OC⊥AB于C,则AC=BC,∵AB=8cm,∴AC=,在Rt△OAC中,∵OC=3cm,AC=4cm,∴==5cm.故答案为:5cm.16.解:∵O是AB的中点,∴AO=BO,∵正方形ABCD的边长为4,∴∠A=∠B=90°,∵AB=4,∴AO=BO=2,在Rt△AOE中,由cos∠AOE=,得∠AOE=30°,同理可得∠BOF=30°,∴∠EOF=120°,∴劣弧的长为,故答案为:.17.解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD ﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故答案为:﹣.18.解:连接OD,∵直线DE与⊙O相切于点D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°﹣90°﹣20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的长==7π,故答案为:7π.三.解答题19.解:(1)∵∠C=∠B=25°,∠CAB=40°,∴∠APD=∠C+∠CAB=65°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为2.20.解:(1)直线AB与⊙O相切.理由如下:连接OB,∵AB=AC,∴∠ABC=∠ACB,又∵OP=OB,∴∠OPB=∠OBP,∵OA⊥l,∴∠OAC=90°,∴∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴直线AB是⊙O的切线;(2)设⊙O半径为r,则OP=OB=r,PA=5﹣r;在Rt△ACP中,AC2=PC2﹣PA2=(2)2﹣(5﹣r)2在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,∵AC=AB,∴(2)2﹣(5﹣r)2=52﹣r2,解得r=3,即⊙O的半径为3.21.证明:(1)∵CD⊥AB,CO⊥AB,∴∠OEC=∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△OCE≌△OAF(AAS),∴CE=AF,∴AD=CD.(2)连接OD,∵∠ADC=60°,CD⊥AB于E,∴∠DAB=30°,∴∠DOB=60°,∵BE=2,可得:2(OB﹣BE)=OD,即2(r﹣2)=r,解得:r=4,∴⊙O的半径=4.22.(1)证明:连接OD,过点O作OH⊥AC于点H,∵BC是⊙O的切线,∴OD⊥BC.∵∠C=90°,∴∠OHC=∠ODC=∠C=90°,∴四边形OHCD是矩形.∵CD=EF,∴OH=EF=OE.∵OH⊥AC,∴AC是⊙O的切线;(2)解:∵OD=EF=1,CD=1,∠DOH=90°,=1×1﹣=1﹣π.∴S阴影23.(1)证明:如图,连接OC,∵直线CD切半圆O于点C,∴OC⊥CD,∵CD⊥AD,∴OC∥AD∴∠1=∠3,∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平分∠DAB(2)解:连接OE,CE,如图,∵∠1=∠2,∴=,∵E是弧AC的中点,∴=,∴==,∴∠AOE=∠EOC=∠BOC=60°,∴△AOE和△COE都是等边三角形,∴∠OCE=60°,CE=OE=AE=1,在Rt△CDE中,∠DCE=90°﹣60°=30°,∴CD=DE=,∵∠EAO=60°,∴∠1=∠2=30°,∴AC=2CD=2.24.(1)证明:∵AD平分∠BDF,∴∠ADF=∠ADB,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ADF=∠ABC,∵∠ACB=∠ADB,∴∠ABC=∠ACB,∴AB=AC;(2)解:过点A作AG⊥BD,垂足为点G.∵AD平分∠BDF,AE⊥CF,AG⊥BD,∴AG=AE,∠AGB=∠AEC=90°,在Rt△AED和Rt△AGD中,,∴Rt△AED≌Rt△AGD,∴GD=ED=2,,∴Rt△AEC≌Rt△AGB(HL),∴BG=CE,∵BD=11,∴BG=BD﹣GD=11﹣2=9,∴CE=BG=9,∴CD=CE﹣DE=9﹣2=7.25.解:(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠MAC=∠ABC,∴∠CAB+∠MAC=90°,即∠MAB=90°,∴MN是半圆的切线;(2)AE=CH,理由如下:连接AD,∵D是弧AC的中点,∴,∴AD=CD,∠HBD=∠ABD,∵DE⊥AB,DH⊥BC,∴DE=DH,且∠AED=∠DHC,,∴Rt△ADE≌Rt△CDH(HL),∴AE=CH;(3)由(2)知DH=DE,∠DHB=∠DEB=90°,在△RtDBH和Rt△DBE中,,∴△RtDBH≌Rt△DBE(HL),∴BE=BH,∴BA﹣AE=BC+CH,且AE=CH,∴BA﹣AE=BC+AE,又∵AB=6,BC=4,∴6﹣AE=4+AE,∴AE=1.人教版九年级上册第二十四章圆单元检测(含答案)一、单选题1.下列命题中,不正确的是( )A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对2.如图,AB 是如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为弧BC 的中点,点P 是直径AB 上一动点,则PC+PD 的最小值是( )A.1 3.如图,⊙P 与y 轴相切于点C(0,3),与x 轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P 的面积,那么k 的值是 ( )A .65B .12C .56 D .24.已知⊙O 的直径为10,圆心O 到弦AB 的距离OM 为3,则弦AB 的长是() A .4 B .6 C .7 D .85.如图,⊙O 的半径为4,点A 为⊙O 上一点, OD ⊥弦BC 于D ,如果∠BAC=60°,那么OD 的长是( )A.4 B.C.2 D6.下列命题:①长度相等的弧是等弧②半圆既包括圆弧又包括直径③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形其中正确的命题共有()A.0个B.1个C.2个D.3个7.如图,AB,CD是⊙O的直径,若∠AOC=55°,则的度数为()A.55°B.110°C.125°D.135°8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC =∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个9.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A.57°B.66°C.67°D.44°10.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定11.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8B.6C.12D.1012.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1B C .2 D .二、填空题13.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠︒=,则阴影部分的面积为_____(结果保留π).15.如图,正六边形ABCDEF 内接于⊙O ,边长AB =2,则扇形AOB 的面积为_____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.三、解答题17.如图,在⊙O 中,已知∠ACB=∠CDB=60°,AC=3,求△ABC 的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:(1)桥拱半径.(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?19.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.21.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=.22.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,方程20ax bx c+-=是关于x 的一元二次方程.(1)判断方程20ax bx c+-=的根的情况为(填序号);①方程有两个相等的实数根;②方程有两个不相等的实数根;③方程无实数根;④无法判断(2)如图,若△ABC内接于半径为2的⊙O,直径BD⊥AC于点E,且∠DAC=60°,求方程20ax bx c+-=的根;(3)若14x c=是方程20ax bx c+-=的一个根,△ABC的三边a、b、c的长均为整数,试求a、b、c的值.答案1.D2.B3.A4.D5.C6.B7.C8.A9.A10.B11.C12.B 13.36︒十14.34π-15.23π.16.417.∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°.∴△ABC为等边三角形.AC=3,∴△ABC的周长为9.18.(1)∵拱桥的跨度AB=16m,∴AD=8m,因为拱高CD=4m,利用勾股定理可得:AO2-(OC-CD)2=82,解得OA=10(m).所以桥拱半径为10m;(2)设河水上涨到EF位置(如图所示),这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),∴EM=12EF=6m,连接OE,则有OE=10m,OM2=OE2-EM2=102-62=64,所以OM=8(m)OD=OC-CD=10-4=6(m),OM-OD=8-6=2(m).即水面涨高了2m.19.(1)证明:连接OC,∵D为BC的中点,∴CD=BD,∴∠DOB=12∠BOC,∵∠A=12∠BOC,∴∠A=∠DOB;(2)DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)如图,连接OD,OF;在Rt△ABC中,∠C=90°,AC=12cm,BC=9cm;根据勾股定理=15cm;四边形OFCD中,OD=OF,∠ODC=∠OFC=∠C=90°;则四边形OFCD是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;则CD=CF=12(AC+BC-AB);即:r=12(12+9-15)=3cm.(2)当AC=b,BC=a,AB=c,由以上可得:CD=CF=12(AC+BC-AB);即:r=12(a+b-c).则⊙O的半径r为:12(a+b-c).21.(1)证明:连接OF,AO,∵AB=AF=EF,∴AB AF EF==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵AB AF EF==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积=26048 3603ππ⨯=.22.(1)△=b2-4a•(-c)=b+4ac,∵a、b、c分别为∠A、∠B、∠C的对边,即a、b、c都是正数,∴△>0,∴方程有两个不相等的实数根;故选②;(2)连接OA,如图,∵BD ⊥AC ,∴弧AB=弧CB ,弧AD=弧CD ,∴AB=CB ,∠ABD=∠DAC=60°,∴△OAB 为等边三角形,∴AB=OB=2,∴AE=2∴AC=2AE=即a=2,b=c=2,方程20ax bx c +-=变形为2220x +-=,整理得:210x -=,解得1x =2x = (3)把14x c =代入20ax bx c +-=得:210164ac bc c +-= 整理得:44ac b =-,则4-b >0, 即b <4,∵a 、b 、c 的长均为整数,∴b=1,2,3,当b=1时,ac=12,则a=1,c=12;a=2,c=6;a=3,c=4;a=6,c=2;a=12,c=1,都不符合三角形三边的关系,舍去;当b=2时,ac=8,则a=1,c=8;a=2,c=4;a=4,c=2;a=8,c=1,都不符合三角形三边的关系,舍去;当b=3时,ac=4,则a=1,c=4;a=2,c=2;a=4,c=1,其中a=2,c=2符合三角形三边的关系,∴a=2,b=3,c=2人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC =3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB 的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.。

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。

人教版数学九年级上册第二十四章《 圆》单元检测题(含答案)

人教版数学九年级上册第二十四章《 圆》单元检测题(含答案)

A.
B.
C.
D.
5.如图,点 A,B,C 均在⊙O 上,若∠A=66°,则∠OCB 的度数是( )
A. 24° B. 28° C. 33° D. 48° 6.如图,四边形 ABCD 内接于⊙O,点 I 是 ABC 的内心,∠AIC=124°,点 E 在 AD 的延长线上,则∠CDE 的度数为( )
在 Rt OBD 中,OD=
=1,
∵将弧ࠀༀ沿 BC 折叠后刚好经过 AB 的中点 D,
∴弧 AC 和弧 CD 所在的圆为等圆,
∴ ༀ䁪ༀ ,
∴AC=DC,
∴AE=DE=1,
易得四边形 ODEF 为正方形,
∴OF=EF=1,
在 Rt OCF 中,CF=
=2,
∴CE=CF+EF=2+1=3, 而 BE=BD+DE=2+1=3, ∴BC=3 , 故选 B.
求证:EG 是 的切线;
延长 AB 交 GE 的延长线于点 M,若 t 䁪 ,ༀt 䁪 ,求 EM 的值.
19.如图,BE 是 O 的直径,点 A 和点 D 是⊙O 上的两点,过点 A 作⊙O 的切线交 BE 延长线于点. (1)若∠ADE=25°,求∠C 的度数; (2)若 AB=AC,CE=2,求⊙O 半径的长.
21.如图,BD 为 ABC 外接圆⊙O 的直径,且∠BAE=∠C. (1)求证:AE 与⊙O 相切于点 A; (2)若 AE∥BC,BC=2 ,AC=2 ,求 AD 的长.
1.B 【解析】 【分析】
参考答案
如图,连接 OP 交⊙P 于 M′,连接 OM.因为 OA=AB,CM=CB,所以 AC= OM,所以当
A. 80° B. 120° C. 100° D. 90° 9.如图,在⊙O 中,点 C 在优弧 ࠀ上,将弧ࠀༀ沿 BC 折叠后刚好经过 AB 的中点 D.若⊙O 的半径为 , AB=4,则 BC 的长是( )

2018年人教版九年级上册《第二十四章圆》综合检测试卷(含答案)

2018年人教版九年级上册《第二十四章圆》综合检测试卷(含答案)

第二十四章综合检测试卷(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.下列命题中正确的有(A)(1)平分弦的直径垂直于弦;(2)经过半径一端且与这条半径垂直的直线是圆的切线;(3)在同圆或等圆中,圆周角等于圆心角的一半;(4)平面内三点确定一个圆;(5)三角形的外心到各个顶点的距离相等.A.1个B.2个C.3个D.4个2.【2016·江苏南京中考】已知正六边形的边长为2,则它的内切圆的半径为(B)A.1B.3C.2D.233.【2017·江苏宿迁中考】若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是(D)A.2cm B.3cmC.4cm D.6cm4.【2016·福建三明中考】如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是(A)A.2B.3C.4D.5第4题第5题第6题5.如图,线段AB是⊙O的直径,点C、D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于(A)A.20°B.25°C.30°D.40°6.如图,直线PA、PB是⊙O的两条切线,A、B分别为切点,∠APB=120°,OP=10cm,则弦AB的长为(D)cm B.103cmA.532C.5cm D.53cm7.【辽宁营口中考】将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是(B)A.2cm,3πcm2B.22cm,3πcm2C.22cm,6πcm2D.10cm,6πcm28.小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是(B)9.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内OB︵上一点,∠BMO=120°,则⊙C的半径为(A)第9题A.4B.5C.6D.2310.【贵州遵义中考】将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=3,则四边形AB1ED的内切圆半径为(B)第10题A.3+12B.3-32C.3+13D.3-33二、填空题(每小题3分,共24分)11.已知扇形的半径为3cm,其弧长为2πcm,则此扇形的圆心角等于__120__度,扇形的面积是__3πcm2__.(结果保留π)12.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是__180°__.13.【2017·四川雅安中考】⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是__4≤OP≤5__.14.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD︵的度数为__50°__.第14题15.【2016·江苏盐城中考】如图,正六边形ABCDEF 内接于半径为4的圆,则B 、E 两点间的距离为__8__.第15题16.【2016·黑龙江绥化中考】如图,在半径AC 为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积是__π-1__.第16题17.如图,直线AB 、CD 相交于点O ,∠AOC =30°,半径为1cm 的⊙P 的圆心在射线OA 上,开始时,PO =6cm.如果⊙P 以1cm/s 的速度沿由A 向B 的方向移动,那么当⊙P 的运动时间t (秒)满足条件__4<t <8__时,⊙P 与直线CD 相交.第17题18.【山东莱芜中考】如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在AB ︵上,CD ⊥OA ,垂足为点D ,当△OCD 的面积最大时,AC ︵的长为__14πr__.第18题三、解答题(共56分)19.(6分)如图所示,残缺的圆形轮片上,弦AB 的垂直平分线CD 交圆形轮片于点C ,垂足为点D ,解答下列问题:(1)用尺规作图找出圆形轮片的圆心O 的位置并将圆形轮片所在的圆补全;(要求:保留作图痕迹,不写作法)(2)若弦AB =8,CD =3,求圆形轮片所在圆的半径R .第19题解:(1)图略.(2)连结OA .∵CD 是弦AB 的垂直平分线,AB =8,∴AD =12AB =4.在Rt △ADO 中,AO =R ,AD =4,DO =R -3,根据勾股定理,得R 2=16+(R -3)2,解得R =256.20.(8分)【2016·福建福州中考】如图,正方形ABCD 内接于⊙O ,M 为AD ︵中点,连结BM 、CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2时,求BM ︵的长.第20题(1)证明:∵四边形ABCD 是正方形,∴AB =CD ,∴AB ︵=CD ︵.∵M 为AD ︵中点,∴AM ︵=DM ︵,∴AB ︵+AM ︵=CD ︵+DM ︵,即BM ︵=CM ︵,∴BM =CM .(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π.∵AM ︵=DM ︵=12AD ︵=12AB ︵,∴BM ︵=AB ︵+AM ︵=32AB ︵,∴BM ︵的长=32×14×4π=38×4π=32π.21.(8分)已知:△ABC 内接于⊙O ,过点A 作直线EF .(1)如图1,AB 为直径,要使EF 为⊙O 的切线,还需添加的条件是(只需写出两种情况):①__BA ⊥EF __;②__∠CAE =∠B __;(2)如图2,AB 是非直径的弦,∠CAE =∠B ,求证:EF 是⊙O 的切线.第21题证明:连结AO 并延长交⊙O 于点D ,连结CD ,则AD 为⊙O 的直径,∴∠D +∠DAC =90°.∵∠D =∠B ,∠CAE =∠B ,∴∠D =∠CAE ,∴∠DAC +∠EAC =90°,即∠DAE =90°,∴EF 是⊙O 的切线.22.(10分)【2016·江西中考】如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P作PE ⊥AB ,垂足为点E ,射线EP 交AC ︵于点F ,交过点C 的切线于点D .第22题(1)求证:DC =DP ;(2)若∠CAB =30°,当F 是AC ︵的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由.(1)证明:连结OC.∵∠OAC =∠ACO ,PE ⊥OE ,OC ⊥CD ,∴∠APE =∠PCD.∵∠APE =∠DPC ,∴∠DPC =∠PCD ,∴DC =DP.(2)解:以A 、O 、C 、F 为顶点的四边形是菱形.理由:连结BC 、OF 、AF.∵∠CAB =30°∴∠B =60°,∴△OBC 为等边三角形,∴∠AOC =120°.∵F 是AC ︵的中点,∴∠AOF =∠COF =60°,∴△AOF 与△COF 均为等边三角形,∴AF =AO =OC =CF ,∴四边形AOCF 为菱形.23.(12分)如图,点B 、C 、D 都在半径为6的⊙O 上,过点C 作AC ∥BD 交OB 的延长线于点A ,连结CD ,已知∠CDB =∠OBD =30°.第23题(1)求证:AC 是⊙O 的切线;(2)求弦BD 的长;(3)求图中阴影部分的面积.(1)证明:连结OC 交BD 于点E .∵∠CDB =∠OBD =30°,∴∠COB =2∠CDB =60°,CD ∥AB .又∵AC ∥BD ,∴四边形ABDC 为平行四边形,∴∠A =∠D =30°,∴∠OCA =180°-∠A -∠COB =90°,即OC ⊥AC .又∵OC 是⊙O 的半径,∴AC 是⊙O 的切线.(2)解:由(1)知,OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD ,∴BE =DE .∵在Rt △BEO 中,∠OBD =30°,OB =6,∴BE =33,∴BD =2BE =6 3.(3)解:由(2)知,BE =DE .又∠OEB =∠CED ,∠CDB =∠OBD ,∴△OEB ≌△CED ,∴S 阴影=S 扇形BOC =60π·62360=6π.24.(12分)【2017·江苏盐城中考】如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G .第24题(1)求证:BC 是⊙F 的切线;(2)若点A 、D 的坐标分别为A (0,-1),D (2,0),求⊙F 的半径;(3)试探究线段AG 、AD 、CD 三者之间满足的等量关系,并证明你的结论.(1)证明:连结EF .∵AE 平分∠BAC ,∴∠FAE =∠CAE .∵FA =FE ,∴∠FAE =∠FEA ,∴∠FEA =∠EAC ,∴FE ∥AC ,∴∠FEB =∠C =90°,即BC 是⊙F 的切线.(2)解:连结FD .设⊙F 的半径为r ,则r 2=(r -1)2+22,解得r =52,即⊙F 的半径为52.(3)解:AG =AD +2CD .证明:作FR ⊥AD 于点R ,则∠FRC =90°.又∠FEC =∠C =90°,∴四边形RCEF是矩形,∴EF =RC =RD +CD .∵FR ⊥AD ,∴AR =RD ,∴EF =RD +CD =12AD +CD ,∴AG =2FE =AD +2CD .。

人教版九年级数学上册 第二十四章 圆 达标测试卷 (有答案)

人教版九年级数学上册 第二十四章 圆 达标测试卷 (有答案)

第二十四章达标检测卷一、选择题(每题3分,共30分) 1.下列说法中不正确的是( )A .圆是轴对称图形B .三点确定一个圆C .半径相等的两个圆是等圆D .每个圆都有无数条对称轴2.若⊙O 的面积为25π,在同一平面内有一个点P ,且点P 到圆心O 的距离为4.9,则点P 与⊙O 的位置关系为( ) A .点P 在⊙O 外 B .点P 在⊙O 上 C .点P 在⊙O 内D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°(第3题) (第4题) (第5题) (第6题)4.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为点N ,则ON =( ) A .5B .7C .9D .115.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边BC 上,CD =3,⊙A的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( ) A .1<r <4B .2<r <4C .1<r <8D .2<r <86.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为( ) A .45°B .50°C .55°D .60°7.如图,⊙O 与矩形ABCD 的边相切于点E ,F ,G ,点P 是EFG ︵上一点,则∠P 的度数是( ) A .45°B .60°C .30°D .无法确定8.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( ) A.π3B.3π3C.2π3D .π(第7题) (第8题) (第10题)9.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( ) A .60°B .90°C .120°D .180°10.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( ) A.24329B.81329C.8129D.81328二、填空题(每题3分,共30分)11.如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4∶3∶5,则∠D 的度数是________.(第11题) (第12题) (第13题) (第14题)12.如图,PA ,PB 是⊙O 的切线,切点分别为A ,B ,若OA =2,∠P =60°,则AB ︵的长为________.13.如图,⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为________.14.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是________.15.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过________mm.16.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°. 17.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为________.(第16题) (第17题) (第18题) (第19题)18.如图,AC ⊥BC ,AC =BC =4,以BC 长为直径作半圆,圆心为点O .以点C 为圆心,BC 长为半径作弧AB ,过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分的面积是________.19.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径是7,则GE +F H 的最大值是________.(第20题)20.如图所示,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________.(填序号)三、解答题(21、22题每题8分,23、24题每题10分,其余每题12分,共60分) 21.如图,AB 是圆O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连接BC 、BD . (1)求证:BC =BD ;(2)已知CD =6,O H =2,求圆O 的半径长.(第21题)22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,恰有AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=25,OA=5,求⊙O的半径.(第23题) 24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证:OA=OB;(2)已知AB=43,OA=4,求阴影部分的面积.(第24题)25.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第25题)26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时,如图①,连接OC,求∠DOC的度数;(2)当直线CD与半圆O相交时,如图②,设另一交点为E,连接AE,OC,若AE∥OC.①试猜想AE与OD的数量关系,并说明理由;②求∠ODC的度数.(第26题)答案一、1.B 2.C 3.B 4.A 5.B 6.B7.A 点拨:连接OE ,OG ,易得OE ⊥AB ,OG ⊥AD .∵四边形ABCD 是矩形,∴∠A=90°,∴∠EOG =90°,∴∠P =12∠EOG =45°. 8.B 点拨:∵∠ACB =90°,∠ABC =30°,AB =2,∴AC =12AB =1.∴BC =AB 2-AC 2=22-12= 3.∴点B 转过的路径长为60π·3180=3π3. 9.C10.D 点拨:∵正六边形A 1B 1C 1D 1E 1F 1的边长为2=(3)1-121-2,∴正六边形A 2B 2C 2D 2E 2F 2的外接圆的半径为3,则正六边形A 2B 2C 2D 2E 2F 2的边长为3=(3)2-122-2,同理,正六边形A 3B 3C 3D 3E 3F 3的边长为32=(3)3-123-2,…,正六边形A nB nC nD nE nF n 的边长为(3)n -12n -2,则当n =10时,正六边形A 10B 10C 10D 10E 10F 10的边长为(3)10-1210-2=(3)8·328=34·328=81328,故选D. 二、11.120° 12.43π 13.65° 14.35° 15.1216.215 点拨:∵A ,B ,C ,D 四点共圆,∴∠B +∠ADC =180°.又∵A ,C ,D ,E 四点共圆,∴∠E +∠ACD =180°.∴∠ACD +∠ADC +∠B +∠E =360°.∵∠ACD +∠ADC =180°-35°=145°,∴∠B +∠E =360°-145°=215°. 17.15π 18.53π-23 19.10.520.①②④ 点拨:连接OM ,ON ,易证Rt △OMC ≌Rt △OND .可得MC =ND ,故①正确.在Rt △MOC 中,CO =12MO .得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以A M ︵=M N ︵=NB ︵.故②正确.易得CD =12AB =OA =OM ,因为MC <OM ,所以MC <CD .所以四边形MCDN 不是正方形.故③错误.易得MN =CD =12AB ,故④正确.三、21.(1)证明:∵AB 是圆O 的直径,CD 为弦,AB ⊥CD ,∴BC ︵=BD ︵,∴BC =BD .(第21题)(2)解:如图,连接OC .∵AB 是圆O 的直径,CD 为弦,AB ⊥CD ,CD =6, ∴CH =3,∴OC =OH 2+CH 2=22+32=13,即圆O 的半径长为13.22.解:设经过A ,B 两点的直线对应的函数解析式为y =kx +b .∵A (2,3),B (-3,-7), ∴⎩⎨⎧2k +b =3,-3k +b =-7.解得⎩⎨⎧k =2,b =-1.∴经过A ,B 两点的直线对应的函数解析式为y =2x -1. 当x =5时,y =2×5-1=9≠11, ∴点C (5,11)不在直线AB 上, 即A ,B ,C 三点不在同一条直线上.∴平面直角坐标系内的三个点A (2,3),B (-3,-7),C (5,11)可以确定一个圆. 23.(1)证明:如图,连接OB .∵OA ⊥l , ∴∠PAC =90°, ∴∠APC +∠ACP =90°. ∵AB =AC ,OB =OP ,∴∠ABC =∠ACB ,∠OBP =∠OPB . ∵∠BPO =∠APC ,∴∠ABC +∠OBP =90°,即∠OBA =90°, ∴OB ⊥AB , ∴AB 是⊙O 的切线.(第23题)(2)解:设⊙O 的半径为r ,则AP =5-r ,OB =r . 在Rt △OBA 中,AB 2=OA 2-OB 2=52-r 2, 在Rt △APC 中,AC 2=PC 2-AP 2=(25)2-(5-r )2. ∵AB =AC ,∴52-r 2=(25)2-(5-r )2, 解得r =3,即⊙O 的半径为3. 24.(1)证明:连接OC .∵AB 与⊙O 相切于点C , ∴OC ⊥AB . ∵CD =CE , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠ACO =∠BCO =90°,∴△AOC ≌△BOC ,∴OA =OB .(2)解:∵△AOC ≌△BOC ,∴AC =BC =12AB =2 3.∵OB =OA =4,且△OCB 是直角三角形,∴根据勾股定理,得OC =OB 2-BC 2=2,∴OC =12OB ,∴∠B =30°, ∴∠BOC =60°. ∴S 阴影=S △BOC -S 扇形COE =12×2×23-60π×22360=23-23π. 25.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交⊙E 于点C ,连接AE , 则CF =20米.由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40米.设圆的半径是r ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE-CF)2,即r2=402+(r-20)2.解得r=50米.∴桥拱的半径为50米.(第25题)(2)这艘轮船能顺利通过.理由如下:如图,设MN=60米,MN∥AB,EC与MN的交点为D,连接EM,易知DE⊥MN,∴MD=30米,∴DE=E M2-D M2=502-302=40(米).∵EF=EC-CF=50-20=30(米),∴DF=DE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.解:(1)∵直线CD与半圆O相切,∴∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD,∴∠DOC=∠ODC=45°,即∠DOC的度数是45°.(2)①AE=OD.理由如下:如图,连接OE.∵OC=OA,CD=OA,∴OC=CD,∴∠COD=∠CDO.∵AE∥OC,∴∠EAD=∠COD,∴∠EAD=∠CDO,∴AE=DE.∵OA=OE,OC=CD,∴∠DOE=2∠EAD,∠OCE=2∠CDO,∴∠DOE=∠OCE.∵OC=OE,∴∠DEO=∠OCE,∴∠DOE=∠DEO,∴OD=DE,∴AE=OD.②由①得,∠DOE=∠DEO=2∠ODC. ∵∠DOE+∠DEO+∠ODC=180°,∴2∠ODC+2∠ODC+∠ODC=180°,∴∠ODC=36°.(第26题)。

人教版九年级数学上册 第二十四章 圆 单元检测 (含答案)

人教版九年级数学上册 第二十四章 圆  单元检测 (含答案)

第二十四章圆一、单选题1.下列命题中,不正确的是( )A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对2.如图,AB是如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为弧BC的中点,点P是直径AB上一动点,则PC+PD的最小值是()A.1 2353.如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P的面积,那么k的值是( )A.6 5B.1 2C.5 6D.24.已知⊙O的直径为10,圆心O到弦AB的距离OM为3,则弦AB的长是()A.4 B.6 C.7 D.85.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.4 B.C.2 D6.下列命题:①长度相等的弧是等弧②半圆既包括圆弧又包括直径③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形其中正确的命题共有()A.0个B.1个C.2个D.3个7.如图,AB,CD是⊙O的直径,若∠AOC=55°,则的度数为()A.55°B.110°C.125°D.135°8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD=CD =OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个9.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A .57°B .66°C .67°D .44°10.⊙O 的半径为5cm ,点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( ) A .点A 在圆上 B .点A 在圆内 C .点A 在圆外 D .无法确定11.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =6,则△PCD 的周长为( )A.8B.6C.12D.1012.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1 BC .2D .二、填空题13.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠︒=,则阴影部分的面积为_____(结果保留π).15.如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为_____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.三、解答题17.如图,在⊙O中,已知∠ACB=∠CDB=60°,AC=3,求△ABC的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:(1)桥拱半径.(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?19.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.21.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=.22.已知△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,方程20ax bx c +-=是关于x 的一元二次方程.(1)判断方程20ax bx c +-=的根的情况为 (填序号); ①方程有两个相等的实数根; ②方程有两个不相等的实数根; ③方程无实数根; ④无法判断(2)如图,若△ABC 内接于半径为2的⊙O ,直径BD ⊥AC 于点E ,且∠DAC=60°,求方程20ax bx c +-=的根;(3)若14x c =是方程20ax bx c +-=的一个根,△ABC 的三边a 、b 、c 的长均为整数,试求a 、b 、c 的值. 答案 1.D 2.B 3.A4.D5.C6.B7.C8.A9.A10.B11.C12.B 13.36︒十14.93 34π-15.23π.16.417.∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°.∴△ABC为等边三角形.AC=3,∴△ABC的周长为9.18.(1)∵拱桥的跨度AB=16m,∴AD=8m,因为拱高CD=4m,利用勾股定理可得:AO2-(OC-CD)2=82,解得OA=10(m).所以桥拱半径为10m;(2)设河水上涨到EF位置(如图所示),这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),∴EM=12EF=6m,连接OE,则有OE=10m,OM2=OE2-EM2=102-62=64,所以OM=8(m)OD=OC-CD=10-4=6(m),OM-OD=8-6=2(m).即水面涨高了2m.19.(1)证明:连接OC,∵D为BC的中点,∴CD=BD,∴∠DOB=12∠BOC,∵∠A=12∠BOC,∴∠A=∠DOB;(2)DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)如图,连接OD,OF;在Rt△ABC中,∠C=90°,AC=12cm,BC=9cm;根据勾股定理=15cm;四边形OFCD中,OD=OF,∠ODC=∠OFC=∠C=90°;则四边形OFCD是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;则CD=CF=12(AC+BC-AB);即:r=12(12+9-15)=3cm.(2)当AC=b,BC=a,AB=c,由以上可得:CD=CF=12(AC+BC-AB);即:r=12(a+b-c).则⊙O的半径r为:12(a+b-c).21.(1)证明:连接OF,AO,∵AB=AF=EF,∴AB AF EF==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵AB AF EF==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积=26048 3603ππ⨯=.22.(1)△=b2-4a•(-c)=b+4ac,∵a、b、c分别为∠A、∠B、∠C的对边,即a、b、c都是正数,∴△>0,∴方程有两个不相等的实数根;故选②;(2)连接OA,如图,∵BD ⊥AC ,∴弧AB=弧CB ,弧AD=弧CD ,∴AB=CB ,∠ABD=∠DAC=60°,∴△OAB 为等边三角形,∴AB=OB=2,∴3∴AC=2AE=23即a=2,b=c=2,方程20ax bx c +-=变形为2220x +-=,整理得:210x +-=,解得1x =2x = (3)把14x c =代入20ax bx c +-=得:210164ac bc c +-= 整理得:44ac b =-,则4-b >0, 即b <4,∵a、b、c的长均为整数,∴b=1,2,3,当b=1时,ac=12,则a=1,c=12;a=2,c=6;a=3,c=4;a=6,c=2;a=12,c=1,都不符合三角形三边的关系,舍去;当b=2时,ac=8,则a=1,c=8;a=2,c=4;a=4,c=2;a=8,c=1,都不符合三角形三边的关系,舍去;当b=3时,ac=4,则a=1,c=4;a=2,c=2;a=4,c=1,其中a=2,c=2符合三角形三边的关系,∴a=2,b=3,c=2。

人教版九年级数学上册第二十四章 圆 单元测试题【含答案】

人教版九年级数学上册第二十四章  圆 单元测试题【含答案】

人教版九年级数学上册第二十四章圆单元测试题第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50° C.40° D.20°2.如图,BC是半圆O的直径,D,E是弧BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A.35°B.38°C.40°D.42°3.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数()A.1 B.2 C.3 D.44.如图,△ABC是圆O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为A.32 °B.31°C.29°D.61°5.如图1,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )图1A .20°B .35°C .40°D .55°6 如图2,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB ︵上一点,∠AOP =55°,则∠POB 的度数为( )图2A .30°B .45°C .55°D .60°7 如图3,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )图3A .56°B .62°C .68°D .78°8 如图4,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )图4A .6B .8C .5 2D .5 39 如图5,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为( )图5A .6πB .3 3π C.2 3π D.2π10 如图6,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则CD ︵的长度为( )图6A .π B.2π C .2 2π D.4π第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为________.12.如图10,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =43°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是________.图1013.如图11是一个汽油桶的截面图,其上方有一个进油孔,该汽油桶的截面直径为50 dm ,此时汽油桶内液面宽度AB =40 dm ,现在从进油孔处倒油,当液面AB =48 dm 时,液面上升了________dm .图1114.如图12,将弧长为6π,圆心角为120°的扇形纸片OAB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的高是________.图1215.已知直线y =kx(k ≠0)经过点(12,-5),将直线向上平移m(m >0)个单位长度,若平移后得到的直线与半径为6的⊙O 相交(点O 为坐标原点),则m 的取值范围为________. 16.如图13,正方形ABCD 的边长为4 cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过点A 作半圆的切线,与半圆相切于点F ,与DC 相交于点E ,则△ADE 的面积为________cm 2.图13三、解答题(共52分)17.(5分)如图14,A 是半径为3的⊙O 上的点,尺规作图:作⊙O 的内接正六边形ABCDEF.图1418.(5分)如图15,P 是⊙O 外的一点,PA ,PB 分别与⊙O 相切于点A ,B ,C 是AB ︵上的任意一点,过点C 的切线分别交PA ,PB 于点D ,E.若PA =4,求△PED 的周长.图1519.(5分)如图16所示,⊙O 的直径AB 和弦CD 交于点E ,已知AE =6 cm ,EB =2 cm ,∠CEA =30°,求CD 的长.图1620.(5分)如图17,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于点D ,连接BD 并延长至点F ,使得DF =BD ,连接CF ,BE. 求证:(1)DB =DE ; (2)直线CF 为⊙O 的切线.图1721.(7分)如图18,⊙O 是正五边形ABCDE 的外接圆,F 是AB ︵的中点,连接CF ,EF. (1)请直接写出:∠CFE =________°;(2)求证:EF =CF ;(3)若⊙O 的半径为5,求CF ︵的长.图1822.(7分)如图19,在△ABC 中,∠ABC =90°,∠A =30°,AC =2. (1)如图(a ),将△ABC 绕点C 顺时针旋转120°得△A ′B ′C. ①求点B 旋转经过的路径长;②连接BB ′,求线段BB ′的长.(2)如图(b ),过点C 作AC 的垂线与AB 的延长线交于点D ,将△ACD 绕点C 顺时针旋转90°得△A ′CD ′.在图(b )中画出线段AD 绕点C 旋转所形成的图形(用阴影表示),并求出该图形的面积.图1923.(8分)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图20(a),A,B,C,D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB的同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1)如图(b),在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C 的坐标为(3,0).①在图(b)中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为________.(2)如图(c),在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.P为x轴正半轴上的一个动点,当∠APB达到最大时,求此时点P的坐标.图2024.(10分)如图21①至图③,⊙O均作无滑动滚动,⊙O1,⊙O2,⊙O3,⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图①,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周.(2)如图②,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转n360周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转________周;若AB=l,则⊙O自转________周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转________周;若∠ABC=60°,则⊙O 在点B 处自转________周.(2)如图③,∠ABC =90°,AB =BC =12c.⊙O 从⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 4的位置,⊙O 自转________周. 拓展联想:(1)如图④,△ABC 的周长为l ,⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由. (2)如图⑤,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D 的位置,直接写出⊙O 自转的周数.图21答案1-10 BCAAB BCBAB 11.30°或150° 12.43°≤x ≤90° 13.8或22 14.6 2 15.0<m <13216.617.解:首先连接OA ,然后以点A 为圆心,OA 长为半径画弧,交⊙O 于B ,F 两点,再分别以点B ,F 为圆心,OA 长为半径画弧,交⊙O 于C ,E 两点,再以点E 为圆心,OA 长为半径画弧,交⊙O 于点D ,连接AB ,BC ,CD ,DE ,EF ,FA ,则正六边形ABCDEF 即为所求.18.解:∵PA ,PB 分别与⊙O 相切于点A ,B , ∴PA =PB =4.∵过点C 的切线分别交PA ,PB 于点D ,E , ∴DC =DA ,EC =EB ,∴△PED 的周长=PD +DE +PE =PD +DC +EC +PE =PD +DA +EB +PE =PA +PB =4+ 4=8. 19.解:∵AE =6 cm ,EB =2 cm ,∴OA =12×(6+2)=4(cm),∴OE =4-2=2(cm).如图,过点O 作OF ⊥CD 于点F ,可得∠OFE =90°,即△OEF 为直角三角形. ∵∠CEA =30°, ∴OF =12OE =1 cm.连接OC ,在Rt △COF 中,根据勾股定理可得CF =OC 2-OF 2=42-12=15(cm). ∴CD =2CF =215 cm.20.证明:(1)∵点E 是△ABC 的内心, ∴∠BAE =∠CAE ,∠EBA =∠EBC . ∵∠BED =∠BAE +∠EBA ,∠DBE =∠EBC +∠DBC ,∠DBC =∠CAE , ∴∠BED =∠DBE , ∴DB =DE . (2)如图,连接CD .由(1)知∠DAB =∠DAC , ∴BD ︵=CD ︵, ∴BD =CD . ∵BD =DF , ∴CD =BD =DF ,∴∠DBC =∠BCD ,∠DCF =∠F .又∵∠DBC +∠BCD +∠DCF +∠F =180°, ∴∠BCD +∠DCF =90°, ∴∠BCF =90°,即BC ⊥CF , ∴直线CF 是⊙O 的切线. 21.解:(1)72(2)证明:∵五边形ABCDE 是正五边形, ∴AE =BC , ∴AE ︵=BC ︵. ∵F 是AB ︵的中点, ∴AF ︵=BF ︵, ∴AE ︵+AF ︵=BC ︵+BF ︵,即EF ︵=CF ︵,∴EF =CF .(3)∵⊙O 是正五边形ABCDE 的外接圆,∴AB ︵=BC ︵=CD ︵=DE ︵=AE ︵,∴AB ︵的长=BC ︵的长=15×2πr =2π, ∴BF ︵的长=12AB ︵的长=π, ∴CF ︵的长=BF ︵的长+BC ︵的长=3π.22.解:(1)①∵AC =2,∠B =90°,∠A =30°,∴BC =1,∴点B 旋转的路径长为13×2π×1=23π. ②如图(a)所示,连接BB ′,交A ′C 于点E .在△BCB ′中,CB =CB ′,∠BCB ′=120°,A ′C ⊥BB ′,∴BE =32,∴BB ′=2BE = 3. (2)如图(b)所示.∵S 1=S 2,∴S 2+S 4=S 1+S 4=14π(AC 2-BC 2)=14π×(22-12)=34π. 在Rt △ACD 中,CD =2 33,S 3=S 扇形CED ′-S △CED ′=16π×⎝ ⎛⎭⎪⎫2 332-12×2 33×1=29π-33, ∴S 2+S 3+S 4=34π+29π-33=3536π-33. 23.解:(1)①如图(a)所示.②(7,0)(2)由阅读材料可知,当以AB 为弦的圆与x 轴正半轴相切,切点为P 时,∠APB 达到最大值.如图(b),过圆心C 作CD ⊥y 轴于点D ,连接CP ,CB .∵点A 的坐标为(0,m ),点B 的坐标为(0,n ),∴点D 的坐标是(0,m +n 2), 即BC =PC =m +n2.在Rt △BCD 中,BC =m +n 2,BD =m -n 2, 则CD =BC 2-BD 2=mn ,则OP =CD =mn .故点P 的坐标是(mn ,0).24.解:实践应用(1)2 l c 16 13(2)54拓展联想(1)⊙O 自转了(l c +1)周.理由:∵△ABC 的周长为l ,∴⊙O 在三边上自转了l c周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O 自转了360360=1(周). ∴⊙O 共自转了(l c+1)周. (2)⎝ ⎛⎭⎪⎫l c +1周.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十四章圆章末检测题一、选择题(每小题3分,共30分)1.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.42.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内 B.P在圆上 C.P在圆外 D.无法确定3.如图,A,B,C在⊙O上,∠OAB=22.5°,则∠ACB的度数是()A.11.5° B.112.5° C.122.5° D.135°第3题图第5题图第7题图第8题图4.正多边形的一边所对的中心角与它的一个外角的关系是()A.相等 B.互余 C.互补 D.互余或互补5.如图所示,在一圆形展厅的圆形边缘上安装监视器,每台监视器的监控角度是35°,为了监视整个展厅,最少需要在圆形的边缘上安装几个这样的监视器()A.4台 B.5台 C.6台 D.7台6.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离 B.相交 C.相切 D.外切7.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于()A.r B..3r8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC,BC为直径画半圆,则图中阴影部分的面积为()A.10π-8 B.10π-16 C.10π D.5π第9题图第10题图10.如图,已知直线y=34x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是()A.8 B.12 C.212D.172二、填空题(每小题3分,共24分)11.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设__________________.12.如图,P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=________.第12题图第13题图第14题图第15题图13.如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为___________.14.如图同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则圆环的面积为____________.15.如图,正五边形ABCDE内接于⊙O,F是⊙O上一点,则∠CFD=____°.16.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于10cm,则PA=__________ cm.第16题图第17题图第18题图17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为_______________.18.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为__________.三、解答题(共66分)19.(6分)如图,一块直角三角尺形状的木板余料,木工师傅要在此余料上锯出一块圆形的木板制作凳面,要想使锯出的凳面的面积最大.(1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法).(2)若此Rt△ABC的直角边分别为30cm和40cm,试求此圆凳面的面积.第19题图第20题图20.(6分)如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD,BC于F,G,延长BA交圆于E.求证:EF=FG.21.(8分)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.第21题图第22题图第23题图22.(8分)如图,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA,PB,PC,PD,当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.23.(8分)如图,半径为R的圆内,ABCDEF是正六边形,EFGH是正方形.(1)求正六边形与正方形的面积比;(2)连接OF,OG,求∠OGF.24.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.第24题图第25题图第26题图25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.附加题(15分,不计入总分)26.(12分)如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到点A立即停止运动.(1)如果∠POA=90°,求点P运动的时间;(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.参考答案一、选择题1.C ;提示:①②③正确,不在同一直线上的三点才能确定一个圆,故④错误. 2.C ;提示:因为OP=7>5,所以点P 与⊙O 的位置关系是点在圆外. 3.B ;提示::∵OA=OB ,∴∠OAB=∠OBA=22.5°,∴∠AOB=135°,在优弧AB 上任取点E ,连接AE 、BE ,则∠AEB=12∠AOB=67.5°,又∵∠AEB+∠ACB=180°,∴∠ACB=112.5°,4.A ;提示:设正多边形是正n 边形,则它的一边所对的中心角是360n︒,正多边形的外角和是360°,则每个外角也是360n︒,所以正多边形的一边所对的中心角与它的一个外角相等.5.C ;提示:如图,连接BO ,CO ,∵∠BAC=35°,∴∠BOC=2∠BAC=70°.∵360÷70=517,∴最少需要在圆形的边缘上安装6个这样的监视器.6.C ;提示:∵⊙O 的直径是10,∴⊙O 的半径r=5.∵圆心O 到直线l 的距离d 是5,∴r=d ,∴直线l 和⊙O 的位置关系是相切,故选C .7.B ;提示:∵圆的半径为r ,扇形的弧长等于底面圆的周长得出2πr .设圆锥的母线长为R ,则120180Rπ=2πr ,解得:R=3r .根据勾股定理得圆锥的高为,故选B .8.D ;提示:A 、∵点C 是EB 的中点,∴OC ⊥BE.∵AB 为圆O 的直径,∴AE ⊥BE.∴OC ∥AE ,本选项正确; B 、∵BC =CE ,∴BC=CE ,本选项正确;C 、∵AD 为圆O 的切线,∴AD ⊥OA.∴∠DAE+∠EAB=90°. ∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA ,本选项正确; D 、由已知条件不能推出AC ⊥OE ,本选项错误.9.B ;提示:设各个部分的面积为:S 1、S 2、S 3、S 4、S 5,如图所示:∵两个半圆的面积和是:S 1+S 5+S 4+S 2+S 3+S 4,△ABC 的面积是S 3+S 4+S 5,阴影部分的面积是:S 1+S 2+S 4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积为12π×16+12π×4-12×8×4=10π-16. 10.C ;提示:∵直线y=34x-3与x 轴、y 轴分别交于A ,B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,-3). 即OA=4,OB=3,由勾股定理,得AB=5. 过C 作CM ⊥AB 于M ,连接AC , 则由三角形面积公式得:12×AB×CM=12×OA×OC+12×OA×OB ,∴5×CM=4×1+3×4,∴CM=165.∴⊙C 上点到直线y=34x-3的最大距离是1+165=215.∴△PAB 面积的最大值是12×5×215=212.二、填空题11.一个三角形中有两个角是直角;提示:用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.12.72°;提示:连接OC ,如图,∵PC=OD ,而OC=OD ,∴PC=CO ,∴∠1=∠P=24°,∴∠2=2∠P=48°,而OD=OC ,∴∠D=∠2=48°,∴∠DOB=∠P+∠D=72°.13.10cm ;提示:过点O 作OD ⊥AB 于点D ,连接OA ,则AD=12AB=12×8=4cm .设OA=r ,则OD=r-2,在Rt △AOD 中,OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm .故该输水管的直径为10cm. 14.9π;提示:∵大⊙O 的弦AB 切小⊙O 于P ,∴OP ⊥AB.∴AP=BP=12AB=12×6=3. ∵在Rt △OAP 中,AP 2=OA 2-OP 2,∴OA 2-OP 2=9.∴圆环的面积为:πOA 2-πOP 2=π(OA 2-OP 2)=9π.15.36;提示:如图,连接OD 、OC ;∵正五边形ABCDE 内接于圆O ,∴DC =15×⊙O 的周长.∴∠DOC=15360×°=72°.∴∠CFD=12×72°=36°. 16.5;提示:如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ;∴PA=PB ;同理,可得:DE=DA ,CE=CB ;则△PCD 的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm );∴PA=PB=5cm. 17.1或5;提示:当⊙P 位于y 轴的左侧且与y 轴相切时,平移的距离为1; 当⊙P 位于y 轴的右侧且与y 轴相切时,平移的距离为5.18.2π-4;提示:由题意得,阴影部分面积=2(S 扇形AOB -S △A0B )=2(2902360π⨯-12×2×2)=2π-4.三、解答题 19.解:(1)如图所示:(2)设三角形内切圆半径为r ,则12•r•(50+40+30)=12×30×40,解得r=10(cm ). 故此圆凳面的面积为:π×102=100π(cm 2).第19题答图 第20题答图 20.证明:连接AG .∵A 为圆心,∴AB=AG.∴∠ABG=∠AGB.∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠AGB=∠DAG ,∠EAD=∠ABG. ∴∠DAG=∠EAD ,∴EF =FG .21.解:(1)∵OA ⊥BC ,∴AC =AB .∴∠ADC =12∠AOB. ∵∠AOB=56°,∴∠ADC=28°; (2)∵OA ⊥BC ,∴CE=BE=12BC=3. 设⊙O 的半径为r ,则OE=r-1,OB=r ,在Rt △BOE 中,OE 2+BE 2=OB 2,则32+(r-1)2=r 2.解得r=5. 所以⊙O 的半径为5.22.解:当BD=4时,△PAD 是以AD 为底边的等腰三角形.理由如下: ∵P 是优弧BAC 的中点,∴PB =PC .∴PB=PC .在△PBD 与△PCA 中,4PB PC PBD PCA BD AC =⎧⎪∠=∠⎨⎪==⎩,∴△PBD ≌△PCA (SAS ).∴PD=PA.即BD=4时,△PAD 是以AD 为底边的等腰三角形.(2)∵OF=EF=FG ,∴∠OGF=2(180°-60°-90°)=15°. 24.解:(1)证明:连接OD , ∵OB=OD ,∴∠ABC=∠ODB.∵AB=AC ,∴∠ABC=∠ACB.∴∠ODB=∠ACB.∴OD ∥AC. ∵DF 是⊙O 的切线,∴DF ⊥OD.∴DF ⊥AC . (2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°.∴∠BAC=45°. ∵OA=OE ,∴∠AOE=90°.∵⊙O 的半径为4,∴S 扇形AOE ==⋅⋅3604902π4π,S △AOE =12×4×4=8 ,∴S 阴影=4π-8. 25.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠B=∠D=60°.(2)∵AB 是⊙O 的直径,∴∠ACB=90°.又∠B=60°∴∠BAC=30°. ∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA ⊥AE. ∴AE 是⊙O 的切线.(3)如图,连接OC ,∵∠ABC=60°,∴∠AOC=120°.∴劣弧AC 的长为1204180=83π.附加题26.解:(1)当∠PO A=90°时,根据弧长公式可知点P 运动的路程为⊙O 周长的14或34,设点P 运动的时间为ts.当点P 运动的路程为⊙O 周长的14时,2π•t=14•2π•12,解得t=3; 当点P 运动的路程为⊙O 周长的34时,2π•t=34•2π•12,解得t=9.∴当∠POA=90°时,点P 运动的时间为3s 或9s .(2)如图,当点P 运动的时间为2s 时,直线BP 与⊙O 相切.理由如下: 当点P 运动的时间为2s 时,点P 运动的路程为4πcm ,连接OP ,PA. ∵半径AO=12,∴⊙O 的周长为24π.∴AP 的长为⊙O 周长的16.∴∠POA=60°. ∵OP=OA ,∴△OAP 是等边三角形.∴OP=OA=AP ,∠OAP=60°. ∵AB=OA ,∴AP=AB.∵∠OAP=∠APB+∠B ,∴∠APB=∠B=30°.∴∠OPB=∠OPA+∠APB=90°.∴OP ⊥BP ,∴直线BP 与⊙O 相切.。

相关文档
最新文档