【2020-2021自招】中央民族大学附属中学初升高自主招生数学模拟试卷【4套】【含解析】

合集下载

北京市中央民族大学附中自主招生考试数学试卷

北京市中央民族大学附中自主招生考试数学试卷

北京市中央民族大学附中自主招生考试数学试卷一、选择题(本大题共10小题,共30.0分)1.已知某公司去年的营业额约为四千零七十万元,则此营业额可表示为()A. 元B. 元C. 元D. 元2.下列计算正确的是()A. B. C. D.3.已知整数m满足m<<m+1,则m的值为()A. 4B. 5C. 6D. 74.若一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,则2a-b的值为()A. B. 63 C. 179 D. 1815.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=95°,则∠2的度数为()A.B.C.D.6.则不等式>(其中,,,为常数)的解集为()A. B. C. D. 无法确定7.方程x2+3x-1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x-1=0的实根x0所在的范围是()A. B. C. D.8.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,且AF=2,则点F到边DC的距离为()A. 1B.C. 2D.9.如图,边长12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则小正方形的边长为何?()A.B.C. 5D. 610.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使点A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A. 1条B. 2条C. 3条D. 4条二、填空题(本大题共6小题,共18.0分)11.若==(x,y,z均不为0),=1,则m的值为______ .12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞100条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有______ 条鱼.13.如图,在扇形OAB中,∠AOB=105°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则折痕BC的长为______ .14.小明原有63元,如图记录了他今天所有支出,其中饮料支出的金额被涂黑.若每5______ 元.15.E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,EM+FN=,则直径AB的长为______ .16.如图,在平面直角坐标系xOy中,当A1(0,3)、A2(-2,0)、A3(2,0)为旋转中心时,点P(0,4)绕着点A1旋转180°得到P1点;点P1绕着点A2旋转180°得到P2点;点P2绕着点A3旋转180°得到P3点;点P3绕着点A1转180°得到点P4点….继续如此操作若干次得到点P5、P6、…,则点P2的坐标为______ ,点P2017的坐标为______ .三、计算题(本大题共1小题,共6.0分)17.某通讯公司推出了移动电话的两种计费方式(详情见下表).设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有t的式子填写下表:(Ⅱ)当t为何值时,两种计费方式的费用相等?(Ⅲ)当330<t<360时,你认为选用哪种计费方式省钱(直接写出结果即可).四、解答题(本大题共9小题,共66.0分),并把解集在数轴上表示出来.18.解不等式组<19.先化简,再求值:(x-1)÷(-1),其中x为方程x2+3x+2=0的根.20.保障房建设是民心工程,某市从2011年开始加快保障房建设进程,现统计了该市2011年到2015年5月新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小明看了统计图后说:“该市2014年新建保障房的套数比2013年少了.”你认为小明的说法正确吗?请说明理由;(2)请补全条形统计图;(3)求这5年平均每年新建保障房的套数.21.如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.22.已知直线l:y=kx+2与直线m:y=x相交于P点,且点P的横坐标为1,直线l与x轴交于点D,与反比例函数G:y=的图象交于点M,N(点M在点N的左侧),若DM+DN<3,求n的取值范围.23.已知关于x的一元二次方程mx2-(2m+1)x+2=0.(1)求证:此方程总有两个实数根;(2)若此方程的两个实数根都是整数,求m的整数值;(3)若此方程的两个实数根分别为x1、x2,求代数式m(x15+x25)-(2m+1)(x14+x24)+2(x13+x23)+5的值.24.在△ABC中,已知D为直线BC上一点,若∠ABC=x°,∠BAD=y°.(1)当D为边BC上一点,并且CD=AB,x=40,y=30时,求证:AB=AC.(2)若CD=CA=AB,请写出y与x的关系式及x的取值范围.(不写解答过程,直接写出结果)25.在平面直角坐标系xOy中,给出如下定义:对于点P(m,n),若点Q(2-m,n-1),则称点Q为点P的“δ点”.例如:点(-2,5)的“δ点”坐标为(4,4).(1)某点的“δ点”的坐标是(-1,3),则这个点的坐标为______ ;(2)若点A的坐标是(2-m,n-1),点A的“δ点”为A1点,点A1的“δ点”为A2点,点A2的“δ点”为A3点,…,点A1的坐标是______ ;点A2015的坐标是______ ;(3)函数y=-x2+2x(x≤1)的图象为G,图象G上所有点的“δ点”构成图象H,图象G与图象H的组合图形记为“图形Ю”,当点(p,q)在“图形Ю”上移动时,若k≤p≤1+2,-8≤q≤1,则k的取值范围是______ .26.已知在平行四边形ABCD中,AE⊥BC于E点,DF平分∠ADC交线段AE于F点.(1)如图1,若AE=AD,求证:CD=AF+BE;(2)如图2,若AE:AD=a:b,试探究线段CD、AF、BE之间所满足的等量关系,请直接写出你的结论.答案和解析1.【答案】C【解析】解:四千零七十万元,则此营业额可表示为4.07×107元,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n 是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】B【解析】解:A、a3•a2=a5≠a6,本选项错误;B、(a3)2=a6,本选项正确;C、a2+a4=a2(1+a2)≠2a2,本选项错误;D、(3a)2=9a2≠a6,本选项错误.故选B.结合幂的乘方与积的乘方、同底数幂的乘法的概念和运算法则进行求解即可.本题考查了幂的乘方与积的乘方、同底数幂的乘法等知识点,解答本题的关键在于熟练掌握各知识点的概念和运算法则.3.【答案】C【解析】解:由题意∵∴当m=6时,则m+1=7适合.故选C.本题从的整数大小范围出发,然后确定m的大小.本题考查了无理数的大小问题,本题从的大小出发,很容易求出m的值.4.【答案】D【解析】解:x2-2x-3599=0,移项得:x2-2x=3599,x2-2x+1=3599+1,即(x-1)2=3600,x-1=60,x-1=-60,解得:x=61,x=-59,∵一元二次方程式x2-2x-3599=0的两根为a、b,且a>b,∴a=61,b=-59,∴2a-b=2×61-(-59)=181,故选D.配方得出(x-1)2=3600,推出x-1=60,x-1=-60,求出x的值,求出a、b的值,代入2a-b求出即可.本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.5.【答案】B【解析】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=95°,∴∠2=120°-95°=25°,故选:B.首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.6.【答案】A【解析】解:∵-m2-1<2,-2<n2+1,∴函数y=kx+b中y随x的增大而增大,又∵函数经过点(1,0),∴kx+b>0(其中k,b,m,n为常数)的解集为:x>1.故选A.首先根据函数的值确定一次函数的增减性,然后根据函数经过点(1,0),即可进行判断.本题考查一次函数的性质,解题时应认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.7.【答案】C【解析】解:方程x3+2x-1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x-1=0的实根x所在范围为:<x<.故选:C.首先根据题意推断方程x3+2x-1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x-1=0的实根x所在范围.此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.8.【答案】B【解析】解:过F作FG⊥DC于G,连接DF、BF,∵四边形ABCD为菱形,∴∠BAC=∠BAD=×80°=40°,∵EF为AB的垂直平分线,∴AF=BF=2,∴∠FBA=∠BAC=40°,∵AD∥BC,∴∠ABC+∠DAB=180°,∴∠ABC=180°-80°=100°,∴∠FBC=100°-40°=60°,∵四边形ABCD为菱形,∴DC=BC,∠DCA=∠BCA,∵FC=FC,∴△DFC≌△BFC,∴∠FDC=∠FBC=60°,DF=BF=2,在Rt△DFG中,∠DFG=30°,∴DG=DF=1,∴FG==,则点F到边DC的距离为,故选B.作辅助线,构建全等三角形和直角三角形,先根据菱形的性质:菱形的每一条对角线平分一组对角,得∠BAC=40°,由线段垂直平分线的性质得AF=BF=2,证明△DFC≌△BFC,得∠FDC=∠FBC=60°,DF=BF=2,由30°角所对的直角边是斜边的一半和勾股定理依次求出DG、FG的长.本题考查了菱形和线段垂直平分线的性质,熟练掌握菱形的性质是关键:①菱形的四边相等,②菱形的每一条对角线平分一组对角,③垂直平分线上任意一点,到线段两端点的距离相等;本题求点到直线的距离,即点到直线的垂线段的长.9.【答案】B【解析】解:在△BEF与△CFD中∵∠1+∠2=∠2+∠3=90°,∴∠1=∠3∵∠B=∠C=90°,∴△BEF∽△CFD,∵BF=3,BC=12,∴CF=BC-BF=12-3=9,又∵DF===15,∴=,即=,∴EF=故选B.先根据相似三角形的判定定理得出△BEF∽△CFD,再根据勾股定理求出DF 的长,再由相似三角形的对应边成比例即可得出结论.本题考查的是相似三角形的判定与性质及勾股定理,根据题意得出△BEF∽△CFD是解答此题的关键.10.【答案】D【解析】解:如解答图所示,满足条件的直线有4条,故选D.如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.本题考查了点到直线的距离、平行线的性质等知识点,考查了分类讨论的数学思想.解题时注意全面考虑,避免漏解.11.【答案】4【解析】解:设===a,∴x=2a,y=3a,z=am,∵==1,∴m=4,故答案为:4.可以设===a,进而可以得出x、y、z的值,代入所要求的方程中即可得出答案.本题考查了比例的性质,解决此类问题要求不拘泥于形式,能够根据不同的条件来得出不同的求解方法.在平时要多加练习,熟能生巧,解题会很方便.12.【答案】4000【解析】解:100÷=4000(条).故答案为:4000.捕捞200条,若其中有标记的鱼有5条,说明有标记的占到,而有标记的共有100条,根据所占比例即可解答..此题考查了用样本估计总体,本题体现了统计思想,统计的思想就是用样本的信息来估计总体的信息.13.【答案】9+9【解析】解:连接OD,由题意得,OB=BD,OD⊥BC,∵OD=OB=BD,∴三角形OBD为等边三角形,∴∠DOB=60°,∵∠AOB=105°,∴∠COE=45°,在Rt△OBE中,∵∠OEB=90°,OB=OA=18,∠EOB=60°,∴∠EBO=30°,∴OE=OB=9,EB==9,在Rt△CEO中,∵∠CEO=90°,∠COE=45°,∴∠OCE=∠EOC=45°,∴CE=OE=9,∴BC=EC+EB=9+9.故答案为9+9.连接OD,首先证明△OBD是等边三角形,分别在Rt△EOB,Rt△EOC中,求出CE、EB即可解决问题.本题考查翻折变换、等边三角形的性质、直角三角形的性质,勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.14.【答案】3、8或13【解析】解:设小明买了x瓶饮料(x>0),则剩下的钱为63-(10+15+20+5x)元,整理后为(18-5x)元,∵18-5x≥0,x为正整数,∴1≤x≤3,当x=1时,18-5x=18-5=13;当x=2时,18-5x=18-5×2=8;当x=3时,18-5x=18-5×3=3.故答案为:3、8或13.设小明买了x瓶饮料(x>0),则剩下的钱为63-(10+15+20+5x)元,根据18-5x≥0、x为正整数,即可求出x的取值范围,再逐一分析即可得出可能剩下的钱数.此题主要考查了一元一次不等式的应用,利用已知表示出剩下的钱是解题关键.15.【答案】6【解析】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=x,∴OE=OA-AE=x-x=x,OM=x,∵∠MEB=60°,∴OH=OE•sin60°=×=,在Rt△MOH中,MH====,根据垂径定理,MG=2MH=2×=,即EM+FN==.解得x=6,故答案为:6.延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG 于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.16.【答案】(-4,-2);(0,2)【解析】解:如图所示,点P2的坐标为:(-4,-2),∵由图形可得出:P点与P6重合,∴P点每6次循环一次,∵2017÷6=336…1,∴点P2017的坐标与P1坐标相同为:(0,2),故答案为:(-4,-2),(0,2).利用已知得出对应点坐标,进而得出P点坐标变换规律,进而得出答案.此题主要考查了几何变换以及点的坐标确定位置,得出P点坐标变化规律是解题关键.17.【答案】0.25t+20.5;0.25t+20.5;0.19t+21.5【解析】解:(Ⅰ)①当150<t<350时,方式一收费:58+0.25(t-150)=0.25t+20.5;②当t>350时,方式一收费:108+0.25(t-350)=0.25t+20.5;③方式二当t>350时收费:88+0.19(t-350)=0.19t+21.5.(Ⅱ)∵当t>350时,(0.25t+20.5)-(0.19t+21.5)=0.06t-1>0,∴当两种计费方式的费用相等时,t的值在150<t<350取得.∴列方程0.25t+20.5=88,解得t=270.即当主叫时间为270分时,两种计费方式的费用相等.(Ⅲ)方式二.①当350<t<360时,方式一收费-方式二收费y=0.25t+20.5-0.19t-21.5=0.06t-1,当350<t<360时,y>0,即可得方式二更划算.②当t=350时,方式一收费108元,大于方式二收费88元,故方式二划算;③当330<t<350时,方式一收费=0.25t+20.5,此时收费>103,故此时选择方式二划算.(I)根据两种方式的收费标准进行计算即可;(II)先判断出两种方式相等时t的大致范围,继而建立方程即可得出答案.(III)计算出两种方式在此取值范围的收费情况,然后比较即可得出答案.此题考查了一元一次方程的应用,注意根据图表得出解题需要的信息,难度一般,要将实际问题转化为数学问题来求解.18.【答案】解:,<∵解不等式 得:x≤1,解不等式 得:x>-2,∴不等式组的解集为:-2<x≤1.在数轴上表示不等式组的解集为:【解析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.19.【答案】解:原式=(x-1)÷=(x-1)÷=(x-1)×=-x-1.由x为方程x2+3x+2=0的根,解得x=-1或x=-2.当x=-1时,原式无意义,所以x=-1舍去;当x=-2时,原式=-(-2)-1=2-1=1.【解析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.20.【答案】解:(1)小明的说法不正确,理由如下:∵2014年新建保障房的套数比2013年增加了20%,而2013年新建保障房的套数为750套,∴2014年新建保障房的套数为750×(1+20%)=900套,∴小明的说法不正确;(2)2011年新建保障房的套数为:600÷(1+20%)=500套,条形统计图补充如下:(3)这5年平均每年新建保障房的套数为=784套.【解析】(1)根据2014年新建保障房的套数比2013年增加了20%,求出2014年新建保障房的套数,即可得出答案;(2)根据2012年新建保障房的增长率及2012年新建保障房的套数,即可求出2011年新建保障房的套数;所求结果可补全条形统计图;(3)根据(2)中所求求出平均数即可.本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率.21.【答案】解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,∵AB=5,BD=3,∴AD=8,∵∠ACB=90°,DE⊥AD,∴∠ACB=∠ADE,∵∠A=∠A,∴△ACB∽△ADE,∴==∴==∴DE=6,AE=10,即⊙O的半径为3;过O作OQ⊥EF于Q,则∠EQO=∠ADE=90°,∵∠QEO=∠AED,∴△EQO∽△EDA,∴=,∴=,∴OQ=2.4,即圆心O到弦EF的距离是2.4;(2)连接EG,∵AE=10,AC=4,∴CE=6,∴CE=DE=6,∵DE为直径,∴∠EGD=90°,∴EG⊥CD,∴点G为CD的中点.【解析】(1)根据勾股定理求出AC,证△ACB∽△ADE,得出==,代入求出DE=6,AE=10,过O作OQ⊥EF于Q,证△EQO∽△EDA,代入求出OQ即可;(2)连接EG,求出EG⊥CD,求出CE=ED,根据等腰三角形的性质求出即可.本题考查了圆周角定理,相似三角形的性质和判定,等腰三角形性质的应用,主要考查学生综合运用性质进行推理和计算的能力.22.【答案】解:如图1,当x =1时,y =1,∴P (1,1),把P (1,1)代入y =kx +2中得:1=k +2,k =-1,∴直线l :y =-x +2,分两种情况:当n >0时,如图2,∵直线l :y =-x +2与x 轴交于D (2,0),与y 轴交于A (0,2),∴AD = =2 ,∵DM +DN <3 ,∴只要y =-x +2与y =有两个交点即可,∴-x +2= ,x 2-2x +n =0,b 2-4ac =4-4n >0,n <1,∴0<n <1;当n <0时,如图3,当DM +DN =3 时,AM +DN = , ∵直线l :y =-x +2与x 轴交于D (2,0),与y 轴交于A (0,2),则M (- , ),xy =n =- × =-, ∴- <n <0,综上所述:n 的取值范围是0<n <1或- <n <0.【解析】先求P 点的坐标(1,1),代入y=kx+2中可求得k=-1,分两种情况进行讨论:①当n >0时,如图2,求出AD=2,所以交点M 、N 都能满足DM+DN <3,所以列方程求△>0即可;②当n <0时,如图3,因为n 越小离两坐标轴越远,所以求DM+DN=3时的n值即可.本题考查了一次函数、反比例函数的交点问题,有难度,本题采用了分类讨论的思想,反比例函数系数的不同与一次函数交点的距离也不同,根据数形结合的思想进行计算.23.【答案】解:(1)∵△=[-(2m+1)]2-4m•2=(2m-1)2,∴不论m为何值,(2m-1)2≥0,∴此方程总有两个实数根;(2)设方程的两个根为x1,x2,则x1+x2==2+,x1•x2=,∵此方程的两个实数根都是整数,∴m的整数值为±1;(3)∵x1、x2是方程mx2-(2m+1)x+2=0的两个实数根,∴mx12-(2m+1)x1+2=0,mx22-(2m+1)x2+2=0,则mx15-(2m+1)x14+2x13=0,mx25-(2m+1)x24+2x23=0,以上两式相加可得m(x15+x25)-(2m+1)(x14+x24)+2(x13+x23)=0,∴m(x15+x25)-(2m+1)(x14+x24)+2(x13+x23)+5=5.【解析】(1)由根的判别式△=[-(2m+1)]2-4m•2=(2m-1)2即可知;(2)根据韦达定理知x1+x2==2+,x1•x2=,由方程的两个实数根都是整数可得答案;(3)根据方程的解得定义得mx12-(2m+1)x1+2=0、mx22-(2m+1)x2+2=0,继而知mx15-(2m+1)x14+2x13=0,mx25-(2m+1)x24+2x23=0,两式相加可得.本题考查了根的判别式、方程的解得定义、根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.24.【答案】(1)证明:如图,在BC上取点E,使BE=CD=AB,连接AE,则∠AEB=∠EAB=(180°-40°)=70°,∴∠AEB=∠ADE=70°,∴AD=AE,∴∠ADB=∠AEC=180°-70°=110°,∵BD=BE-DE,CE=CD-DE,∴BD=EC,在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴AB=AC.(2)解: 当点D在边BC上时,∵∠ABC=x°,CA=AB,∴∠C=∠ABC=x°,∵CD=CA,∴∠ADC=∠CAD==90°-x°,∵∠ADC=∠B+∠BAD,∴90-x=x+y,即:y=-x+90(0<x≤60)(取等号时B、D重合)当点D在BC的延长线上时,如图1,∵AB=AC,∴∠ACB=∠B=x°,∵AC=CD,∴∠ACB=2∠D,∴∠D=∠ACB=x°,在△ABD中,∠B+∠BAD+∠D=180°,∴x+y+x=180,即:y=-x+180,(0<x<90)③当点D在CB延长线上时,如图2,∵∠BAD=y°,∠ABC=x°,∴∠D=∠ABC-∠BAD=x°-y°,∵AB=AC,∴∠C=∠ABC=x°,∵CD=AC,∴∠CAD=∠D=x°-y°,在△ACD中,∠D+∠C+∠CAD=180°,∴x-y+x+x-y=180,∴3x-2y=180,∴y=x-90(60<x<90)(取等号时B、D重合).【解析】(1)首先在BC上取点E,使BE=CD=AB,连接AE,易证得AD=AE,继而可得△ADB≌△AEC(SAS),则可证得结论;(2)①由CD=CA,可表示出∠ADC的度数,又由三角形外角的性质,可得∠ADC=∠B+∠BAD,则可得方程:90-x=x+y,继而求得答案;②先确定出∠D=x,最后根据三角形的内角和即可得出结论.③同①②的方法即可得出结论.此题是三角形综合题,主要考查了三角形的内角和定理,三角形的外角的性质,解(1)的关键是作出辅助线判断出△ADB≌△AEC,解(2)的关键是分情况讨论,是一道中等难度的中考常考题.25.【答案】(3,4);(m,n-2);(4-m),n-2016);-2≤k≤1【解析】解:(1)设这个点坐标为(m,n),∵这个点的“δ点”的坐标是(-1,3),∴2-m=-1,n-1=3,∴m=3,n=4,∴这个点的坐标为(3,4),故答案为(3,4).(2)由题意A1(m,n-2),A2(m-2,n-3),A3(4-m,n-4),A4(m-2,n-5),A5(4-m,n-6),…由此规律可知A2015(4-m,n-2016).故答案分别为(m,n-2),(4-m,n-2016).(3)如图,由题意图象G的解析式为y=-x2+2x,(x≤1),图象H的解析式为y=-(x-1)2,(x≥1)对于函数y=-x2+2x,当y=-8时,-x2+2x=-8,解得x=-2或8(舍弃),∴x=-2,当y=1时,-x2+2x=1,解得x=1,∵当点(p,q)在“图形Ю”上移动时,若k≤p≤1+2,-8≤q≤1,∴由图象可知,-2≤k≤1.故答案为-2≤k≤1.(1)设这个点坐标为(m,n),根据“δ点”的定义,列出方程即可解决问题.(2)从特殊到一般,先探究规律,利用规律即可解决问题.(3)画出图象,图象G的解析式为y=-x2+2x,(x≤1),图象H的解析式为y=-(x-1)2,(x≥1),对于函数y=-x2+2x,当y=-8时,-x2+2x=-8,解得x=-2或8(舍弃),当y=1时,-x2+2x=1,解得x=1,观察图象,即可解决问题.本题考查二次函数综合题、解题的关键是理解题意,学会从特殊到一般探究规律,利用规律解决问题,学会利用图象解决问题,属于中考压轴题.26.【答案】解:(1)证明:延长EA到G,使得AG=BE,连接DG,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,∵AE⊥BC于点E,∴∠AEB=∠AEC=90°,∴∠AEB=∠DAG=90°,∴∠DAG=90°,在△ABE和△DGA中,∴△ABE≌△DGA,∴∠1=∠2,DG=AB,∠B=∠G,∵四边形ABCD是平行四边形,∴∠B=∠ADC,∵∠B+∠1=∠ADC+∠2=90°,∠3=∠4,∴∠GDF=90°-∠4,∠GFD=90°-∠3,∴∠GDF=∠GFD,∴GF=GD=AB=CD,∵GF=AF+AG=AF+BE,∴CD=AF+BE;(2)bCD=aAF+bBE理由是:延长EA到G,使得=,连接DG,即AG=BE,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD=BC,∵AE⊥BC于点E,∴∠AEB=∠AEC=90°,∴∠AEB=∠DAG=90°,∴∠DAG=90°,即∠AEB=∠GAD=90°,∵==,∴△ABE∽△DGA,∴∠1=∠2,=,∴∠GFD=90°-∠3,∵DF平分∠ADC,∴∠3=∠4,∴∠GDF=∠2+∠3=∠1+∠4=180°-∠FAD-∠3=90°-∠3.∴∠GDF=∠GFD,∴DG=GF,∵=,AB=CD(已证),∴bCD=aDG=a(BE+AF),即bCD=aAF+bBE.【解析】(1)延长EA到G,使得AG=BE,连接DG,根据四边形ABCD是平行四边形,推出AB=CD,AB∥CD,AD=BC,求出∠DAG=90°=∠GAD,根据SAS证△ABE≌△DAG,推出DG=AB=CD,∠1=∠2,求出∠AFD=∠GDF,推出DG=GF=AF+AG即可;(2)延长EA到G,使得=,连接DG,根据两边对应成比例,且夹角相等,两三角形相似,推出△ABE∽△DGA,推出∠1=∠2,DG=AB,代入即可求出答案.本题综合考查了全等三角形的性质和判定,相似三角形的性质和判定,角平分线定义,平行线的性质,平行四边形的性质等知识点的运用,本题综合性比较强,有一定的难度,但主要考查学生的类比推理的思想,主要检查学生能否找出解题思路,注意:解题思路的相似之处啊.。

重点中学自主招生数学试题 (2)

重点中学自主招生数学试题 (2)

2021年统一招生考试数 学 试 题一、选择题:〔此题共36分, 每题3分〕 1. 14的算术平方根是〔 〕 A .12- B .12 C .12± D .1162. 不等式组⎩⎨⎧≤-<03,12x x 的解集是〔 〕A .21<x B .21>x C.3≤x D .321≤<x3. 如下图的立体图形是由假设干个小正方体组 成,那么这个立体图形中有小正方体〔 〕个 A. 9 B. 10 C. 11 D. 124. 如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,假设AC =23, AB =4,那么∠BCD 的度数为〔 〕A .30°B .45°C .60°D .75° 5. 假设一次函数y =kx +b 的图象经过第一象限,且 与y 轴负半轴相交,那么〔 〕A .k <0,b >0B .k <0,b <0C .k >0,b >0D .k >0,b <0 6. 二次函数221y x x =-+与x 轴的交点个数是〔 〕A .0B .1C .2D .37. 如图,AB 是⊙O 的弦,OC ⊥AB 于C,假设AB =8cm , OC =3cm ,那么⊙O 的半径长为〔 〕A. 4 cmB. 5 cmC. 8 cmD. 10 cm小正方体立体图形 ABCDED CBADE F B AC8. 如图,平行四边形ABCD 的两条对角线AC 与BD 交于平面直角坐标系的原点O ,点D 的坐标为(3,2),那么点的坐标为〔 〕A. (-3,2)B. (-2,-3)C. (-2,3)D. (-3,-2) 9. 如图,这是某花农 2006年和 2007年种植百合、康乃馨判断以下说法合理的是〔 〕A. 2007年三种花的产量比2006年都有增加B. 2007年郁金香与康乃馨的产量之和为70万支C. 2006年郁金香产量大约是百合产量的九分之一D. 2006年和2007年的百合产量根本持平 10. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB 交 AB 于D 点,AE ∥DC 交BC 的延长线于点E ,已 知∠E =36°,那么∠B 的度数为〔 〕 A. 36° B. 45° C. 72° D. 75°11. 下表是某学习小组一次数学测验的成绩统计表:A. 80B. 85C. 90D. 80,90 12.某社区从2021年1月份开始,每月举行一次“迎奥运健身走〞活动,1月份有 200人参加了健身走活动,平均步行距离为2km ,在大家的带动下有更多的居 民参加了这项活动,参加健身走的人数增长率是其平均步行距离的增长率 的2倍,2月份总步行距离为1 200km ,那么平均步行距离的增长率是〔 〕 A. 20% B.30% C. 50% D. 60%二、填空题:〔此题共16分, 每题4分 〕13. 如下图摆放一副三角板,那么图中∠1= 度.14. 点P (x , y )位于第二象限,并且y ≤x +4,x , y 为整数,写出一个..符合 上述条件的点P 的坐标: .15. 如图,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交CD 于F . 在不添加辅助线的情况下,请 写出图中一对相似三角形: .116.如图, 平行四边形ABCD 中BC 边及此边长上的高 均为a , 平行四边形GCEF 中CE 边及此边长上的高均为b , 点B 、C 、E 在一条直线上,D 是CG上一点,那么图中阴影局部的面积为 .三、解答题:(此题共68分;第17题10分,第18题8分, 第19题4分,第20题5分,第21题7分,第22题、第23题各8分, 第24题、第25题各9分) 解答题应写出必要的解题步骤.17. 计算:〔1〕计算: 22+(4-7)÷32 +︒⋅60sin 12; 解:〔2〕先化简, 再求值: 221111a a a a a a -÷----, 其中a =12.解:18. 解以下方程或方程组:〔1〕2412-=+-x x x ; 〔2〕⎩⎨⎧=+=-.42,5y x y x 解:解:①②19. 如图是44 正方形网格,请你用两种不同的方法,在其中选取两个白色 的正方形并涂黑,使图中黑色局部是一个中心对称图形. 解:20. 如图,BE ⊥AD 于E ,CF ⊥AD 于F ,且BE =CF .请你判断AD 是△ABC 的中线还是角平分线?请对你的判断加以证明. 解:21. 如图表示登山爱好者甲与游客乙沿相同的路线同时从山脚下出发到达山顶的过程中,两人各自行进的路程随时间变化的图象.请你根据图象提供的信息解答以下问题:〔1〕试写出在登山过程中,甲行进的路程S 1〔km 〕与时间t 〔h 〕之间的函数关系式为 ;乙行进的路程S 2〔km 〕与时间t 〔h 〕之间的函数关系式为 ;〔不需写出自变量t 的取值范围〕〔2〕当甲到达山顶时,乙行进到山路上某点A 处,求点A 距山顶的距离; 〔3〕在〔2〕条件下, 设乙从A 处继续登山, 甲到达山顶后休息1h ,沿原路下山, 在点B 处与乙相遇, 此时点B 与山顶的距离为1km, 相遇后他们 各自按原来的路线下山或上山,求乙到达山顶时,甲离出发地点多少km?解:BCDA EF22. 如图,点A 、B 、C 、D 是直径为AB 的⊙O 上四个点,CAC 交BD 于点E ,AE =2,EC =1. 〔1〕求证:DEC △∽ADC △; 〔2〕求⊙O 的直径;〔3〕AB 的延长线与⊙O 的切线CF 交于点F ,求∠F 的度数. 解:23. 设m 是不小于1-的实数,关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x . 〔1〕假设21x 622=+x ,求m 值;〔2〕求代数式22212111x mx x mx -+-的最大值.解:24.如图1,AB =CB , ∠ABC =90︒, 点D 在AC 上,ED ⊥AC 于D ,交AB于E ,点M 为EC 的中点.〔1〕猜测线段BM 与DM 之间有什么关系? 写出你的猜测,并加以证明.解:图1〔2〕如图2,将△ADE 绕点A 逆时针旋转180︒,第〔1〕问中的结论是否仍然成立?请说明理由. 解:图2〔3〕按如下要求操作:将△ADE 绕点A 逆时针旋转 〔图3所示〕,请在图4画出相应图形,并直接写出线段 BM 与DM 之间的关系.解:图3 图4α︒α︒A BC DEM BCMD AE25.如图,抛物线的顶点为A ()1,3 ,且经过原点O ,与x 轴的另一个交 点为B .〔1〕求抛物线的解析式;(2) 假设点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为菱形,求D 点的坐标; 〔3〕在x 轴上方的抛物线上是否存在点P , 使得△OPB 是底角为30°的等腰 三角形, 假设存在,求出P 点的坐标;假设不存在,说明理由. 解:备用图。

北京市中央民族大学附属中学2024-2025学年高一上学期期中考试数学试卷

北京市中央民族大学附属中学2024-2025学年高一上学期期中考试数学试卷

北京市中央民族大学附属中学2024-2025学年高一上学期期中考试数学试卷一、单选题1.若集合{}1,2,3A =,{}2,3,4B =,则A B = ()A .{}1,2,3,4B .{}1,4C .{}2,3D .∅2.函数()35f x x x =--的零点所在的区间是()A .()0,1B .()1,2C .()2,3D .()3,43.命题“[1,3]x ∀∈-,2320x x -+<”的否定为()A .[]1,3x ∃∈-,2320x x -+≥B .[]1,3x ∃∈-,2320x x -+>C .[]1,3x ∀∈-,2320x x -+≥D .[]1,3x ∃∉-,2320x x -+≥4.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A .21y x =+B .1yx=C .y =D .y x x=5.已知:31p x -<≤,:30q x -<<,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知0x >,0y >,且121y x+=,则12x y +的最小值为()A .4B .6C .8D .107.函数241xy x =+的图象大致为()A .B .C.D .8.已知 0a b >>,则下列不等式一定成立的是().A .11a b>B .2ab b <C .22a b <D .2a ab>9.已知函数()23,1,x ax x af x ax x a ⎧+-≤=⎨+>⎩在定义域上是单调函数,则实数a 的取值范围为()A .[)2,0-B .(],2-∞-C .(]0,2D .[)2,+∞10.当[0,1]x ∈时,若函数2()(1)f x mx =-的图像与()2mg x x =+的图像有且只有一个交点,则正实数m 的取值范围是()A .[)2,+∞B .(]50,2,+2⎡⎫∞⎪⎢⎣⎭C .5,2⎡⎫+∞⎪⎢⎣⎭D .(][)0,1,+∞ 2二、填空题11.函数1()5f x x =-的定义域为.12.已知方程2410x x -+=的两根为1x 和2x ,则2212x x +=;12x x -=.13.已知()2132f x x x +=-+,则()1f =.14.当1x <-时,()11f x x x =++的最大值为.此时x 的取值为.15.设函数()243,01,0x x x f x x x⎧++≤⎪=⎨->⎪⎩.给出下列四个结论:①函数()f x 的值域是R ;②()1212,(2,)x x x x ∀∈-+∞≠,有()()12120f x f x x x ->-;③00x ∃>,使得()()00f x f x -=;④若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是()3,-+∞.其中所有正确结论的序号是.三、解答题16.已知集合{}4A x x =>,集合501x B x x ⎧⎫-=>⎨⎬-⎩⎭,集合{}22M x m x m =≤≤-,(1)求()R A B ð;(2)若A M A ⋃=,求m 的取值范围.17.已知二次函数()()20f x ax bx c a =++≠,()()12f x f x x +-=,且()01f =.(1)求c 的值;(2)求函数()f x 的解析式;(3)求函数()f x 在区间[]1,1-上的值域.18.已知2()(1)f x x a x a=-++(1)若()1f x >-恒成立,求实数a 的取值范围;(2)求不等式()0f x <的解集19.已知函数()f x 是定义在上的奇函数,且当0x ≤时,()22f x x x =+.(1)已知函数()f x 的部分图象如图所示,请根据条件将图象补充完整,并写出函数()f x 的解析式和单调递减区间;(2)若关于x 的方程()f x t =有3个不相等的实数根,求实数t 的取值范围.(只需写出结论)(3)写出解不等式()0xf x ≥的解集.20.已知函数()21ax bf x x +=+是定义域为(),21a a --的奇函数.(1)求函数()f x 的解析式;(2)用定义证明()f x 在定义域上是增函数;(3)求不等式()()21f x f x ->-的解集.21.已知集合{}22,,A x x m n m n ==-∈Z (1)分别判断1-、0、1是否属于集合A ;(2)写出所有满足集合A 的不超过15的正偶数;(3)已知集合{}21,B x x k k Z ==+∈,证明:“x B ∈”是“x A ∈”的充分不必要条件.。

民大附中招生入学考试【数学备考资料】专题四 图形的变换

民大附中招生入学考试【数学备考资料】专题四  图形的变换

民大附中招生入学考试【数学备考资料】专题四 图形的变换一、选择题1. ( 4分)如果圆柱的底面半径为4cm ,底面为5cm ,那么它的侧面积等于【 】A. 220cm πB. 240cm πC. 20cm 2D. 40cm 22. ( 4分)如果圆锥的底面半径为3cm ,母线长为4cm ,那么它的侧面积等于【 】(A )24πcm 2 (B )12πcm 2 (C )12cm 2 (D )6πcm 23. ( 4分)将如图所示的圆心角为90 的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是【 】4. ( 4分)下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是【 】5. ( 4分)已知O 为圆锥的顶点,M 为圆锥底面上一点,点P 在OM 上.一只蜗牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如左图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是【 】6. (4分)若下图是某几何体的三视图,则这个几何体是【】A.圆柱B.正方体C.球D.圆锥7. (4分)美术课上,老师要求同学们将下图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个....符合上述要求,那么这个示意图是【】8. (4分)下图是某个几何体的三视图,该几何体是【】二、填空题1. (4分)如果圆锥母线长为6cm,底面直径为6cm,那么这个圆锥的侧面积是 cm2.2. (4分)一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为 cm(π取3.14,结果保留两位有效数字).3. (4分)如图,圆锥的底面半径为2cm,母线长为4cm,那么它的侧面积等于 cm2。

2025届北京市海淀区中央民族大学附属中学高三第四次模拟考试数学试卷含解析

2025届北京市海淀区中央民族大学附属中学高三第四次模拟考试数学试卷含解析

2025届北京市海淀区中央民族大学附属中学高三第四次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( )A .9π B .29π C .18π D .24π 2.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .13.已知复数z 满足(1)2z i -=,其中i 为虚数单位,则1z -=( ).A .iB .i -C .1i +D .1i -4.如图,平面四边形ACBD 中,AB BC ⊥,AB DA ⊥,1AB AD ==,2BC =,现将ABD △沿AB 翻折,使点D 移动至点P ,且PA AC ⊥,则三棱锥P ABC -的外接球的表面积为( )A .8πB .6πC .4πD .823π 5.在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( ) A .0.2B .0.5C .0.4D .0.8 6.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .7.已知函数()2ln 2,03,02x x x x f x x x x ->⎧⎪=⎨+≤⎪⎩的图像上有且仅有四个不同的点关于直线1y =-的对称点在 1y kx =-的图像上,则实数k 的取值范围是( )A .1,12⎛⎫ ⎪⎝⎭B .13,24⎛⎫ ⎪⎝⎭C .1,13⎛⎫ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭8.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF ,AB ,2AF 成等差数列,则C 的离心率为( )A .12B .33C .22 D .32 9. “2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件10.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A .33B 6C .34D 3 11.已知点(3,0),(0,3)A B -,若点P 在曲线21y x =--PAB △面积的最小值为( )A .6B .3C .93222-D .93222+12.若向量(1,5),(2,1)a b ==-,则(2)a a b ⋅+=( )A .30B .31C .32D .33二、填空题:本题共4小题,每小题5分,共20分。

2025届云南中央民族大学附属中学高考仿真卷数学试题含解析

2025届云南中央民族大学附属中学高考仿真卷数学试题含解析

2025届云南中央民族大学附属中学高考仿真卷数学试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线22122:1x y C a b -=与双曲线222:14y C x -=没有公共点,则双曲线1C 的离心率的取值范围是( )A .(1,3⎤⎦B .)3,⎡+∞⎣C .(1,5⎤⎦D .)5,⎡+∞⎣2.若4log 15.9a =, 1.012b =,0.10.4c =,则( ) A .c a b >> B .a b c >> C .b a c >>D .a c b >>3.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B R = C .{|1}AB x x =>D .AB =∅4.设x ,y 满足约束条件34100640280x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =+的最大值是( )A .4B .6C .8D .105.已知函数有三个不同的零点 (其中),则 的值为( )A .B .C .D .6.已知向量(1,2),(3,1)a b =-=-,则( ) A .a ∥bB .a ⊥bC .a ∥(a b -)D .a ⊥( a b -)7.记n 个两两无交集的区间的并集为n 阶区间如(][],12,3-∞为2阶区间,设函数()ln xf x x=,则不等式()30f f x ⎡⎤+⎦≤⎣的解集为( ) A .2阶区间B .3阶区间C .4阶区间D .5阶区间8.在复平面内,复数(2)i i +对应的点的坐标为( )A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-9.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x > D .15{|}23x x -<< 10.曲线312ln 3y x x =+上任意一点处的切线斜率的最小值为( ) A .3B .2C .32D .111.已知函数2211()log 13||f x x x ⎛⎫=+++⎪⎝⎭,则不等式(lg )3f x >的解集为( )A .1,1010⎛⎫⎪⎝⎭B .1,(10,)10⎛⎫-∞⋃+∞ ⎪⎝⎭C .(1,10)D .1,1(1,10)10⎛⎫⋃⎪⎝⎭12.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .5B .4C .2D .22二、填空题:本题共4小题,每小题5分,共20分。

中央民族大学附属中学2025届高考数学三模试卷含解析

中央民族大学附属中学2025届高考数学三模试卷含解析

中央民族大学附属中学2025届高考数学三模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是( )A .10,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 2.已知抛物线2:6C y x =的焦点为F ,准线为l ,A 是l 上一点,B 是直线AF 与抛物线C 的一个交点,若3FA FB =,则||BF =( )A .72B .3C .52D .23.已知m ,n 是两条不同的直线,α,β是两个不同的平面,给出四个命题: ①若m αβ=,n ⊂α,n m ⊥,则αβ⊥;②若m α⊥,m β⊥,则//αβ;③若//m n ,m α⊂,//αβ,则βn//;④若m α⊥,n β⊥,m n ⊥,则αβ⊥ 其中正确的是( ) A .①②B .③④C .①④D .②④4.已知复数z 满足i z11=-,则z =( ) A .1122i + B .1122i - C .1122-+iD .1122i --5.双曲线C :2215x y m-=(0m >),左焦点到渐近线的距离为2,则双曲线C 的渐近线方程为( )A .250x y ±=B .20x =C 20y ±=D 0y ±=6.已知F 为抛物线2:8C y x =的焦点,点()1,A m 在C 上,若直线AF 与C 的另一个交点为B ,则AB =( )A .12B .10C .9D .87.近年来,随着4G 网络的普及和智能手机的更新换代,各种方便的app 相继出世,其功能也是五花八门.某大学为了调查在校大学生使用app 的主要用途,随机抽取了56290名大学生进行调查,各主要用途与对应人数的结果统计如图所示,现有如下说法:①可以估计使用app 主要听音乐的大学生人数多于主要看社区、新闻、资讯的大学生人数; ②可以估计不足10%的大学生使用app 主要玩游戏; ③可以估计使用app 主要找人聊天的大学生超过总数的14. 其中正确的个数为( )A .0B .1C .2D .38.已知函数2()sin 3sincos444f x x x x πππ=-,则(1)(2)...(2020)f f f +++的值等于( )A .2018B .1009C .1010D .20209.空气质量指数AQI 是反映空气状况的指数,AQI 指数值趋小,表明空气质量越好,下图是某市10月1日-20日AQI指数变化趋势,下列叙述错误的是( )A .这20天中AQI 指数值的中位数略高于100B .这20天中的中度污染及以上(AQI 指数>150)的天数占14C .该市10月的前半个月的空气质量越来越好D .总体来说,该市10月上旬的空气质量比中旬的空气质量好10.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .11.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7 12.已知复数为纯虚数(为虚数单位),则实数( )A .-1B .1C .0D .2二、填空题:本题共4小题,每小题5分,共20分。

北京市中央民族大学附中2025届学业水平模拟考试数学试题仿真模拟试题A卷

北京市中央民族大学附中2025届学业水平模拟考试数学试题仿真模拟试题A卷

北京市中央民族大学附中2025届学业水平模拟考试数学试题仿真模拟试题A 卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设等比数列{}n a 的前n 项和为n S ,则“10a <”是“20210S <”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( ) A .若//αβ,则l//m B .若αβ⊥,则l m ⊥ C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥3.若复数z 满足2(13)(1)i z i +=+,则||z =( )A .54B .55C .102D .1054.下列函数中,在区间(0,)+∞上单调递减的是( ) A .12y x =B .2x y =C .12log y = xD .1y x=-5.设{|210}S x x =+>,{|350}T x x =-<,则S T ( )A .∅B .1{|}2x x <-C .5{|}3x x >D .15{|}23x x -<< 6.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5B .3C .-12D .-137.已知等差数列{}n a 的前n 项和为n S ,262,21a S ==,则5a = A .3 B .4C .5D .68.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)9.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( ) A .12B .14C .15D .11010.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( ) A .48B .60C .72D .12011.已知函数()3cos f x x m x =+,其图象关于直线3x π=对称,为了得到函数2()3g x m x =+的图象,只需将函数()f x 的图象上的所有点( ) A .先向左平移6π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 B .先向右平移6π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 C .先向右平移3π个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变 D .先向左平移3π个单位长度,再把所得各点横坐标缩短为原来的12,纵坐标保持不变 12.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( ) A 2B .2C 10D .10二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一套:满分150分2020-2021年中央民族大学附属中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。

求证:222MN AM BN =+。

17.(12分)在0与21之间插入n 个正整数1a ,2a ,…,n a ,使其满足12021n a a a <<<<<L 。

若1,2,3,…,21这21个正整数都可以表示为0,1a ,2a ,…,n a ,21这2n +个数中某两个数的差。

求n 的最小值。

18.(12分)如图,已知BC 是半圆O 的直径,BC=8,过线段BO 上一动点D ,作AD ⊥BC 交半圆O 于点A ,联结AO ,过点B 作BH ⊥AO ,垂足为点H ,BH 的延长线交半圆O 于点F . (1)求证:AH=BD ;(2)设BD=x ,BE •BF=y ,求y 关于x 的函数关系式;(3)如图2,若联结FA 并延长交CB 的延长线于点G ,当△FAE 与△FBG 相似时,求BD 的长度.19.(12分)如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE 时,请直接写出满足条件的所有k2的值.第一套:满分150分2020-2021年中央民族大学附属中学初升高自主招生数学模拟卷参考答案一.选择题:1.【解答】解:连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=K,∴BH:HG:GM=k:12k:5k=51:24:10故选D.2.【答案】C 。

解答:①∵一元二次方程实数根分别为x 1、x 2,∴x 1=2,x 2=3,只有在m=0时才能成立,故结论①错误。

②一元二次方程(x -2)(x -3)=m 化为一般形式得:x 2-5x +6-m=0,∵方程有两个不相等的实数根x 1、x 2,∴△=b 2-4ac=(-5)2-4(6-m )=4m +1>0,解得:1m 4>-。

故结论②正确。

③∵一元二次方程x 2-5x +6-m=0实数根分别为x 1、x 2,∴x 1+x 2=5,x 1x 2=6-m ∴二次函数y=(x -x 1)(x -x 2)+m=x 2-(x 1+x 2)x +x 1x 2+m=x 2-5x +(6-m )+m=x 2-5x +6=(x -2)(x -3)。

令y=0,即(x -2)(x -3)=0,解得:x=2或3。

∴抛物线与x 轴的交点为(2,0)或(3,0),故结论③正确。

综上所述,正确的结论有2个:②③。

故选C 。

3.【答案】B 。

【分析】∵根据题意,得xy=20,∴()20y=x>0,y>0x。

故选B 。

4.【答案】B 。

【分析】如图,在y x 2=-中,令x=0,则y=-2 ;令y=0,则x=2 ,∴A (0,-2),B (2,0)。

∴OA=OB= 2 。

∴△AOB是等腰直角三角形。

∴AB=2,过点O作OD⊥AB,则OD=BD=12AB=12×2=1。

又∵⊙O的半径为1,∴圆心到直线的距离等于半径。

∴直线y=x- 2 与⊙O相切。

故选B。

5.【分析】连接内心和直角三角形的各个顶点,设直角三角形的两条直角边是a,b.则直角三角形的面积是;又直角三角形内切圆的半径r=,则a+b=2r+c,所以直角三角形的面积是r(r+c);因为内切圆的面积是πr2,则它们的比是.【解答】解:设直角三角形的两条直角边是a,b,则有:S=,又∵r=,∴a+b=2r+c,将a+b=2r+c代入S=得:S=r=r(r+c).又∵内切圆的面积是πr2,∴它们的比是.故选B.【点评】此题要熟悉直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半,能够把直角三角形的面积分割成三部分,用内切圆的半径进行表示,是解题的关键.6.解答:解:∵Rt△ABC中,BC=,∠ACB=90°,∠A=30°,∴AC==BC=6,∴S△ABC=AC•BC=6,∵D1E1⊥AC,∴D1E1∥BC,∴△BD1E1与△CD1E1同底同高,面积相等,∵D1是斜边AB的中点,∴D1E1=BC,CE1=AC,∴S1=BC•CE1=BC×AC=×AC•BC=S△ABC;∴在△ACB中,D2为其重心,∴D2E1=BE1,∴D2E2=BC,CE2=AC,S2=××AC•BC=S△ABC,∴D3E3=BC,CE2=AC,S3=S△ABC…;∴S n=S△ABC;∴S 2013=×6=.故选C.7.【分析】此题主要考数形结合,画出图形找出范围,问题就好解决【解答】解:由右图知:A(1,2),B(2,1),再根据抛物线的性质,|a|越大开口越小,把A点代入y=ax2得a=2,把B点代入y=ax2得a=,则a的范围介于这两点之间,故≤a≤2.故选D.【点评】此题考查学生的观察能力,把函数性质与正方形连接起来,要学会数形结合.8.解答:解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.二、填空题9.【分析】根据式子特点,设x+1=a,y﹣1=b,然后利用换元法将原方程组转化为关于a、b的方程组,再换元为关于x、y的方程组解答.【解答】解:设x+1=a,y﹣1=b,则原方程可变为,由②式又可变化为=26,把①式代入得=13,这又可以变形为(+)2﹣3 =13,再代入又得﹣3=9,解得ab=﹣27,又因为a+b=26,所以解这个方程组得或,于是(1),解得;(2),解得.故答案为和.【点评】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,需要同学们仔细掌握.10.【分析】分a=0,a≠0两种情况分析.【解答】解:∵如果a≠0,不论a大于还是小于0,对任意实数x不等式ax>b都成立是不可能的,∴a=0,则左边式子ax=0,∴b<0一定成立,∴a,b的取值范围为a=0,b<0.【点评】本题是利用了反证法的思想11.【分析】先根据﹣1≤x≤2,确定x﹣2与x+2的符号,在对x的符号进行讨论即可.【解答】解:∵﹣1≤x≤2,∴x﹣2≤0,x+2>0,∴当2≥x≥0时,|x﹣2|﹣|x|+|x+2|=2﹣x﹣x+x+2=4﹣x;当﹣1≤x<0时,|x﹣2|﹣|x|+|x+2|=2﹣x+x+x+2=4+x,当x=0时,取得最大值为4,x=2时取得最小值,最小值为3,则最大值与最小值之差为1.故答案为:1【点评】本题重点考查有理数的绝对值和求代数式值.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.12.【分析】要求出|P2007Q2007|的值,就要先求|Qy2007﹣Py2007|的值,因为纵坐标分别是1,3,5 …,共2007个连续奇数,其中第2007个奇数是2×2007﹣1=4013,所以P2007的坐标是(Px2007,4013),那么可根据P点都在反比例函数y=上,可求出此时Px2007的值,那么就能得出P2007的坐标,然后将P2007的横坐标代入y=中即可求出Qy2007的值.那么|P2007Q2007|=|Qy2007﹣Py2007|,由此可得出结果.【解答】解:由题意可知:P2007的坐标是(Px2007,4013),又∵P2007在y=上,∴Px2007=.而Qx2007(即Px2007)在y=上,所以Qy2007===,∴|P2007Q2007|=|Py2007﹣Qy2007|=|4013﹣|=.故答案为:.【点评】本题的关键是找出P点纵坐标的规律,以这个规律为基础求出P2007的横坐标,进而求出Q2007的值,从而可得出所求的结果.13.【分析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对弦,转化为求弦的长的问题.【解答】解:∵图中扇形的弧长是2π,根据弧长公式得到2π=∴n=120°即扇形的圆心角是120°∴弧所对的弦长是2×3sin60°=3【点评】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【分析】首先由勾股定理求出AC的长,设AC的中点为E,折线与AB交于F.然后求证△AEF∽△ABC求出EF的长.【解答】解:如图,由勾股定理易得AC=15,设AC的中点为E,折线FG与AB交于F,(折线垂直平分对角线AC),AE=7.5.∵∠AEF=∠B=90°,∠EAF是公共角,∴△AEF∽△ABC,∴==.∴EF=.∴折线长=2EF=.故答案为.【点评】本题综合考查了矩形的性质,勾股定理,相似,全等等知识点.三、解答题15.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式=1.x y zxyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++ 9()()()8()()x y y z z x x y z xy yz zx =+++-++++ 222222()()()6x y z y z x z x y xyz =+++++- 222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】16.【答案】如图,作点A 关于直线MC 的对称点D ,连结DA 、DM 、DC ,DN ,则MDC MAC △≌△。

相关文档
最新文档