混合策略线性规划解法(汇总).ppt
合集下载
线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
4.2线性规划ppt课件

4.2线性规划ppt课件
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
目录
• 线性规划简介 • 线性规划的求解方法 • 线性规划的软件实现 • 线性规划案例分析 • 线性规划的优化策略
01
线性规划简介
线性规划的定义
线性规划是数学优化技术的一种 ,它通过将问题转化为线性方程 组,并寻找满足一定约束条件的 解,以实现目标函数的最优解。
线性规划问题通常由决策变量、 约束条件和目标函数三部分组成
运输问题
总结词
运输问题是在物流和供应链管理中常见的线性规划应用,旨在优化运输成本和时 间。
详细描述
运输问题通常涉及多个起点、终点和运输方式,需要考虑运输成本、时间、容量 和路线等约束条件。通过线性规划方法,可以找到最优的运输方案,使得总运输 成本最低或运输时间最短。
投资组合优化问题
总结词
投资组合优化问题是在金融领域中常见的线性规划应用,旨 在实现风险和收益之间的平衡。
对偶问题在理论研究和实际应用中都 具有重要的意义,可以用于求解一些 特殊类型的问题,如运输问题、分配 问题等。
对偶问题具有一些特殊的性质,如对 偶变量的非负性、对偶问题的最优解 与原问题的最优解之间的关系等。
初始解的确定
初始解的确定是线性规划求解过程中的 一个重要步骤,一个好的初始解可以大
大减少迭代次数,提高求解效率。
。
决策变量是问题中需要求解的未 知数,约束条件是限制决策变量 取值的条件,目标函数是要求最
大或最小的函数。
线性规划的数学模型
线性规划的数学模型通常由一 组线性不等式和等式约束以及 一个线性目标函数组成。
线性不等式和等式约束条件可 以用来表示各种资源和限制条 件。
目标函数是决策变量的线性函 数,表示要优化的目标。
线 性 规 划ppt课件

第3页
生产计划问题
某工厂用三种原料生产三种产品,已知的条件如表 2.1.1所示,试制订总利润最大的生产计划
单位产品所需原 产品 料数量(公斤) Q1
产品 Q2
产品 原料可用量 Q3 (公斤/日)
原料P1
2
3
0 1500
原料P2
0
2
4
800
原料P3
3 2 5 2000
单位产品的利润 3
5
4
(千元)
第4页
剩余变量
第18页
不等式变不等式
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
或
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
最 优 解 ( 1, 4)
2x1 x2 2 x1 2x2 2
x1 x2 5
第24页
注释
可能出现的情况:
可行域是空集 可行域无界无最优解 最优解存在且唯一,则一定在顶点上达到 最优解存在且不唯一,一定存在顶点是最优解
第25页
可行域的几何结构
基本假设 凸集 可行域的凸性
第26页
中运 筹 帷 幄 之
运筹学课件
线性规划
Linear Programming
外决 胜 千 里 之
第1页
线性规划
线性规划问题 可行区域与基本可行解 单纯形算法 初始可行解 对偶理论 灵敏度分析 计算软件 案例分析
第2页
线性规划问题
线性规划实例
生产计划问题 运输问题
线性规划模型
一般形式 规范形式 标准形式 形式转换 概念
生产计划问题
某工厂用三种原料生产三种产品,已知的条件如表 2.1.1所示,试制订总利润最大的生产计划
单位产品所需原 产品 料数量(公斤) Q1
产品 Q2
产品 原料可用量 Q3 (公斤/日)
原料P1
2
3
0 1500
原料P2
0
2
4
800
原料P3
3 2 5 2000
单位产品的利润 3
5
4
(千元)
第4页
剩余变量
第18页
不等式变不等式
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
或
a i1 x 1 a i 2 x 2 a in x n b i
a i1 x 1 a i 2 x 2 a in x n b i
最 优 解 ( 1, 4)
2x1 x2 2 x1 2x2 2
x1 x2 5
第24页
注释
可能出现的情况:
可行域是空集 可行域无界无最优解 最优解存在且唯一,则一定在顶点上达到 最优解存在且不唯一,一定存在顶点是最优解
第25页
可行域的几何结构
基本假设 凸集 可行域的凸性
第26页
中运 筹 帷 幄 之
运筹学课件
线性规划
Linear Programming
外决 胜 千 里 之
第1页
线性规划
线性规划问题 可行区域与基本可行解 单纯形算法 初始可行解 对偶理论 灵敏度分析 计算软件 案例分析
第2页
线性规划问题
线性规划实例
生产计划问题 运输问题
线性规划模型
一般形式 规范形式 标准形式 形式转换 概念
线性规划PPT课件

基解:令所为 有 0, 非求 基出 变的 (1量 .2)的 满解 足 称为基解。
基可行解与可行 足基 (1.3): 的满 基解称为基可 对应基可行解的 为基 可, 行称 基。基 显可 然 解的数目 基解的数 C目 nm
基本最优解与最优基 满: 足(1.1) 的基可行解称为基本 优最 解,
对应m,如果 B是矩A中 阵的一 mm个 阶非奇异 (|B子 |0)矩 ,则阵 称 B是线性规 题的一个基。
基向量与非基向B量 中: 的基 列向量称为,基向 矩阵A中除B之外各列即为非,基 A中 向共 量 有nm个非基向量。
基变量与非基 基变 向P量 j量 对: 应与 的xj变 称量 为基变量;否 基则 变称 量为 。非
将文件存储并命名后,选择菜单 “Solve” 并对提示 “ DO RANGE(SENSITIVITY)ANALYSIS? ”回答“是”,即 可得到如下输出:
“资源” 剩余 为零的约束为 紧约束(有效 约束)
OBJECTIVE FUNCTION VALUE
1)
3360.000
VARIABLE VALUE REDUCED COST
可行解 基 解
基可行解
1.4 线性规划问题的图解法
下面结合例1的求解来说明图解法步骤。
例1
max Z 4 x1 3 x2
2 x1 3 x2 24
s. t 3 x1 2 x2 26
x2
x1, x2 0
Q3(6,4)
第一步:在直角坐标系中分
别作出各种约束条件,求出
3x1+2x2=26
Q2(6,4)
B
条 件
3x1 100
x1,x2 0
l3:3x1 100 l4
l4:x10,l5:x200
[管理学]线性规划问题ppt课件
![[管理学]线性规划问题ppt课件](https://img.taocdn.com/s3/m/a21cad6f83d049649b6658f2.png)
引言
在经济生活中,人们经常遇到这样两类实践问题: 1、资源给定,如何对给定资源予以充分地、合理地运 用,使之完成的义务尽能够地多。 2、义务给定,如何以尽能够少的资源耗费来完成给定 的义务。
可见,上述两类问题都是寻求利润最大。第一类, 是以最大收益扣除定量本钱;第二类,是以定量收益扣 除最小本钱。
地域,而往来的客户主要位于北京、上海、广州、天津、香港与西安
6大城市。由于各仓储中心地利环境、人力资源及区域性本钱的不同,
自动售货机的运送本钱或多或少会有所差别,如下表1 。当前各仓储
中心的自动售货机的库存量如下表2。各地的需求量如下表3。问:为
了可以有效降低运送本钱,应如何安排运输,才干支付最低的运费又
线性规划问题
一、线性规划问题 二、Excel 求解线性规划问题 三、实例讲解
一、线性规划问题
——线性规划是运筹学的一个重要分支,是运筹学的最根本的部分。 线性规划的运用及其广泛,从处理技术问题的最优化设计到工业、农业、 商业、交通运输业、军事和经济方案管理决策领域都可以发扬作用,它是 现代科学管理的一种重要手段。
该问题的数学模型为:
Min Z=5 X11+6 X12+10X13+3X14· · · +4X33+8 X34
X11+X12+X13+X14=60 X21+X22+X23+X24 =40
——产量约束
……
s.t. X11+X21+X31=30 ……
——销量约束
X14+X24+X34=40
Xij ≥0 (i=1,2,3;j=1,2,3,4〕
〔4〕约束:在此列出了规划求解的一切约束条件。 〔5〕最长运算时间:在此设定求解过程的时间。默许值 100〔秒〕,普通可以满足大多数小型规划求解要求。 〔6〕迭代次数:在此设定求解过程中迭代运算的次数,限 制求解过程的时间。默许值100次,根本可以满足大多数小 型规划求解要求。
[模板]线性规划PPT课件
![[模板]线性规划PPT课件](https://img.taocdn.com/s3/m/71a2e03881c758f5f71f674f.png)
顶点可达到。 4.解题思路是:先找出凸集的任一顶点,计算Z值,比较
Z值最大的顶点为止。
4.无可行解(例1.15):原因是模型本身错误,约束条件之间互相
矛盾,应检查修正。
1、2情形为有最优解 3、4情形为无最优解
-
36
图解法得到的启示
1.求解线性规划问题时,解的情况有:唯一最优解、无 穷多最优解、无界解和无可行解。
2.若线性规划问题的可行域存在,则可行域是一凸集。 3.若线性规划问题的最优解存在,则最优解一定在某个
一般情况,决策变量只取正值(非负值)
x1 0, x2 0
-
6
数学模型
max S=50x1+30x2 s.t. 4x1+3x2 120
2x1+ x2 50 x1,x2 0
线性规划数学模型三要素:
决策变量、约束条件、目标函数
-
7
1-2 线性规划问题的数学模型
例1 .2 营养配餐问题
假定一个成年人每天需要从食物中
第一章 线性规划与单纯形方法
-
1
内容:
线性规划的数学模型,标准形式,基本概念及基本原理;线性规划 的图解法,单纯形法,大M法,两阶段法。
• 重点: • (1)线性规划的基本概念 • (2)单纯形法的基本原理与计算步骤 • 难点: • (1)单纯形法的基本原理与计算步骤
• 基本要求: • (1)理解线性规划的基本概念:目标函数、约束条件、可行解与可行域、基可
和约束方程的影响是独立于其他变量的,
目标函数值是每个决策变量对目标函数
贡献的总和。
-
16
•连续性假定:线性规划问题中的 决策变量应取连续值。
•确定性假定:线性规划问题中的 所有参数都是确定的参数。线性 规划问题不包含随机因素。
Z值最大的顶点为止。
4.无可行解(例1.15):原因是模型本身错误,约束条件之间互相
矛盾,应检查修正。
1、2情形为有最优解 3、4情形为无最优解
-
36
图解法得到的启示
1.求解线性规划问题时,解的情况有:唯一最优解、无 穷多最优解、无界解和无可行解。
2.若线性规划问题的可行域存在,则可行域是一凸集。 3.若线性规划问题的最优解存在,则最优解一定在某个
一般情况,决策变量只取正值(非负值)
x1 0, x2 0
-
6
数学模型
max S=50x1+30x2 s.t. 4x1+3x2 120
2x1+ x2 50 x1,x2 0
线性规划数学模型三要素:
决策变量、约束条件、目标函数
-
7
1-2 线性规划问题的数学模型
例1 .2 营养配餐问题
假定一个成年人每天需要从食物中
第一章 线性规划与单纯形方法
-
1
内容:
线性规划的数学模型,标准形式,基本概念及基本原理;线性规划 的图解法,单纯形法,大M法,两阶段法。
• 重点: • (1)线性规划的基本概念 • (2)单纯形法的基本原理与计算步骤 • 难点: • (1)单纯形法的基本原理与计算步骤
• 基本要求: • (1)理解线性规划的基本概念:目标函数、约束条件、可行解与可行域、基可
和约束方程的影响是独立于其他变量的,
目标函数值是每个决策变量对目标函数
贡献的总和。
-
16
•连续性假定:线性规划问题中的 决策变量应取连续值。
•确定性假定:线性规划问题中的 所有参数都是确定的参数。线性 规划问题不包含随机因素。
混合策略线性规划解法课件.

例1:求解“齐王赛马”问题。 已知齐王的赢得矩阵A
3 1 1 A 1 1 1
i
1 3 1 1 1 1
1 1 3 1 1 1
1 1 1 3 1 1
1 1 1 1 3 1
求得
i j j
max min aij 1 min max aij 3
1 1 1 1 1 3
x1+3x2+3x3+3x4+5x5+3x6 ≥1 3x1+x2+3x3+3x4+3x5+5x6 ≥1
xi ≥ 0,i=1,2,…,6
可解得解为:x1=x4=x5=0, x2=x3=x6=0.111, v′=3, x1′=x4′=x5′= 0, x2′=x3′=x6′=1/3, 即X′* =(0,1/3,1/3,0,0,1/3)T,所以甲的最优策略为 作出策略2、3、6的概率都为0.333,而作出1、4、5 的概率为0,此时 V′G=V′=3。
Y 1, Y 20
1/V= Y1+Y2=1/7
所以,V=6.993
Y1’= Y1V = 1/2 Y2’= Y2V = 1/2 于是乙的最优混合策略为: 以 ½ 的概率选1;以 ½ 的概率选2 ,最优值 V=7。 返回原问题:
当赢得矩阵中有非正元素时,V0 的条件不一定成 立,可以作下列变换: 选一正数 k,令矩阵中每一元素 加上 k 得到新的正矩阵A’,其对应的矩阵对策 G’= { S1, S2, A’} 与 G ={ S1, S2, A } 解相同,但VG = VG’ – k。
建立对G′={S1,S2,A′}中求甲方ห้องสมุดไป่ตู้佳策略的线性规划如下:
Min x1+x2+x3+x4+x5+x6 约束条件:
线性规划ppt课件

a11x1+a12x2++a1nxn=b1
a21x1+a22x2++a2nxn=b2
(*)
am1x1+am2x2++amnxn=bm
x1, x2, , xn≥0
其中,bi≥0 (i=1,2,,m)
或者更简洁的,利用矩阵与向量记为
max z CT x
s.t. Ax b
(**)
x0
其中C和x为n维列向量,b为m维列向量, b≥0,A为m×n矩阵,m<n且rank(A)=m
⑵约束条件为 a11x1+a12x2++a1nxn≤b1 加入非a1负1x1变+a量12xx2n++1,+称a为1nx松n+弛xn+变1=量b1,有
⑶约束条件为 a11x1+a12x2++a1nxn≥b1 减去非a1负1x1变+a量12xx2n++1,+称a为1nx剩n -余xn变+1=量b1,有
⑷变量xj无约束。
令xj= xj - xj,对模型中的进行变量代换。
1.2 线性规划问题的求解——单纯形法 1.2.1 基本概念
可行解 满足约束条件(包括非负条 件)的一组变量值,称可行解。
所有可行解的集合称为可行域。
最优解 使目标函数达到最大的可行解 称为最优解。
基本解 对于有n个变量、m个约束方程的标准 型线性规划问题,取其m个变量。若这些变量在约 束方程中的系数列向量线性无关,则它们组成一组 基变量。确定了一组基变量后,其它n-m个变量称 为非基变量。
x0 必非最优解。
证 (1)显然
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回原问题: X1’= X1V= 0.336
X2’= X2V= 0.664
于是甲的最优混合策略为:
以0.336的概率选1策略, 以0.664的概率选2策略,简 记为X﹡=(0.336,0.664)T , 最优值V=6.993。
同样可求乙的最优混合策略:
设乙使用策略1的概率为Y1′ Y1′+Y2′=1 设乙使用策略2的概率为Y2′ Y1′,Y2′0
设在最坏的情况下,甲赢得的平均值为V。这也是乙损
失的平均值,越小越好。
作变换: Y1= Y1’/V , Y2= Y2’/V 建立线性模型:
max Y1+Y2 s.t. 5Y1+9Y21
8Y1+6Y21 Y1, Y20
ቤተ መጻሕፍቲ ባይዱ
Y1= 1/14 Y2= 1/14 1/V= Y1+Y2=1/7 所以,V=6.993
同样可以建立对策G′={S1,S2,A′}中求乙方最佳策略的线性规划如下: Min y1+y2+y3+y4+y5+y6
约束条件: 5y1+3y2+3y3+3y4+y5+3y6 ≤1 3y1+5y2+3y3+3y4+3y5+y6 ≤1 3y1+y2+5y3+3y4+3y5+3y6 ≤1 y1+3y2+3y3+5y4+3y5+3y6 ≤1 3y1+3y2+3y3+y4+5y5+3y6 ≤1 3y1+3y2+y3+3y4+3y5+5y6 ≤1 yi≥0,i=1,2,…,6 可解得解为: y1=y4=y5=0.111, y2=y3=y6=0, v′=3, y1′=y4′=y5′= 1/3, y2′=y3′=y6′=0,即Y′* =(1/3,0,0,1/3,1/3,0)T。
min
59 5 A=
86 6
max 6
i
策略2
max 8 9
min 8
j
策略1
当甲取策略2 ,乙取策略1时,甲实际赢得8比预 期的多2,乙当然不满意。考虑到甲可能取策略2这一点, 乙采取策略2。若甲也分析到乙可能采取策略2这一点, 取策略1,则赢得更多为9 … 。此时,对两个局中人甲、 乙来说,没有一个双方均可接受的平衡局势,其主要原
所以田忌的最优混合策略为作出策略1、4、5的概率都为1/3,而作
出2,3,6的概率为0,此时VG=VG′-k=1。
齐王赛马问题的对策最优解可简记为 X*=(0,1/3,1/3,0,0,1/3)T,
Y*=(1/3,0,0,1/3,1/3,0)T,对策值 VG=1。
例 2 两个局中人进行对策,规则是两人互相独立的各自 从1、2、3这三个数字中任意选写一个数字。如果两人所 写的数字之和为偶数,则局中人乙支付给局中人甲以数量 为此和数的报酬;如果两人所写数字之和为奇数,则局中 人甲付给局中人乙以数量为此和数的报酬。试求出其最优 策略。
STEP 2
作变换: X1= X1’/V ; 得到上述关系式变为:
X2= X2’/V
X1+ X2=1/V 5X1+ 8X21 9X1+ 6X21
X1, X20
(V愈大愈好)待定
建立线性模型:
min X1+X2 s.t. 5X1+8X21
9X1+6X21 X1, X20
X1= 0.048 X2= 0.095 所以,V=6.993
返回原问题:
Y1’= Y1V = 1/2
Y2’= Y2V = 1/2
于是乙的最优混合策略为:
以 ½ 的概率选1;以 ½ 的概率选2 ,最优值 V=7。
当赢得矩阵中有非正元素时,V0 的条件不一定成 立,可以作下列变换: 选一正数 k,令矩阵中每一元素 加上 k 得到新的正矩阵A’,其对应的矩阵对策
例:设甲使用策略1的概率为X1′,使用策略2的概率 为X2′ ,并设在最坏的情况下,甲赢得的平均值为V(未 知)。
59
A= 86
STEP 1 1)
X1′+X2′=1
X1′, X2′0
2)无论乙取何策略,甲的平均赢得应不少于V:
注意
对乙取1: 5X1’+ 8X2’ V 对乙取2: 9X1’+ 6X2’ V V>0,因为A各元素为正。
G’= { S1, S2, A’} 与 G ={ S1, S2, A }
解相同,但VG = VG’ – k。
例1:求解“齐王赛马”问题。 已知齐王的赢得矩阵A
3 1 1 1 1 1
1
3
1
1
1 1
1 1 3 1 1 1
A 1 1
1
3
1
1
求得
1 1 1 1 3 1
1 1 1 1 1 3
建立对G′={S1,S2,A′}中求甲方最佳策略的线性规划如下: Min x1+x2+x3+x4+x5+x6
约束条件: 5x1+3x2+3x3+x4+3x5+3x6 ≥1 3x1+5x2+x3+3x4+3x5+3x6 ≥1 3x1+3x2+5x3+3x4+3x5+x6 ≥1 3x1+3x2+3x3+5x4+x5+3x6 ≥1 x1+3x2+3x3+3x4+5x5+3x6 ≥1 3x1+x2+3x3+3x4+3x5+5x6 ≥1 xi ≥ 0,i=1,2,…,6
可解得解为:x1=x4=x5=0, x2=x3=x6=0.111, v′=3, x1′=x4′=x5′= 0, x2′=x3′=x6′=1/3, 即X′* =(0,1/3,1/3,0,0,1/3)T,所以甲的最优策略为作 出策略2、3、6的概率都为0.333,而作出1、4、5 的概率为0,此时 V′G=V′=3。
mia故xm不jin存aij 在纯1 策mjin略m问iax题aij 下3的解,可求其混合策略。
A中有负元素,可以取k=2,在A的每个元素上加2得到
A’如下:
5 3 3 3 1 3
3 5 3 3 3 1
3 1 5 3 3 3 A' 1 3 3 5 3 3
3 3 3 1 5 3
3 3 1 3 3 5
§3 矩阵对策的混合策略
若不存在va=v=vb,则局中人甲、乙两 方没有最优纯策略,就要考虑如何 随机地使用自己的策略,使对方捉 摸不到自己使用何种策略。即使用 混合策略。
设矩阵对策 G = { S1, S2, A }。当
max
min
ai ij
min
j
max j
aij
i
时,不存在最优纯策略。 例:设一个赢得矩阵如下:
因是甲和乙没有执行上述原则的共同基础,即 max min
aij min max aij 。
ij
ji
一个自然的想法:对甲(乙)给出一个选取不同策
略的概率分布,以使甲(乙)在各种情况下的平均赢得
(损失)最多(最少)-----即混合策略。
求解混合策略的问题有图解法、迭代法、线性方程法和
线性规划法等,我们这里只介绍线性规划法,其他方法略。