九年级数学一元二次方程知识点及练习
一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)

一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。
3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
人教版九年级上册数学第21章一元二次方程知识点复习总结

一元二次方程知识点复习总结1. 一元二次方程的一般形式:a ≠0时,ax 2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a 、 b 、c ;其中 a 、 b,、c 可能是具体数,也可能是含待定字母或特定式子的代数式.2. 一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.3. 一元二次方程根的判别式:当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根;Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根;Δ≥0 <=> 有两个实根(等或不等).4. 一元二次方程的根系关系:当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x ab x x )2(a2ac4bbx )1(212122,1,;※ 5.当ax 2+bx+c=0 (a ≠0) 时,有以下等价命题:(以下等价关系要求会用公式acx x a bx x 2121,;Δ=b 2-4ac 分析,不要求背记) (1)两根互为相反数ab = 0且Δ≥0 b = 0且Δ≥0;(2)两根互为倒数a c =1且Δ≥0 a = c 且Δ≥0;(3)只有一个零根a c = 0且a b ≠0 c = 0且b ≠0;(4)有两个零根a c = 0且a b = 0c = 0且b=0;(5)至少有一个零根a c =0 c=0;(6)两根异号a c <0 a 、c 异号;(7)两根异号,正根绝对值大于负根绝对值a c <0且a b >0a 、c 异号且a 、b 异号;(8)两根异号,负根绝对值大于正根绝对值a c <0且a b <0a 、c 异号且a 、b 同号;(9)有两个正根a c >0,ab >0且Δ≥0 a 、c 同号, a 、b 异号且Δ≥0;(10)有两个负根ac >0,ab <0且Δ≥0 a 、c 同号, a 、b 同号且Δ≥0.6.求根法因式分解二次三项式公式:注意:当Δ< 0时,二次三项式在实数范围内不能分解.ax 2+bx+c=a(x-x1)(x-x2) 或 ax 2+bx+c=a2ac4bb xa2ac4bb xa 22.7.求一元二次方程的公式:x 2-(x 1+x 2)x + x 1x 2 = 0.注意:所求出方程的系数应化为整数.8.平均增长率问题--------应用题的类型题之一(设增长率为x ):(1)第一年为 a , 第二年为a(1+x) , 第三年为a(1+x)2.(2)常利用以下相等关系列方程:第一年+第二年+第三年=总和.9.分式方程的解法:.0)1(),值(或原方程的每个分母验增根代入最简公分母公分母两边同乘最简去分母法.0.2分母,值验增根代入原方程每个换元凑元,设元,换元法)(10. 二元二次方程组的解法:.0)3(0)2(0)4(0)1(0)4(0)2(0)3(0)1(0)4)(3(0)2)(1()3(;02;1分组为应注意:的方程)()(中含有能分解为方程组)分解降次法(程中含有一个二元一次方方程组法)代入消元(※11.几个常见转化:;;或;;;)x x (x x 4)x x ()x x ()x x (x x 4)x x ()x x (x x 2)x1x(x1x2)x1x(x1xx x 4)x x ()x x (x x 2)x x (xx )1(2121221221212122122121222222212212212122122214x x .22x x 2x x .12x x )2(221212121)两边平方为(和分类为;.,)2(34x x 34x x )1()916x x (34x x )3(2121222121因为增加次数两边平方一般不用和分类为或;.0x ,0x :.1x x Bsin A cos ,1Acos Asin ,90BAB sin x ,A sin x )4(2122212221注意隐含条件可推出由公式时且如.0x ,0x :.x ,x ),,(,x ,x )5(212121注意隐含条件的关系式推导出含有公式等式面积例如几何定理,相似形系可利用图形中的相等关时若为几何图形中线段长.k ,)6(”辅助未知元“引入些线段的比,并且可把它们转化为某比例式、等积式等条件角三角形、三角函数、如题目中给出特殊的直.,;,)7(知数的关系但总可求出任何两个未般求不出未知数的值少一个时,一方程个数比未知数个数一般可求出未知数的值数时方程个数等于未知数个。
九年级上第02讲 一元二次方程的解法(公式法、因式分解法)讲义+练习

因式分解法解一元二次方程.
【知识导图】
1、观察一元二次方程 ,结合我们上节课学的知识解此方程.
2、思考这个一元二次方程还有没有其它的解法?
3、今天我们学习一元二次方程另外的解法:公式法、因式分解法.
1、形成表象,提出问题
用配方法解下列一元二次方程:
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,
x2﹣3x+2=0,
(x﹣1)(x﹣2)=0,
x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2,
一元二次方程的解法
(配方法和因式分解法)
适用学科
初中数学
适用年级
初三
适用区域
人教版区域
课时时长(分钟)
120
知识点
1、根的判别式;
2、公式法解一元二次方程;
3、因式分解法解方程.
教学目标
1、掌握公式法解一元二次方程的方法.
2、掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.
教学重点
能根据题目的要求及特点用恰当的方法求解方程.
我们仍以方程x2=4为例.
移项,得x2-4=0,
对x2-4分解因式,得(x+2)(x-2)=0.
我们知道:
∴x+2=0,x-2=0.
即x1=-2,x2=2.
人教版九年级数学-一元二次方程全章知识点专题复习(含答案)

一元二次方程全章知识点专题复习【课标要点】1. 理解一元二次方程定义;2. 会解一元二次方程;3. 会根据根的判别式24b ac -判断一元二次方程的根的情况; 4. 会列一元二次方程解决实际问题.⎧⎪⎪⎪⎨⎪⎪⎪⎩解法根的判别式一元二次方程二次三项式的分解因式根与系数的关系实际应用问题第1讲 一元二次方程的概念【知识要点】1、一元二次方程的一般形式:200),,,ax bx c a a b c ++=≠(其中是常数. 2、在一般式中,当b =0时,则有220c 00ax c ax bx +=+=或当=时,则有,这两种情况都是一元二次方程.【典型例题】 例1判断下列关于x 的方程是不是一元二次方程.22222222213;(2)50;(3)235;(5)2(3)21;511(6)33;(7)2;(8)()10;(9)40:1(10)0.(0)x x x xy x x x x x x x x abx a b x x x x px qx m p =-=--==-=+++=-=+++=-+=+++=≠() 分析:一元二次方程,必须满足:(1)整式方程;(2)含有一个未知数,并且最高次数是2.解:方程(1)、(6)、(7)的左边是分式,不属于整式方程,方程(3)含有两个未知数,方程(4)的左边不是整式,方程(5)经整理候,得-6x =1,方程(8)中未确定ab≠0,因此,只有(2)、(9)、(10)是一元二次方程.例2方程25)(3)(3)50.m m m x m x ---+-+=((1) m 为何值时,此方程为一元二次方程? (2) m 为何值时,此方程为一元一次方程?分析:形如0nax bx c ++=的方程,当n =2且a≠0时为一元二次方程;当a =0时且b≠0时为一元二次方程.解:(1)当m -2=2时,m =4,这时5)(3)0.m m --≠(当m =4时,此方程为一元二次方程.(2)5)(3)0,20,2m 30m m m m --=->-≠当(为自然数,且-时,方程为一元一次方程.由5)(3)0m 5m 3m m m --=≠(得=或=,又因为3,∴当m =5时,此方程为一元一次方程.例3 为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用了新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2填,为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还应再增加多少米?(只需列出方程,并整理成一般一元二次方程形式.)分析:根据题意本题有两个关系式:一是计划每天加固的长度比原计划增加了20米,而是实际完成工程任务所需时间比原计划缩短2天,由时间关系列出方程.解:设现在计划每天加固河堤x 米,则原来计划每天加固河堤(x -20)米.根据题意德22402240220x x-=-,整理,得 22022400x x --=【知识运用】 一、选择题1.一元二次方程得一般形式是( )A.20x bx c ++= `B.20ax bx c ++=C. 20()ax bx c a o ++== D.以上都不对 2.下列方程为一元二次方程的有( )A.21102x x-+= B. 252ax bx c +=C.()219x -=D.x+y=03.关于x 的方程232232(m n m x mx m x nx px q +=+-+≠其中),经化简整理,化为200)ax bx c a ++=≠(的形式后,二次项系数、一次项系数及常数项分别是( )A.m -n ,p ,qB. m -n ,-p ,qC.m -n ,-p ,-qD.m -n ,p ,-q4.将一元二次方程21x 2x 302-+=-的二次项系数变为正整数,且使方程的根不变的是( )A. 2x 2x 30+=- B. 2x x 60+=-4C 2x x 60=-4-D 2x x 60-=+4二、填空题5.方程24x 0=是_____元______次方程,二次项系数是______,一次项系数是____,常数项是_______.6.当m__________时,方程2m-1)x 21)x 0m m -+=(-(不是关于x 的一元二次方程;当m___________时,上述方程才是关于x 的一元二次方程;7.若方程22x 3x 1k x +=+是一元二次方程,则k 的取值范围是_________; 三、解答题 8.若方程1(3)x230k k x --+-=是关于x 的一元二次方程,求k 的值.9.若关于x 的一元二次方程22(a-1)x +x+a 10-=的一个根是0,求a 的值.10.某大学改善校园环境,计划在一块长80米,宽60米的矩形场地中央建一矩形网球场,网球场占地面积为3500平方米,四周为宽度相等的步行道,求步行道的宽度,根据题意列出泛称,并将其化为一般形式.第2讲 配方法【知识要点】1、直接开平方法解一元二次方程:将方程化成()2b(0)x a b +=≥的形式,则x=0)a b -±≥.2、配方法解一元二次方程:利用公式222a 2()ab b a b ±+=±,把一元二次方程转化为2()(0)x a b b +=≥,再利用直接开平方法解方程.【典型例题】例1 用配方法解关于x 的一元二次方程: x 0px q ++=2分析:配方法解一元二次方程,关键要搞清配方的目的是什么,即配方要使方程能运用直接开平方法解决,该题是一种字母系数的一元二次方程,故可按上述步骤进行求解,先将其整理成一般形式,二次项系数化为1.因二次项系数为1,所以移项得2x x p q +=-,方程两边配方,然后利用完全平方公式,直接开平方法解出方程.解:22221212x ,x (),244qx ,244q p 400,4x (2)p 40x 23p 40px q p p px q p p p q x pq x q +=-++=-+--->>---<222222移项,得配方,得整理,得(+)=(1)当时,方程两边直接开平方,得当=时,==;()当时,原方程无实数解.例2 用配方法解方程(1)2x 6x 50+-=; (2)24x 7x 20-+=分析:方程经过移项,配方后变为形如2().ax b c +=的方程 解:(1)(2)移项,得24x 7x 2-=-化二次项系数为1,例3 试证:不论x 为何实数,多项式424224124x x x x ----的值总大于的值. 分析:比较两个代数式大小通常用做差的方法. 解:∴多项式424224124x x x x ----的值总大于的值. 【知识运用】 一、选择题1. 已知代数式2224x 228x 5x x +-+-的值为3,则代数式的值为( ) A.5B. -5C. 5或-5D.02.将二次三项式22x 4x 6-+进行配方,正确的结果是( )A.24-2(x-1) B.24+2(x-1)C.22-2(x-2)D. 22+2(x-2) 3.方程2(1)9x +=的解是( ) A.2x =B. 4x =-C. 122,4x x ==-D. 122,4x x =-=221265,6959,314333x x x x x x x +=++=+=∴+=∴=-+=--2移项,得配方,得即(x +)2222127717x ()()48287177x x 864877x x 88x x x -+=-+-∴-∴--∴得即()=,===4242424222224242(241)(24)23(21)2(1)2x (1)20(241)(24)0x x x x x x x x x x x x x x -----=-+=-++=-+-+>----->对于任何实数,总有即4.已知11120,19,21202020a xb xc x =+=+=+,则代数式222a b c ab bc ac ++---的值是( ) A.4 B.3C. 2D. 1二、填空题5.224___9(___3)x -+=-6.将二次三项式2x 2x 2--进行配方,其结果等于__________.7.已知m 是方程2x x 20--=的一个根,则代数式2m m -的值等于______. 三、解答题8.用配方法解下列方程2(1)2360;x x --= 221(2)20;33y y --=2(3)0.40.81;x x -= 2(4)1)0;y y ++=9.用配方法证明21074x x -+-的值恒小于0.10.来自信息产业部的统计数字显示,2019年1月至4月份我国手机产量为4000万台,相当于2018年全年手机产量的80%,预计到2020年年底收机产量将达到9800万台,试求这两年手机产量平均每年的增长率.第3讲公式法【知识要点】1.公式法:一般地,对于一元二次方程221200),b 4ac 0x ax bx c a ++=≠≥,(当-时, 2.2b 4ac 0≥V 当=-,方程可用公式法求解;当2b 4ac 0<V 当=-时,方程无解.【典型例题】例1 用公式法解下列方程21x 100-+=() 2(2)221x x +=(3)(1)(1)x x +-=分析:首先把每个方程化成一般式,确定a 、b 、c 的值,在2b 4ac 0≥-的前提下,代入求根公式求出方程的根.解:2221222212(2)2210,2,2,1,424?2?(1122(3)10,1,2,1,44?1?(2(4)x x a b c b ac x x x a b c b ac x x +-====--=-±∴=⨯-+-∴===--===-=--=-±∴==⨯∴==Q 移项,得-1)=12>0,-2x=22原方程可化为(-1)=12>0,-(x=222221210,1,1,1,414?1?(x x a b c b ac x x +-====--=-∴=∴===Q 将原方程可化为-1)=5>0,x例2 阅读下面一段材料,并解答问题.22(1)1,4,10,4(411080,(212x x a b c b ac x ==-=-=-⨯⨯>--∴===⨯∴=Q 1=2-=22220(0)40,4200(0,,,)ax bx c a x b ac b ac b x aa ax bx c a abc ++=≠=-≥--∆=≠∆≥++=≠ 我们知道由一元二次方程运用配方法得其求根公式由平方根的意义知:当时即负数,没有平方根,故代数式就决定了方程根的情况,称它为一元二次方程根的判别式,用记号“”表示,故公式符合条件且0,方可用于求实数根.此外,若均为整数应当222121242,(1)10,:4,?,,?:,b ac b a k x x k x k x x x x k ∆=-∆--+++==∆≥注意当是完全平方时,方程根为有理根;当是完全平方且(是的整数倍时方程的根为整数根. 根据上面得出的结论,请你解答下列问题: 已知关于的方程试求 ⑴为何值时方程有两个实数根 ⑵若方程的两个实数根满足则为何值 分析根据上面材料分析当0时方程有实数根,从而确定k 的取值,对[]1222121121212121.:(1),1)4(1)043230.2(2)0,,0,2k-3=0,35k=,0,240,010,10,,x x k k k k x x x x x x x x x x x k k x =∆≥+-+≥-≥∴≥=≥=∆===><-=+=∴+==-∆≥Q 1于⑵中需分类讨论 解方程有实数根故0,即-( 化简得时方程有两个实数根由①当时此时即符合要求.②当x 时即与相矛盾故舍去k=-13综上可知:当k=时有22x = 例3 某工厂拟建一座平面图形为矩形且面积为200平方米 的三级污水处理池(平面图如右图),由于地形限制,三级水库处理 池的长、宽都不能超过16米,如果池的外围墙建造单价为每米 400元,中间两条间隔墙单价为每米300元,池底建造单价为每平 方米80元.(池墙的厚度忽略不计)(1) 当三级污水处理池的总造价为47200元时,求池长x;(2) 如果规定总造价越低就越合算那么根据题目提供的信息以47200元为总造价来修建三级污水处理池是否最合算?请说明理由.分析:可根据三级污水处理池的总造价为47200元列方程.ADBC隔墙隔墙x21212400400:(1)400(2)3002008047200,4007008002008047200,393500,14,25,,14,25,2516(,)10014,16.7x x xx xx x x x x x ⨯++⨯+⨯=⨯++⨯=-+=====><∴ 解由题意得即有 化简得 解得经检验都是原方程的根但米米不符合题意舍去 当池长为米时池宽为米米符合题意 当三级污水处理池的总造价为47200(2)1612.5164007008001620080463004720016<⨯⨯++⨯=<∴元时,池长为14米.当以47200元为总造价修建三级污水处理池时,不是最合算. 当池长为米时,池宽为米米,故池长为16米符合题意,这时总造价为当以47200元为总造价修建三级污水处理池时,不是最合算.【知识应用】 一、选择题22222401)53200,0,0,x x k k m x x m m m n x mx n n m n --=-++-+=++=≠+1.方程2有两个相等的实数根,则的值为( )A.-1 B.-2 C.1 D.22.若一元二次方程(的常数项为则为( )A.1 B.2 C.1或2 D.53.若是方程的根则的值为( )1A. B.1 C.222235020,______.6.610_______.7.x x x mx m x x x --=++=--=1- D.-124.不解方程,判断方程2的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定二、填空题5.已知的一个根则方程的另一个根是_____,的值是方程3的两根之和是方程22230530______.x x x --=++=与方程2的公共解是三、解答题,28.已知直角三角形的一条直角边比另一条直角边长2cm,且面积为24cm 求直角三角形的周长.21)(4)240,10,.k x k x k k k +++-+=+≠9.已知方程(有零根其中求的值2210.2)0,a a x ax b x a --++=要使(是关于的一元二次方程求的取值范围.第4讲 分解因式法【知识要点】112212121212a xb a x b b b a a x x a a ++≠=-=- 1. 分解因式法:把一个一元一次方:程整理为:()()=0的(0)的形式,方程的解为:;;. 2.注意(1)方程一边一定化为0;(2)常用的方法:①提公因式法;②运用公式法③十字相乘法.【典型例题】260;x x -=例1 用因式分解法解下列方程. (1):(1),,(2),(5)(5),,.x x --分析方程的右边是零左边可以用提公因式法分解方程不要去掉括号更不要两边同时除以或要先移项使方程右边为零212212:60,(6)0,060,0, 6.(2)3(5)2(5)0,(5)[3(5)2]0,(5)(133)0,501330,135,.3x x x x x x x x x x x x x x x x x x -=-=∴=-=∴==---=---=--=∴-=-=∴==解(1)即或原方程可变形为 即或 2(2)3(5)2(5)x x -=-例2 用公式法因式分解式解下列方程.2222(4)(43)(2)49(3)16(6)x x x x -=--=+ (1)3221222(1)(2)(1)(4)(43)0[(4)(43)][(4)(43)]0(77)(1)0,770101, 1.(2)7(3)][4(6)]0,7(3)4(6)][7(3)4(x x x x x x x x x x x x x x x x x x ---=∴-+----=∴---=∴-=--=∴==---+=-++--分析:方程先移项再利用因式分解法来解,方程移项后也能因式分解.解:移项,得333或 原方程化为[ [126)]0,(113)(345)0,3,15.11x x x x +=+-=∴=-=化简为,1).x x x x +-例3 为解决新疆农牧民出行难的问题今年是新疆投资公路建设力度最大、最多的一年,某公路修筑队接受了改建农村公路96千米的任务,为了尽量减少施工带来的交通不便,实际施工时每天比计划多修1千米,结果提前16天完成任务,问原计划每天修多少千米?分析:如果把修路队原来计划每天修(千米),则实际每天修路是(千米,工作任务可根据工作时间=列方程工作效率解:设原计划每天修路千米,由题意得962129616160(3)(2)03(),2:x x x x x x x =++-=∴+-=∴=-= 化简整理得舍去答原计划每天修2千米.【知识运用】1212121212121200550505244552A. B.4C.,4D.,4225(1)(2)034,A B x x x x x x x x x x x x x x x x x x x x x x x x -======-==--======+-===-一、选择题1.一元二次方(5)=0的两个根为( )A.,B.,C.,D.,2.方程()=5()的根为( )3.方程的根是,则这个方程为( ).-1,2 .12C D 34,A.(3)(4)0B.(3)(4)0C.(3)(4)0D.(3)(4)0x x x x x x x x x x ==--+=+-=++=--=1,-2 .0,-1,2 .0,1,-24.已知一元二次方程的两根分别为,则这个方程为( )22225123,_____.4_____,.5147.235(23)201(21);(2)(5)59.,3,x x x x x x x x x x y x x x +-+=-=+-++++=-=-=2二、填空题:5.若与的值相等则6.当时代数式的值为零用分解因式法解方程:2()的解是_____.三、解答题8.用适当的方法解方程.1(1)2有一个直角三角形它的边长恰是个连续整数这个三角形的三边长是多少?10.有一个两位数,它的十位数字和个位数字的和是5,把这个两位数的十位数字和个位数字互换后得到另一个两位数,两个两位数的积为736,求原来的两位数.第5讲 一元二次方程【知识要点】 1、黄金分割:如,图若点C 把线段分成两条线段AB 和BC ,且满足AC BCAB AC=则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.2、列方程解应用题的基本步骤可归纳为:审(审题);设(设未知数);列(列方程)解(解方程);答(答案).3、列方程解应用题的关键是找出存在的相等关系 【典型例题】例1 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到五月份营业额的平均增长率.分析:本题属于平均增长率问题,由已知可设月平均增长率为x ,那么3月份的营业额为400(1+10%)(1+x ),5月份营业额为400(1+10%)(1+x )2.解:设平均月增长率为x ,由题意得400(1+10%)(1+x )2=633.6 整理得:(1+x )2=633.61 1.2440x ∴+=± 0.2x ∴= 所以平均月增长率为20%.例2 一块矩形耕地大小尺寸如图所示,要在这块地上沿东西和南北方向分别挖2条和4条水渠,如果水渠的宽相等,而且要保证余下的可耕地面积为9600米2,那么水渠应挖多宽?分析:这类问题的 特点是挖蕖所占用土地面积只与挖蕖的条数、渠道的宽度有关,而与渠道的位置无关,为了研究问题方便可分别把沿东西和南北方向挖的渠道移动到一起,那ABC么剩余可耕的长方形土地的长为(162-2x )米,宽为(64-4x )米.解:设水渠应挖x 米宽,以题意,得(162-2x )(64-4x )=9600化简,297960x x -+=解得11x =,296x =(舍去)答:水渠应挖1米宽. 【知识运用】 一、选择题1. 某商店十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率是( ) A .20% B ..12% C .22% D.10%2. 从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A. 9cm 2B.68cm 2C. 8cm 2D. 64cm 23.有一个两位数,它的数字和等于14,交换数字位置后,得到新的两位数比原来的两位数大18,则原来的两位数是( )A .68 B.86 C.-68 D.-864.随着通讯市场竞争日益激烈,某通讯公司的收集市话收费标准按原标准每分钟降低了a 院后,再次下降25%,现在的收费标准是每分钟b 元,则原收费标准是每分钟( ) A. 5(1)4b -元 B. 5()4b a +元 C. 3()4b a +元 D 4()3b a +元. 二、填空题5.三个连续偶数,较小的两个数的平方和等于较大的数的平方,则这三个数为________. 6.一个两位数,它的数字之和为9,如果十位数字为a ,那么这个两位数是________;b 把这个两位数的个位数字与十位数字对调组成一个新数,则这个数与原数的差为________. 7.某种手表的成本在两年内以100元降低到81元,那么平均每年降低成本的百分率是_____. 三、解答题8.某工厂计划用两个月把产量提高21%,如果每月比上个月提高的百分数相同,求这个百分数.9.某人将2000元人民币按一年定期存入银行,到期后支出1000元用来购物,剩下的1000元及应得利息又全部按一年定期存入银行.若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率.10.某商店如果将进货价为8元的商品按每件10元出售,每天可销售200件.现采用提高售价、减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件.问售价定为多少时,才能使所赚利润最大,并求出最大利润.第1讲一、1.C 2.C 3.D 4.D 二、5.一、二,4,0,0 6.m=1,m ≠1 7.222a ab b --三、8.根据题意的1230k k ⎧-=⎪⎨-≠⎪⎩①②由①得k -1=-2解得k=3或k=-1,由②得k ≠3,所以k=-19.由于方程的解使方程的左右两边相等,故将方程的解代入原方程后得到关于a 得方程,求出a 得值,但是需要满足原一元二次方程的二次项系数不为零,故只取a=-1. 10.设步行道的宽度为x 米,根据题意得(80-2x ).(60-2x)=3500整理,得方程的一般形式为703250x -+=2x 第2讲一、1.A 2.B 3.C 4.B二、5.12x,2x ;6.2(1)3x --;7.22m m -=三、8.121233(1)(2)2,31342x y y y y ±±==-==-=--2()x=29.2711110)002040x --<原式配方得-( 2210740,10740x x x x +-=+-即-故-的值恒小于 10.设这两年手机产量平均每年的增长率为x ,根据题意得2124000212(1)980040%,8055x x x +====-解得%(舍去) 第3讲一、1.B 2..B 3.D 4.A 二、5.24-- 6.2 7.x=-1三、8.设直角三角形的较短的直角边长为xcm ,则较长的直角边长为(x+2)cm.根据题意得:2001)0(4)02402x x k k k k =∴=+⨯++⨯-+=∴=Q 方程有零根即将代入方程得,(2121(2)24248026,8()2810x x x x x x x +=∴+-===-∴+=∴∴解得不符合题意舍去较长直角边为直角三角形的周长为6+8+10=24(cm )9. 10.要使方程是x 的一元二次方程,则由一元二次方程的定义.有220,2,1a a a a x --≠∴≠≠-且时该方程时关于的一元二次方程第4讲一、1.C 2.A 3.C 4.C 二、5.- 1或4 6.x =-27.260,y y x +-==三、8.(1)y=12±(2)121x x 5==- 9. 3,4,5 10. 32,23第5讲一、1.C 2.A 3.B 4.D 二、5. 7,6,8 6.9a+9,81-18a 7.10%三、8.设每月提高的百分率为x,原产量为a ,以题意得a(1+x)2=a(1+21%)220(1) 1.210.110% 2.1(10a x x ≠∴+====-∴Q 1解得x 舍去)为%9.设此种存款的年利率为x ,由题意得: 【2000(1+x )-1000】(1+x)=1320 所以年利率为10%10.设此种商品的售价为x 元,商品所赚利润s 最大.2210.(20010)2040020(10)20000.5102000.x s x x x s x x s -=-⨯=-+∴=--+∴=当时,取最大值。
人教版九年级数学:一元二次方程知识点总结及基础题型

一元二次方程知识点一:一元二次方程的定义等号两边都是整式,只含有一个未知数〔一元〕,并且未知数的最高次数是2〔二次〕的方程叫做一元二次方程,一般形式是),,,0(02为常数c b a a c bx ax ≠=++类型:()()()()⎪⎪⎩⎪⎪⎨⎧≠=++≠=+≠=+≠=000000002222a c bx ax a c ax a bx axa ax ④③②①判断一元二次方程的步骤例1:1.以下方程时一元二次方程的是 ①2032=+x x ;①04322=+-xy x ;①412=-x x ;①02=x ;①0332=+-xx ⑥x 2﹣1=y ⑦〔x+2〕〔x+1〕=x 2 ⑧ 6x 2=5 ⑨⑩2x +3x +y=0 ;⑪ x+y+1=0 ;⑫ 213122+=+x x ; ⑬ 0512=++x x⑭;⑮3y 2﹣2y=﹣1;⑯2x 2﹣5xy+3y 2=0;⑰⑱ 2x 2+3=3;⑲ x 2+5x =0;⑳ x 2+4xy?10=0;① √x +2x =3;① 2x (x −3)=2x 2+1; ① 1x +2x =x?6;① 2x 2+1=12x ;① abx 2+(a +b )x +1=0;① x 2−3√3x +4=0;1.把方程化成一般形式),,,0(02为常数c b a a c bx ax ≠=++2.最高次数=2① px 2+qx +m =0〔p ≠0〕.2.关于x 的方程mx 2+3x=x 2+4是一元二次方程,那么m 应满足条件是 _________ .3.关于x 的一元二次方程ax 2﹣3x+2=0中,a 的取值范围是 _________ .4.当m= _________ 时,方程〔m 2﹣1〕x 2﹣mx+5=0不是一元二次方程.5.假设关于x 的方程〔k ﹣1〕x 2﹣4x ﹣5=0是一元二次方程,那么k 的取值范围是__________ 例2:当=m 时,方程072)1(1=-+-+x x m m 为一元二次方程 6.假设是关于x 的一元二次方程,那么a= _________ .7.假设关于x 的方程〔m ﹣1〕﹣mx ﹣3=0是一元二次方程,那么m= _________ .8.当k= _________ 时,〔k ﹣1〕﹣〔2k ﹣1〕x ﹣3=0是关于x 的一元二次方程.9.方程〔m+2〕x |m|+3mx+1=0是关于x 的一元二次方程,那么m=__________10.关于x 的方程〔m ﹣2〕x |m|﹣mx+1=0是一元二次方程,那么m=___________ 知识点二:一元二次方程的一般形式一元二次方程的一般形式是),,,0(02为常数c b a a c bx ax ≠=++,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项①0≠a ;①指出二次项系数,一次项系数,常数项时,一定要带上前面的符号 ①一元二次方程化为一般形式时,假设没出现一次项bx ,并不是没有,而是0=b 例3: 把方程〔1〕()()1231=+-x x 〔2〕x (x −2)=4x 2−3x 〔3〕(x +8)2=4x +(2x −1)2〔4〕x23−x+12=−x−12化为一般形式,并写出它的二次项系数,一次项系数和常数项1.一元二次方程的二次项系数、一次项系数、常数项分别是_______________ 142=+xx的二次项系数,一次项系数,常数项分别是3.一元二次方程2x-3x = 4的一般形式是,一次项系数为。
初三数学课本练习和习题-一元二次方程

一元二次方程22.1 一元二次方程【知识点】1、一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。
一般形式:ax 2﹢bx ﹢c =0 (a 、b 、c 为常数,且a ≠0)其中,a 是二次项系数,b 是一次项系数,c 是常数项。
注意,系数是包括前面的符号的。
一元二次方程的解也叫做一元二次方程的根。
2、单循环比赛公式:2)1(-n n 双循环比赛公式:n (n ﹣1)【练习】1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。
(1)x x4152=- (2)8142=x (3)25)2(4=+x x (4)38)1)(23(-=+-x x x2. 根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短的一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ;(4)一个直角三角形的斜边长为10 cm ,两条直角边相差2 cm ,求较长的直角边长x 。
3. 如图,有一块长方形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?4. 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【习题】一元二次方程【复习巩固】1. 将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次性系数及常数项:2. 根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.28 m2,求半径。
(2)一个直角三角形的两条直角边相乘3 cm,面积是9 cm2,求较长直角边的长。
解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。
温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。
根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。
人教版数学九年级上学期课时练习-一元二次方程(基础篇)(人教版)

专题21.2 一元二次方程(基础篇)(专项练习)一、单选题知识点一、一元二次方程的定义1.下列是关于x 的一元二次方程的是( ) A .212021x x-= B .()60x x += C .250a x -= D .342x x -=2.下列方程,是一元二次方程的是( )A 0B .213x x-=1 C .x 2+y 2=1 D .x 2=13.关于x 的方程22(1)20m x x -+-=是一元二次方程,则m 满足( ) A .1m ≠B .1m ≠-C .1m ≠±D .m 为任意实数4.若方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则m 的值为( ) A .±2B .+2C .﹣2D .以上都不对知识点二、一元二次方程的一般形式5.一元二次方程2250x x +-=的二次项系数、一次项系数、常数项分别是( ) A .2,1,5B .2,1,-5C .2,0,-5D .2,0,56.关于x 的方程2324x x -=中,二次项系数和一次项系数分别是( ) A .3,-2B .3,4C .3,-4D .-4,-27.把一元二次方程(x 1)3x 2x +=+化为一般形式,其中正确的是( ) A .2420x x ++= B .2220x x +=-C .2220x x --=D .222x x -=8.把一元二次方程(()2210x x x +-=化成一般形式,正确的是( ) A .25440x x +=- B .25440x x --= C .25210x x -+=D .25460x x -+=知识点三、一元二次方程的解9.若关于x 的一元二次方程260x ax -+=的一个根是2,则a 的值为( ) A .2B .3C .12D .510.已知a 是方程22350x x --=的一个解,则246a a -+的值为( ) A .10B .-10C .2D .-4011.若0x =是关于x 的一元二次方程22(1)210m x x m -++-=的解,则m 的值为( ) A .1m =±B .0m =C .1m =D .1m =-12.a 是方程x 2+x ﹣1=0的一个根,则代数式﹣3a 2﹣3a +2021的值是( ) A .2018 B .2019C .2021D .2022二、填空题知识点一、一元二次方程的定义13.只含有__________个未知数,并且未知数的__________次数是2的方程,叫做一元二次方程,它的一般形式为____________________.14.下面三个方程:x ²+2x -4=0,x ²-75x +350=0,x ²-x =56,它们有什么共同点? 特点:(1)都是_________方程; (2)只含有______个未知数; (3)未知数的最高次数是______.15.若关于x 的一元二次方程(a - 1)x 2 - ax + a 2 = 1的一个根为0.则a = ________. 16.若关于x 的方程()2230mm x x ---=是一元二次方程,则m =______.知识点二、一元二次方程的一般形式17.一元二次方程(2)(34)5x x +-=化为一般形式为___________________________,它的二次项系数是_______,一次项系数是_______,常数项是_______.18.方程23810x x -+=的一次项系数是______.19.一元二次方程5x 2– 3x = 4+2x 化为一般形式是_______. 20.把一元二次方程()212x +=化为一般形式为______.知识点三、一元二次方程的解21.已知关于x 的方程20x bx a ++=有一个根是1,则代数式a b +的值是___. 22.若x =-1是方程20ax bx c -+=的根,则a +b +c +2022的值为______. 23.若m 是方程22310x x --=的一个根,则2462021m m -+的值为_____.24 x =1的根是_________. 三、解答题25.已知关于x 的方程(2k +1)x 2+4kx +k -1=0,问: (1)k 为何值时,此方程是一元一次方程?(2)k 为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数及常数项.26.把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:27.已知m 是方程x 2﹣x ﹣1=0的一个根,代数式5m 2﹣5m +2016的值.28.(1)关于x 的一元二次方程22(1)10a x x a -++-=的一个根为0,则求a 的值; (2)如果关于x 的一元二次方程20(a 0)++=≠ax bx c 中的二次项系数与常数项之和等于一次项系数,求证:1-必是该方程的一个根.29.阅读理解:定义:如果关于x 的方程21110a x b x c ++=(a 1≠0,a 1、b 1、c 1是常数)与22220a xb xc ++=(a2≠0,a2、b2、c2是常数),其中方程中的二次项系数、一次项系数、常数项分别满足a1+a2=0,b1=b2,c1+c2=0,则这两个方程互为“对称方程”.比如:求方程2x2﹣3x+1=0的“对称方程”,这样思考:由方程2x2﹣3x+1=0可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个方程的“对称方程”.请用以上方法解决下面问题:(1)填空:写出方程x2﹣4x+3=0的“对称方程”是.(2)关于x方程5x2+(m﹣1)x﹣n=0与﹣5x2﹣x=1互为“对称方程”,求(m+n)2的值.参考答案1.B【分析】根据一元二次方程的概念判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.解:A .是分式方程,不是一元二次方程,不符合题意;B .是一元二次方程,符合题意;C .当a =0时,不是一元二次方程,不符合题意;D .是一元三次方程,不符合题意; 故选:B .【点拨】本题考查的是一元二次方程的概念,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.2.D 【分析】根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.解:A .不是一元二次方程,故此选项不符合题意;B .是分式方程,故此选项不符合题意;C .是二元二次方程,故此选项不符合题意;D .20x =是一元二次方程,故此选项符合题意. 故选:D .【点拨】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程包括三点:①是整式方程,①只含有一个未知数,①所含未知数的项的最高次数是2;一元二次方程的一般形式是20(a 0)++=≠ax bx c .3.C 【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得m 2-1≠0,再解即可.解:由题意得:m 2-1≠0, 解得:m ≠±1, 故选:C .【点拨】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式,方程中如果没有分母,那么分母中无未知数;①只含有一个未知数;①未知数的最高次数是2(二次项系数不为0).4.C【分析】根据一元二次方程的定义,一元二次方程必须满足三个条件:未知数的最高次数是2;二次项系数不为0;是整式方程.由这两个条件得到相应的关系式,再求解即可.解:由题意,得|m|=2,且m﹣2≠0,解得m=﹣2,故选:C.【点拨】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.5.B【分析】根据一元二次方程的基本概念,找出一元二次方程的二次项系数,一次项系数,以及常数项即可.解:①一元二次方程2x2+x-5=0,①二次项系数、一次项系数、常数项分别是2、1、-5,故选:B.【点拨】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a≠0).6.C【分析】根据一元二次方程的概念,方程的解的概念即可求求解.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.解:2x x--=3420-=,化为一般式为2324x x则二次项系数和一次项系数分别是3,4-故选C【点拨】本题考查了一元二次方程的一般形式,掌握一元二次方程的定义是解题的关键. 7.C 【分析】方程移项变形即可得到结果. 解:①(x 1)3x 2x +=+,①232x xx,①2220x x --=, 故选:C .【点拨】此题主要考查了一元二次方程的一般形式,正确变形是解题关键. 8.B 【分析】直接利用完全平方公式以及平方差公式去括号,进而得出答案.解:(()2210x x x +-=, 去括号得:x 2-5+4x 2-4x +1=0, 整理得:5x 2-4x -4=0. 故选:B .【点拨】此题主要考查了一元二次方程的一般形式,正确应用乘法公式是解题关键. 9.D 【分析】由题意将2x =代入原方程求解即可.解:关于x 的一元二次方程260x ax -+=的一个根是222260a ∴-+=解得5a = 故选:D .【点拨】本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,熟练掌握知识点是解题的关键.10.B 【分析】将a 代入方程得到2235a a -=,再将其整体代入所求代数式即可得解.解:①a是方程的一个解,①有2a a235-=,--=,即,22350a a①22-+=--=-⨯=-,462(23)2510a a a a故选:B.【点拨】本题考查了一元二次方程的解的定义,此类题的特点是利用方程的解的定义找到相等关系,再将其整体代入所求代数式,即可快速作答,盲目解一元二次方程求a值再代入计算,此方法耗时费力不可取.11.D【分析】根据一元二次方程的解的定义、一元二次方程的定义求解,把x=0代入一元二次方程即可得出m的值.解:把x=0代入方程(m﹣1)x2+2x+m2﹣1=0,得m2﹣1=0,解得:m=±1,①m﹣1≠0,①m≠1,m=﹣1,故选:D.【点拨】本题考查了一元二次方程的解的定义、一元二次方程的定义,解题的关键是运用一元二次方程解的定义易得出m的值,但不能忽视一元二次方程成立的条件m﹣1≠0.12.A【分析】利用一元二次方程根的定义得到a2+a=1,再把﹣3a2﹣3a+2021变形为﹣3(a2+a)+2021,然后利用整体代入的方法计算.解:①a是方程x2+x-1=0的根,①a2+a-1=0,①a2+a=1;①223320213()20213120212018--+=-++=-⨯+=;a a a a故选:A.【点拨】本题考查了一元二次方程的解的问题,解题的关键是利用整体代换的思想求解.13. 一 最高 20(a 0)++=≠ax bx c 【分析】根据一元二次方程的定义和标准形式进行填空即可.解:根据一元二次方程的定义可知只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元一次方程.,它的一般形式是ax 2+bx +c =0(a ≠0).故答案为:一;最高;ax 2+bx +c =0(a ≠0).【点拨】本题考查了一元二次方程的定义和它的标准形式,熟练一元一次方程的定义是解题的关键.14. 整式 一 2 略 15.-1 【分析】根据一元二次方程的定义及根的意义,得到21,10a a =-≠,求解即可. 解:关于x 的一元二次方程(a - 1)x 2 - ax + a 2 = 1的一个根为021,10a a ∴=-≠1a ∴=-故答案为:-1.【点拨】本题考查了一元二次方程的定义及一元二次方程的解,熟练掌握知识点是解题的关键.16.﹣2 【分析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.解:由题意,得2m =且20m -≠,解得2m =-, 故答案是:2-.【点拨】本题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是()200.ax bx c a ++=≠特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.17. 232130x x +-= 3 2 13- 【分析】首先利用完全平方公式进行计算,然后再把5移到等号左边,合并同类项即可得到232130x x +-=,然后再确定二次项、一次项系数和常数项.解:方程()()2345x x +-=整理为一般形式为232130x x +-=,①二次项系数是3,一次项系数是2,常数项是13-, 故答案为:232130x x +-=,3,2,13-.【点拨】此题主要考查了一元二次方程的一般形式,关键是掌握一元二次方程的一般形式是:20ax bx c ++=(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.18.-8 【分析】根据一元二次方程的一般形式解答.解:方程23810x x -+=的一次项是8x -,其系数是8-. 故答案是:8-.【点拨】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义. 19.5x 2– 5x -4=0 【分析】根据一元二次方程一般式的形式化简即可. 解:5x 2– 3x = 4+2x 化为一般式为5x 2– 5x -4=0, 故答案为:5x 2– 5x -4=0.【点拨】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是20ax bx c ++=.20.2210x x +-= 【分析】先展开完全平方式、再移项,变成一般形式即可. 解:()212x +=,即2212x x ++=即2210x x +-=故答案为:2210x x +-=【点拨】考查了一元二次方程的一般形式.一元二次方程的一般形式为:ax 2+bx +c =0(a ≠0)21.-1【分析】把1x =代入原方程,可得10,b a 从而可得答案. 解: 关于x 的方程20x bx a ++=有一个根是1,10,b a1,a b ∴+=-故答案为:1-【点拨】本题考查的是一元二次方程的根的含义,掌握“一元二次方程的根使方程的左右两边相等”是解本题的关键.22.2022【分析】根据x =-1是方程ax 2-bx +c =0根,得到a +b +c =0,整体代入即可求得答案.解:①x =-1是方程ax 2-bx +c =0根,①a +b +c =0,①原式=0+2022=2022,故答案为:2022.【点拨】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式的值.`23.2023【分析】由题意知22310m m --=,即2231m m -=,再将2462021m m -+整理并将2231m m -=整体代入计算求解即可.解:22310m m --=,即2231m m -=,①2462021m m -+()22232021m m =-+ 212021=⨯+=2023.故答案为:2023.【点拨】本题考查了一元二次方程的解及代数式的求值的知识,解题的关键在于理解一元二次方程的解的定义.24.2x =【分析】先对已知方程进行变形.然后结合二次方程即可求解.1x =+,两边平方得2721x x x +=++,即260x x +-=,解得3x =-或2x =,根据二次根式的性质可得1x ≥-,所以原方程的根是2x =.故答案为:2x =.【点拨】本题主要考察了二次根式的性质以及含有根式方程的一般解法.二次根式的性0(0)a ≥,含有根式方程的一般解法:先移项,然后两边同时平方,再利用一元二次方程的知识求解即可.25.(1)12k =-;(2)12k ≠-,二次项系数为21k +,一次项系数为4k ,常数项为1k - 【分析】(1)根据一元一次方程的定义,只含有一个未知数,且未知数的最高次为1的整式方程进行求解即可;(2)根据一元二次方程的定义,只含有一个未知数,且未知数的最高次为2的整式方程进行求解即可;解:(1)①()221410k x kx k +++-=是关于x 的一元一次方程,①21040k k +=⎧⎨≠⎩,解得12k =- (2)①()221410k x kx k +++-=是关于x 的一元二次方程,①210k +≠即12k ≠-, ①这个一元二次方程的二次项系数为21k +,一次项系数为4k ,常数项为1k -.【点拨】本题主要考查了一元一次方程和一元二次方程的定义,一元二次方程的一般形式,解题的关键在于能够熟练掌握一元一次方程和一元二次方程的定义.26.见分析【分析】根据一元二次方程的一般形式:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.解:把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.【点拨】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.27.2021【分析】根据一元二次方程解的定义,将m 代入210x x --=中,可得21m m -=,将2552016m m -+变形求解即可.解:①m 是方程x 2﹣x ﹣1=0的一个根①210m m --=①21m m -=①2552016m m -+=()252016m m -+ =52016+2021=【点拨】本题考查一元二次方程解的定义,以及代数式化简求值.根据定义解题关键.28.(1)1a =-;(2)证明见分析.【分析】(1)把x =0代入方程得到a 2-1=0,解得a =±1,然后利用一元二次方程的定义确定满足条件的a 的值.(2)由题意得到a +c =b ,变形后得到a -b +c =0,可得出x =-1是方程的根.解:(1)①一元二次方程22(1)10a x x a -++-=的一个根为0,①a -1≠0且a 2-1=0,①a=-1.(2)证明:根据题意,得:a +c =b ,即a -b +c =0;当x =-1时,ax2+bx +c =a (-1)2+b (-1)+c =a -b +c =0,①-1必是关于x 的一元二次方程ax 2+bx +c =0的一个根.【点拨】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.29.(1)﹣x 2﹣4x ﹣3=0;(2)1【分析】(1)根据对称方程的定义可得答案;(2)由题意得m ﹣1=﹣1,﹣n +(﹣1)=0,再解即可.解:(1)由题意得:方程x 2﹣4x +3=0的“对称方程”是﹣x 2﹣4x ﹣3=0,故答案为:﹣x 2﹣4x ﹣3=0;(2)由﹣5x 2﹣x =1,移项可得:﹣5x 2﹣x ﹣1=0,①方程5x 2+(m ﹣1)x ﹣n =0与﹣5x 2﹣x ﹣1=0为对称方程,①m ﹣1=﹣1,﹣n +(﹣1)=0,解得:m =0,n =﹣1,①(m+n)2=(0﹣1)2=1,答:(m+n)2的值是1.【点拨】此题主要考查了一元二次方程的一般形式,关键是正确理解题意,理解对称方程的定义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四个特点: (1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
(4)将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。
一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根. (3)公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x(4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
5.一元二次方程根的判别式根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆知识点1.只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。
例题:1、判别下列方程是不是一元二次方程,是的打“√”,不是的打“×”,并说明理由.(1)2x 2-x-3=0. (2)4y-y 2=0. (3) t 2=0.(4) x 3-x 2=1. (5) x 2-2y-1=0. (6) 21x -3=0. (7)x x 32- =2. (8)(x+2)(x-2)=(x+1)2. (9)3x 2-x 4+6=0. (10)3x 2=4x-3. 1、若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是 ( ) (A )2 (B )-2 (C )0 (D )不等于2 2、已知关于x 的方程()()03122=+-++p x n x m ,当 时,方程为一次方程;当 时,两根中有一个为零a 。
3、已知关于x 的方程()2220m m xx m --+-=:(1) m 为何值时方程为一元一次方程; (2) m 为何值时方程为一元二次方程。
知识点二.一元二次方程的一般形式一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
特别警示:(1)“0a ≠”是一元二次方程的一般形式的一个重要组成部分;(2)二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式。
例题:1、指出下列一元二次方程的二次项系数、一次项系数和常数项.2(2)510 2.20x x +-= 2(3)2150x -= 2(4)30x x += (5)3)2(2=+x2、关于x的方程06232=-+x x 中a 是 ;b 是 ;c 是 。
知识点三.一元二次方程的解使一元二次方程左右两边相等的未知数的值,叫方程的解。
例题:1、已知方程2390x x m -+=的一个根是1,则m 的值是 。
2、设a 是一元二次方程052=+x x 的较大根,b 是0232=+-x x 较小根, 那么b a +的值是 ( ) (A )-4 (B )-3 (C )1 (D )2 3、已知关于x 的一元二次方程220x kx +-= 的一个解与方程131x x +=-的解相同。
(1) 求k 的值;(2) 求方程220x kx +-=的另一个解。
知识点四.一元二次方程的解法 一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解; (3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是x =()240b ac -≥;(4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。
温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。
例题:解方程:1、方程220x x -=的解是: ( ) A.121x x == B.121,3x x =-= C.122,0x x == D.122,0x x =-= 2、方程)(211x x =-的较简便的解法应选用 。
解为 3、解下列方程:(1)()2331x x +=+ (2)2230x x +-= (3)2230x x +-=(4)()()y y 32322-=+ (5)()()1211312-=-x x(6)()2252)3(-=+x x (7)()()()2222263-++=-y y y知识点五.一元二次方程根的判别式对于一元二次方程()200ax bx c a ++=≠的根的判别式是24b ac -:(1) 当240b ac ->时,方程有两个不相等的实数根;(2) 当240b ac -=时,方程有两个相等的实数根;(3) 当240b ac -<时,方程无实数根。
温馨提示:若方程有实数根,则有240b ac -≥。
例题:1、已知方程230x x k -+=有两个不相等的实数根,则k= 。
2、当m 满足何条件时,方程()019122=-+--m x m mx 有两个不相等实根?有两个相等实根?有实根?3、关于x 的方程()05222=+++-m x m mx 无实根,试解关于x 的方程()()02252=++--m x m x m 。
4、已知关于x 的一元二次方程()241210x m x m +++-=,求证:不论m 为任何实数,方程总有两个不相等的实数根。
知识点六.一元二次方程根与系数的关系若一元二次方程()200ax bx c a ++=≠的两个实数根为12,x x ,则1212,b cx x x x a a+=-=。
温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。
例题:1、关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=,则k 的值为: ( )(A )314-或(B )1- (C )34(D )不存在 2、已知,αβ是关于x 的一元二次方程()22230x m x m +++=的两个不相等的实数根,且满足111αβ+=-,则m 的值是 ( )(A )3或-1 (B )3 (C )1 (D )-3或1 3、方程2360x x --=与方程2630x x -+=的所有根的乘积是 4、两个不相等的实数m,n 满足2264,64m m n n -=-=,则mn 的值为 。
5、设12,x x 是关于x 的一元二次方程20x px q ++=的两个根,121,1x x ++是关于x 的一元二次方程20x qx p ++=的两个根,则,p q 的值分别等于多少?知识点七.一元二次方程的实际应用列一元二方程解应用题的一般步骤:(1)审题(2)设未知数(3)列方程(4)解方程(5)检验(6)写出答案。
在检验时,应从方程本身和实际问题两个方面进行检验。
【考题1】(2009、襄樊)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10平方米提高到12.1平方米,若每年的增长率相同,则年增长率为()A.9﹪B.10﹪C. 11﹪D.12 ﹪ 【考题2】(2009、海口)某水果批发商场经销一种高档水果 如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【考题3】如图,在△ABC 中,∠B=90°,AB=5,BC=7,点P 从A 点开始沿AB 边向点B 点以1cm/s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果点P 、Q 分别从A 、B 两点同时出发,经过几秒钟,△PBQ 的面积等于4?(2)如果点P 、Q 分别从A 、B 两点同时出发,经过几秒钟,PQ 的长度等于5?一元二次方程综合复习1、下列方程中,关于x 的一元二次方程是 ( ) A.()()23121x x +=+ B.21120x x+-= C.20ax bx c ++= D.2221x x x +=+ 2、方程(m 2-1)x 2+mx -5=0 是关于x 的一元二次方程,则m 满足的条件是…( )(A )m ≠1 (B )m ≠0 (C )|m |≠1 (D )m =±13、若1x =是一元二次方程220ax bx +-=的一个根,则a b += 。
4、实数a acb b 242-±是方程 的根 ( )(A )02=++c bx ax (B )02=+-c bx ax(C )02=--c bx ax (D )02=-+c bx ax5、方程2250x -=的解是: ( )A.125x x ==B.1225x x ==C.125,5x x ==-D.1225,25x x ==- 6、关于x 的一元二次方程2210kx x +-=两个不相等的实数根,则k 的取值 范围是 ( )(A )1k >- (B )1k >- (C )0k ≠ (D )10k k >-≠且 7、在下列方程中,有实数根 的是 ( )A )2310x x ++= B1=- C )2230x x ++= D )111x x x =-- 8、关于x 的一元二次方程222310x x m -+-=有两个实数根12,x x ,且12124x x x x >+-,则m 的取值范围是 ( )(A )53m >- (B )12m ≤ (C )53m <- (D )5132m -<≤ 9.若(x+y )(1-x -y )+6=0,则x+y 的值是( ) A .2 B .3 C .-2或3 D .2或-3 10、若(m+1)(2)1m m x +-+2mx -1=0是关于x 的一元二次方程,则m 的值是__ _.11、填上适当的数,使等式成立:+-x x 52=x (- 2).12、当x = 时,代数式23x x -比代数式221x x --的值大2 . 13、某商品原价每件25元,在圣诞节期间连续两次降价,现在商品每件16元,则该玩具平均每次降价的百分率是 。