蓝白斑筛选的原理及方法
简述蓝白斑筛选原理

简述蓝白斑筛选原理蓝白斑筛选(Blue-WhiteScreening)是一种分子生物学方法,它用于鉴定具有特定基因的细菌株。
蓝白斑筛选的最初想法是从一种确定的细菌介质中检测特定基因的存在,该介质受到结合的载体(如DNA或细菌DNA的封闭抗体)的支配。
其基本原理是将细菌介质中的细菌冲洗悬浮,并加入一种特定的抗性素(例如培养基中的抗生素),使得只有携带具有抗性基因的细菌才能生存,而未携带这样基因的细菌死亡。
这种方法可以快速准确地检测出细菌株中具有抗性基因的细菌株,而无需耗费大量的时间进行实验。
蓝白斑筛选的过程主要包括四个步骤:(1)细菌介质中的细菌悬浮被加入到一种细胞毒性物质(如抗生素)中;(2)悬浮物经过一定时间和条件后,只有携带具有抗毒性基因的细菌存活,没有携带这样基因的细菌死亡;(3)将抗毒性素从细菌介质中洗掉;(4)通过比较死亡和存活的细菌,从而可以将具有特定抗毒性基因的细菌株辨别出来。
在蓝白斑筛选的实验中,抗毒性素可以是任何特定的化合物,例如抗生素,甲基红,乙醛等。
从抗毒性素的效果来看,它不能完全消灭整个细菌群,而是将这些细菌分为两组:一组是抗毒性素不易受到影响的细菌,即携带有特定抗毒性基因的细菌;另一组是抗毒性素很容易受到影响的细菌,即没有携带特定抗毒性基因的细菌。
然后,洗掉抗毒性素后,可以通过观察实验中死亡和存活的细菌,从而将那些携带特定抗毒性基因的细菌株辨别出来。
蓝白斑筛选法的优点在于它比其他基因组学技术更加快速,也比其他基因筛选方法更加简单,可以在不到一个月的时间内,快速准确地检测出携带特定基因的细菌株。
另外,由于它只需要很少的实验操作,因此可以大大节省实验时间和成本。
但是,蓝白斑筛选也有一些缺点,其中最重要的是,它只可以检测携带一个特定基因的细菌株,而无法检测其余的基因。
其次,对抗毒性的效果也不一定非常稳定,在抗毒性素的浓度较低的情况下,有时会出现抗毒性不足的情况。
总的来说,蓝白斑筛选是一种简单有效的基因筛选方法,它可以有效地检测携带特定基因的细菌株,从而节约大量的实验时间和成本。
蓝白斑筛选原理

蓝白斑筛选原理
在许多工业领域中,蓝白斑筛选是一种常见的物料分类方法。
这种筛选方式利
用材料的大小、形状等特征将物料分为不同的等级,并可以高效地分离目标物料。
蓝白斑筛选的原理包括多个方面,下面将详细介绍这一原理。
原理一:筛网孔径
蓝白斑筛选的第一个原理是筛网孔径。
筛网的孔径大小直接影响了筛选效果。
当物料通过筛网时,只有小于筛网孔径的颗粒才能通过,大于筛网孔径的颗粒将被阻挡。
因此,通过控制筛网的孔径大小,可以实现对物料的筛选分级。
原理二:筛网振动
筛网振动是蓝白斑筛选的关键原理之一。
筛网在振动的作用下,可以使物料在
筛网上跳跃运动,从而加速筛分过程。
筛网振动还可以防止筛孔被堵塞,提高筛分效率。
原理三:物料特性
物料的特性也是影响蓝白斑筛选效果的重要因素。
不同的物料具有不同的大小、形状、密度等特性,这些特性会影响物料在筛网上的筛选行为。
因此,在进行蓝白斑筛选时,需要考虑物料的特性,并选择合适的筛网和筛分参数。
原理四:筛选过程
蓝白斑筛选的过程包括物料的进料、筛选、分级等步骤。
在进料过程中,物料
通过进料口进入筛分系统;在筛选过程中,物料在筛网上受到振动作用,根据大小和形状被分离;在分级过程中,不同大小的物料被分为不同的等级。
通过合理控制这些步骤,可以实现高效的物料筛选。
结论
综上所述,蓝白斑筛选是一种常见的物料分类方法,其原理包括筛网孔径、筛
网振动、物料特性和筛选过程等多个方面。
通过深入理解这些原理,并合理控制筛选参数,可以实现高效的物料筛选和分级,提高生产效率,降低生产成本。
蓝白斑筛选的原理和案例

蓝白斑筛选的原理和案例
蓝白斑筛选是一种常见的分子生物学技术,主要应用于检测目标DNA序列是否存在。
其原理是利用互补匹配的原则,在PCR反应中引入一个包含融合基因的载体,其中融合基因含有β-半乳糖苷酶和蛋白X两个基因。
将PCR扩增的目标DNA序列与载体连接,再将连接后的产品转化到大肠杆菌中进行筛选。
如果目标序列正确定位到融合基因上,则能够产生一个含有β-半乳糖苷酶和蛋白X的融合蛋白,该融合蛋白可以与含有5-溴亚基半乳糖苷的成分结合,形成蓝色的沉淀。
而那些没有成功获得目标序列的大肠杆菌无法产生蓝色沉淀,因此被筛选出来。
蓝白斑筛选的一个常见案例是接合质粒含有靶标基因的身份鉴定,例如对于转基因作物来说,应该包含外来基因序列,而如果通过蓝白斑筛选能够在菌落中观察到蓝色沉淀,就可以确认样品中存在目标基因。
此外,蓝白斑筛选还可以用于检测细菌中的嵌合质粒是否已经成功插入到细菌染色体中,并且是否含有目标序列。
蓝白斑筛选的原理及方法

蓝白斑筛选的原理及方法载体pGEMZ在β-半乳糖苷酶(lacZ)的α-肽编码区内具有多克隆区域。
在重组质粒中插入片段使α-肽失活,可在指示平板上通过颜色筛选鉴别。
不带有插入片段的载体,表达有功能的β-半乳糖苷酶,所用的宿主菌在染色体或附加体上缺失掉lacZM15基因,导致内源α-肽失活。
载体pGEMZ或其它含lacZ基因的α-肽互补细菌,具有β-半乳糖苷酶的ω片段,所得功能β-半乳糖苷酶(α-肽加ω片段)将底物X-Gal转化为有颜色的产物,得到蓝色菌落。
在载体pGEMZ 的多克隆区域,克隆上插入片段导致α-肽编码区的破坏,使β-半乳糖苷酶失活,得到白色菌落。
α-肽编码区读码框内小的插入片段产生浅兰色菌落,因β-半乳糖苷酶只是部分失活。
重组质粒转化到合适的菌株中(JM109,DH5α),然后涂布到含0.5mMIPTG, 40ug/mlX-Gal指示平板上。
可将50ul的X-Gal和100 ulIPTG贮液直接加入到平板中,扩散到整个平板中,在37oC保温30分钟使液体扩散。
IPTG溶于水中,贮液浓度为100mM,X- Gal溶于DMF,贮液浓度为50mg/ml。
IPTG 和X- Gal需分装后保存在-20 oC,可保存2-4个月。
◆IPTG即Isopropyl β-D-1-thiogalactopyranoside,也称Isopropyl β-D-thiogalactoside,中文名为异丙基-β-D-硫代半乳糖苷。
分子式为C9H18O5S ,分子量为238.30,CAS Number 367-93-1,Ultra Pure,dioxane free,纯度>99.6%。
我公司提供Merck公司该产品。
◆本产品为接近白色的粉末常用分子生物学试剂,常用于蓝白斑筛选及IPTG诱导的细菌内的蛋白表达等。
IPTG是β–半乳糖苷酶的活性诱导物质。
基于这个特性,当pUC系列的载体DNA(或其他带有lacZ 基因载体DNA)以lacZ 缺失细胞为宿主进行转化时、或用M13噬菌体的载体DNA进行转染时,如果在平板培养基中加入X–Gal和IPTG,由于β–半乳糖苷酶的α–互补性,可以根据是否呈现白色菌落(或噬菌斑)而方便地挑选出基因重组体。
简述蓝白斑筛选原理

简述蓝白斑筛选原理蓝白斑筛选(Blue-WhiteScreening)是一种用于染色体工程和基因克隆的技术,是一种基于位点突变的分子遗传学技术,它可以帮助分子生物学家更快地检测和鉴定特定的DNA序列,有助于分析基因的结构和功能。
蓝白斑筛选技术基本原理是将宿主菌株与抗性菌株进行比较,以检测是否存在抗性基因。
若菌株有抗性基因,则该基因位点就会产生变异,而这种变异可以使对应的DNA序列由颜色变化从而被观察到。
蓝白斑筛选的基础是基因克隆的技术,也就是将一段DNA片段克隆到宿主细菌中,使其培养出特定的抗性菌株。
细菌抗性基因是一种向细菌表达出非自身的抗性特性的遗传单位,其特征是细菌抗性基因同源,在细菌中可表现出对离子、类固醇等抗性,从而形成抗性拷贝。
而蓝白斑筛选技术即是利用抗性拷贝形成的抗性基因来筛选拷贝和鉴定拷贝特异性的一种技术。
蓝白斑筛选反映的原理是:细菌可以在其DNA中产生“突变”,此突变会导致细菌的抗性发生改变,若细菌的DNA序列中存在抗性拷贝,则细菌就会发生变异而产生抗性现象。
由此,蓝白斑筛选技术首先将受试菌株在其菌液中进行培养,并将其与参照菌株(一般是不含有抗性基因的菌株)进行比较,若存在抗性基因,则该基因位点就会产生变异。
然后,将两种菌株混合,将其培养在拷贝特异性培养基(X-Gal)中,并将其对比,当培养液由蓝色变为白色时,即表明存在抗性基因的细菌株可以生存,而无此抗性基因的细菌株则会被细菌溶解,被直接杀死,从而形成白色液体。
因此,蓝白斑筛选利用了抗性突变和拷贝特异性来检测是否存在抗性基因。
再结合能够引发抗性突变的特定DNA序列,有助于我们进行更加精细的基因分析,做出相应的基因调控等。
蓝白斑筛选不仅是一种应用于基因工程技术中的技术,在疾病的诊断和治疗方面也有着重要的意义,可以帮助医生更好的判断病患的具体状况,以及采取相应的疗法。
总之,蓝白斑筛选是一种重要的分子遗传学技术,具有广泛的应用,深刻地改变了医学,生物科学和基因工程领域的研究工作,为科学研究提供支持。
蓝白斑筛选

蓝白斑筛选原理(入门级)蓝白斑筛选是一种基因工程常用的重组菌筛选方法。
野生型大肠杆菌产生的β-半乳糖苷酶可以将无色化合物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。
有色物质可以使整个培养菌落产生颜色变化,而颜色变化是鉴定和筛选的最直观有效的方法。
设计适用于蓝白斑筛选的基因工程菌为β-半乳糖苷酶缺陷型菌株。
这种宿主菌的染色体基因组中编码β-半乳糖苷酶的基因突变,造成其编码的β-半乳糖苷酶失去正常N段一个146个氨基酸的短肽(即α肽链),从而不具有生物活性,即无法作用于X-gal产生蓝色物质。
用于蓝白斑筛选的载体具有一段称为lacz'的基因,lacz'中包括:一段β-半乳糖苷酶的启动子;编码α肽链的区段;一个多克隆位点(MCS)。
MCS位于编码α肽链的区段中,是外源DNA的选择性插入位点,但其本身不影响载体编码α肽链的功能活性。
虽然上述缺陷株基因组无法单独编码有活性的β-半乳糖苷酶,但当菌体中含有带lacz'的质粒后,质粒lacz'基因编码的α肽链和菌株基因组表达的N端缺陷的β-半乳糖苷酶突变体互补,具有与完整β-半乳糖苷酶相同的作用X-gal生成蓝色物质的能力,这种现象即α-互补。
操作中,添加IPTG(异丙基硫代-β-D-半乳糖苷)以激活lacz'中的β-半乳糖苷酶的启动子,在含有X-gal的固体平板培养基中菌落呈现蓝色。
以上是携带空载体的菌株产生的表型。
当外源DNA(即目的片断)与含lacz'的载体连接时,会插入进MCS,使α肽链读码框破坏,这种重组质粒不再表达α肽链,将它导入宿主缺陷菌株则无α互补作用,不产生活性β-半乳糖苷酶,即不可分解培养基中的X-gal产生蓝色,培养表型即呈现白色菌落。
实验中,通常蓝白筛选是与抗性筛选一同使用的。
含X-gal的平板培养基中同时含有一种或多种载体所携带抗性相对应的抗生素,这样,一次筛选可以判断出:未转化的菌不具有抗性,不生长;转化了空载体,即未重组质粒的菌,长成蓝色菌落;转化了重组质粒的菌,即目的重组菌,长成白色菌落。
蓝白斑筛选法

蓝白斑筛选法
蓝白斑筛选是一种基因工程常用的细菌重组子的筛选方法。
其原理是利用野生型埃希氏大肠杆菌(E.Coli)产生的β-半乳糖苷酶可以将无色化合物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。
5-溴-4-靛蓝可使整个菌落产生蓝色变化。
在经人工插入外源基因后,突变型大肠杆菌的β半乳糖苷酶基因被插入的外源基因切断,无法形成完整的β半乳糖苷酶,故不能对无色化合物X-gal进行切割,菌落呈白色。
蓝白斑筛选在指示培养基上,未转化质粒的菌落因无抗生素抗性而不能生长,重组质粒的菌落是白色的,非重组质粒的菌落是蓝色的,以颜色不同为依据直接筛选重组克隆的方法。
这种重组子的筛选,称为蓝白斑筛选。
如需更多关于“蓝白斑筛选法”的相关信息,建议查阅基因工程学相关书籍。
蓝白斑筛选的原理及应用

蓝白斑筛选的原理及应用1. 前言蓝白斑筛选(Blue-white screening)是一种常用的分子生物学技术,用于检测DNA重组是否成功。
通过该技术,可以筛选出含有重组DNA的菌落,从而实现对目标基因的定位和表达。
2. 原理蓝白斑筛选的原理基于β-半乳糖苷酶(β-galactosidase)的活性差异。
在该筛选系统中,包含有DNA重组产物的细菌表型为蓝色,未重组的细菌表型为白色。
具体的实验步骤如下:1.在含有相应选择性抗生素的培养基上培养细菌。
2.通过转化技术将重组的质粒DNA导入细菌宿主中。
3.将转化后的细菌涂布在含有X-半乳糖苷(X-Gal)的琼脂糖平板上。
4.在琼脂糖平板上,转化成功的细菌会表现为蓝色的菌落,未转化的细菌则为白色。
3. 应用蓝白斑筛选广泛应用于基因克隆、基因工程、蛋白质表达等研究领域。
3.1 基因克隆在基因克隆中,蓝白斑筛选常用于检测重组质粒的构建是否成功。
通过筛选出蓝色的菌落,可以快速确定重组质粒中是否含有目标基因。
3.2 基因工程在基因工程中,蓝白斑筛选被用于定位和筛选带有特定序列的质粒。
通过构建含有目标基因的质粒,将其导入细菌中,可以筛选出含有目标基因的蓝色菌落,从而实现对基因的定位和表达。
3.3 蛋白质表达蓝白斑筛选还可以用于蛋白质表达的研究。
通过将目标蛋白基因插入表达载体中,并导入细菌中进行表达,可以通过蓝白斑筛选系统筛选出表达目标蛋白的菌落。
4. 优势和局限性4.1 优势•简单易行:蓝白斑筛选是一种简单易行的筛选方法,无需复杂的仪器设备,只需要琼脂糖平板和相应的培养基。
•高效性:通过蓝白斑筛选系统,可以快速筛选出重组细菌,提高工作效率。
•直观可视化:转化成功的细菌会在琼脂糖平板上形成蓝色的菌落,使得检测结果可以直观地通过肉眼观察。
4.2 局限性•假阳性筛选:由于β-半乳糖苷酶活性的变异性,部分非重组菌落也可能呈现蓝色。
因此,在分析筛选结果时需采取其他方法进行验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓝白斑筛选的原理及方法
载体pGEMZ在俟半乳糖苷酶(lacZ )的a肽编码区内具有多克隆区域。
在重组质粒中插入片段使a-肽失活,可在指示平板上通过颜色筛选鉴别。
不带有插入片段的载体,表达有功能的禺半乳糖苷酶,所用的宿主菌在染色体或附加体上缺失掉lacZM15基因,导致内源a-肽失活。
载体pGEMZ或其它含lacZ基因的a-肽互补细菌,具有俟半乳糖苷酶的3片段,所得功能俟半乳糖苷酶(a- 肽加3片段)将底物X-Gal转化为有颜色的产物,得到蓝色菌落。
在载体pGEMZ 的多克隆区域,克隆上插入片段导致a-肽编码区的破坏,使俟半乳糖苷酶失活,得到白色菌落。
a-肽编码区读码框内小的插入片段产生浅兰色菌落,因俟半乳糖苷酶只是部分失活。
重组质粒转化到合适的菌株中(JM109 ,DH5a ),然后涂布到含0.5mMIPTG, 40ug/mlX-Gal 指示平板上。
可将50ul 的X-Gal 和100 ulIPTG 贮液直接加入到平板中,扩散到整个平板中,在37oC 保温30 分钟使液体扩散。
IPTG 溶于水中,贮液浓度为100mM ,X- Gal溶于DMF,贮液浓度为50mg/ml 。
IPTG 和X- Gal 需分装后保存在-20 oC ,可保存2-4 个月。
IPTG 即Isopropyl B -D-1-thiogalactopyra no side ,也称Isopropyl B
-D-thiogalactoside ,中文名为异丙基-B -D-硫代半乳糖苷。
分子式为
C9H18O5S 分子量为238.30, CASNumber367-93-1,Ultra Pure, dioxane free,纯度>99.6%。
我公司提供Merck 公司该产品。
.本产品为接近白色的粉末常用分子生物学试剂,常用于蓝白斑筛选及IPTG 诱导的细菌内的蛋白表达等。
IPTG是B -半乳糖苷酶的活性诱导物质。
基于这个特性,当pUC系列的载体DNA或其他带有lacZ基因载体DNA以lacZ缺失细胞为宿主进行转化时、或用M13噬菌体的载体DNA1行转染时,如果在平板培养基中加入X- Gal和IPTG,由于B -半乳糖苷酶的a -互补性,可以根据是否呈现白色菌落(或噬菌斑)而方便地挑选出基因重组体。
此外,它还可以作为具有lac 或tac 等启动子的表达载体的表达诱导物使用.
使用方法:
首先把IPTG配制成24 mg/ml (100 mM)的水溶液,并进行过滤除菌后
保存。
然后在100 ml的琼脂培养基中,加入100卩l的上述溶液、200卩l
的
X-Gal (20 mg/ml 的二甲基甲酰胺(DMF 溶液)和100 卩l 的Amp( 100
mg/ml), 制作成IPTG X-Gal、Amp平板培养基。
当DNA片段插入至pUC系列载体(或其他带有lacZ、Amp基因载体),然后转化至lacZ缺失细胞中后,涂布上述的IPTG、
X-gal、Amp平板培养基,可根据长出菌体的蓝白色,而方便地挑选出基因重组体(白色为具有DNA插入片段的基因重组体)。
保存条件:粉末在-20C稳定保存至少三年,具体请参考各个厂家提供的保存条件
注意事项:
♦培养噬菌体时,Top agar中的添加量为:25卩1/3 ml (24 mg/ml)
♦含有IPTG的培养基4 C避光保存,须在1~2周内使用。
[创。