硫酸工业转化工艺
硫酸的工业制法

原 料 粉 碎
炉气
空气
沸腾炉
除 尘
洗 涤
干 燥
②二氧化硫氧化成三氧化硫
发生的反应:2SO2+O2 生产设备:接触室 得到的气体:三氧化硫、氮气、
V2O5
2SO3
未反应的氧气
和二氧化硫
思考:适宜条件的选择 催化剂:五氧化二矾 (V2O5) 温度:400至500摄 氏度 压强:常压
接 触 室
N2
思考:接触室中热交 换器的作用?从接触 室出来的气体成分是 什么?
硫 酸 的 工 业 制 备 和 环 境 保 护
2.对于接触法制硫酸的生产操作与选择该生产 操作的主要理由都正确的是 ( BD ) A.硫铁矿燃烧前需要粉碎,因为大块的硫铁矿 不能燃烧 B.三氧化硫的吸收采取逆流的形式,目的是增 大其与吸收剂的接触面积 C.二氧化硫氧化成三氧化硫时需使用催化剂, 这样可以提高二氧化硫的转化率 D.三氧化硫用98.3%的浓硫酸吸收,目的是防 止形成酸雾,以便使其吸收完全
吸 收 塔
98.3%H2SO4
尾气 O2、SO2、N2
98.3%的浓硫酸从 塔顶淋下,气体由 下往上,流向相反 ,充分接触,吸收 更完全,由此看来 工业生产上特别重 视生产的速度及 原料的利用率。
SO3
吸收塔
发烟 H2SO4
3、回收、净化处理尾气,保护环境。
实验室用什么试剂吸收SO2?工业上是否适用?
接触法制硫酸
1、硫酸工业生产的原理
第一步:造气
点燃
S + O2
高温
SO2
2Fe2O3 + 8SO2
催化剂 加热
第二步:接触氧化
4FeS2 +11 O2 2SO2 + O2
硫酸工业转化工艺

硫酸工业转化工艺硫酸生产过程中转化是核心,转化率高,硫的利用率高,环境污染小;反之不仅硫的损失大,而且会给环境造成危害。
转化率的高低与转化过程所选择的转化流程有关,不同的转化流程,可能达到的最终转化率不同,硫的利用率及尾气中有害气体的含量不同。
转化流程选择的主要依据是生产中所采用的催化剂、进转化器的二氧化硫浓度及氧硫比、要求的总转化率等。
转化流程可分为“一转一吸”“两转两吸”和两大类。
1、“一转一吸”流程。
“一转一吸”流程亦为一次转化一次吸收工艺。
由于受催化剂用量及平衡转化率的限制,该工艺可能达到的最终转化率为97 %~98 % ,显然此转化率下,硫的利用率不够高,尾气中二氧化硫的含量远远超过排放标准,需进行尾气回收。
目前国内只有部分采用低浓度冶炼烟气制酸( 入转化工序二氧化硫浓度低于 6 %) 的企业采用此流程。
由于用碱性物质回收尾气产生的亚硫酸盐销路有限、用氨—酸法回收尾气副产品硫铵母液运输不便及销售困难,一些企业计划将“一转一吸”改为“两转两吸”从而使尾气直接达标排放。
2“两转两吸”流程按环保要求,除了有条件采用尾气回收工艺及气体浓度较低且规模较小的装置以外,一般硫酸装置都应采用“两转两吸”的转化流程。
“两转两吸”流程为两次转化两次吸收工艺,可能达到的最终转化率大于99.5 % 。
该工艺的总转化率受第一次转化率和第二转化率的制约。
第一次转化常用两段或三段催化剂床层来完成,其中第一段的转化率受出口温度的限制,若第一次转化采用两段,则仅是第二段来保证第一次转化率;若第一次转化采用三段,则是以第二、第三段两段保证第一次的转化率。
随着要求的总转化率的提高,对第一次转化率的要求亦在提高。
对第二次转化有用一段和两段催化剂床层之分。
若用一段,该段催化剂床层既要兼顾反应速率又要兼顾第二次转化率是难于两全的;若采用两段,则以前一段满足反应速率,以后一段满足转化率,这可使第二次转化率提高3 %左右,且对第一次转化率的波动有一定的承受能力。
硫酸的工业制法

1 .什么是环境?
大气、土地、水、矿产、森林、生物以 及风景游览区、自然保护区、生活居住 区等构成了人类生存的环境
2 .环境污染包括哪些?
环境污染主要包括大气污染、水污染、土壤 污染、食品污染等,此外还包括固体废弃物, 放射性噪声等污染。
返回
3.SO2排放到大气中有哪些危害?
• ①人吸入SO2会发生呼吸道疾病,浓度高达一定程 度时,会使人死亡。 • ②如果SO2与空气中的飘尘接触,或跟氮的氧化物 接触,会部分被氧化为SO3,危害跟严重,这些硫 的氧化物能直接伤害植物叶片,浓度高时,会使 植物枯死。 • ③降水时,硫的氧化物以及所形成的硫酸和硫酸 盐随雨雪降到地面,即所谓的“酸雨”。酸雨可 使湖泊水质酸化,毒害鱼类和其它水生生物;使 土壤酸化、破坏农田、损害农作物、森林;酸雨 还会腐蚀建筑物、金属制品、名胜古迹等。
返回
6.什么是热交换过程? 6. 什么是热交换过程?
通过热交换器把反应时生 成的热,传递给进入接触 室的需要预热的混合气体, 并冷却反应后生成的气体, 像这样传递热量的过程就 是化学工业上常用的热交 换过程。
返回
7.吸收SO3为什么不直接用水或 稀硫酸,而是用98.3%的浓硫酸?
因为用水或稀硫酸作吸收 剂时,容易形成酸雾,吸 收速度慢且吸收不充分, 而 用 98.3% 的 浓 硫 酸 作 吸 收剂,则在吸收过程中不 形成酸雾,吸收速度快且 吸收充分,有利于SO3的吸 收。
关于多步反应变一步的计算
步骤: 1.写出多步反应的化学方程式; 2.找出主要原料和最终产物之间的物质的 量的对应关系。即找出主要原料和最终产 物中所含关键原子个数关系。 3.列出关系式,解出答案。
守恒原则
•计算中可以按照守恒、累积、转化的三原则处 理有关过程及数据以化难为易。 •1.守恒原则:如黄铁矿制硫酸中 S 原子守恒,具 体表现形式为 •FeS2——2H2SO4 或 S——H2SO4
硫酸生产技术 pdf

硫酸是一种重要的工业原料,用于生产化肥、化学纤维、塑料、颜料、药物和炸药等。
硫酸的生产技术有多种,以下是一些常见的硫酸生产技术:
1.硫铁矿制酸:硫铁矿是一种常见的制酸原料,通过将其与氧气反应可以生成二氧化硫气体,再通过催化转化和吸收工艺可以生产硫酸。
2.硫磺制酸:硫磺是一种纯度较高的制酸原料,通过将其燃烧可以生成二氧化硫气体,再经过催化转化和吸收工艺可以生产硫酸。
3.冶炼烟气制酸:冶炼烟气中含有大量的二氧化硫气体,通过回收烟气中的二氧化硫气体可以生产硫酸。
这种技术主要用于处理有色金属冶炼过程中产生的烟气。
4.氮氧化物制酸:将氮气和氧气在高温高压下反应生成氮氧化物气体,再通过催化转化和吸收工艺可以生产硫酸。
这种技术需要使用特定的催化剂,并需要控制反应条件。
5.天然气制酸:将天然气中的硫元素转化为二氧化硫气体,再通过催化转化和吸收工艺可以生产硫酸。
这种技术需要使用特定的催化剂和反应条件。
以上是硫酸的一些常见生产技术,不同的生产技术有不同的优缺点和应用场景。
在实际应用中,需要根据原料来源、生产规模和市场需求等因素来选择合适的生产技术。
硫酸的工业制法分析解析

6.什么是热交换过程? 6. 什么是热交换过程?
通过热交换器把反应时生 成的热,传递给进入接触 室的需要预热的混合气体, 并冷却反应后生成的气体, 像这样传递热量的过程就 是化学工业上常用的热交 换过程。
返回
7.吸收SO3为什么不直接用水或 稀硫酸,而是用98.3%的浓硫酸?
因为用水或稀硫酸作吸收 剂时,容易形成酸雾,吸 收速度慢且吸收不充分, 而 用 98.3% 的 浓 硫 酸 作 吸 收剂,则在吸收过程中不 形成酸雾,吸收速度快且 吸收充分,有利于SO3的吸 收。
关于多步反应变一步的计算
步骤: 1.写出多步反应的化学方程式; 2.找出主要原料和最终产物之间的物质的 量的对应关系。即找出主要原料和最终产 物中所含关键原子个数关系。 3.列出关系式,解出答案。
守恒原则
•计算中可以按照守恒、累积、转化的三原则处 理有关过程及数据以化难为易。 •1.守恒原则:如黄铁矿制硫酸中 S 原子守恒,具 体表现形式为 •FeS2——2H2SO4 或 S——H2SO4
返回
2.为什么把燃烧黄铁矿的炉子叫沸腾 炉?为什么用这种炉子?
这是因为矿粒燃烧的时候, 从炉底通入强大的空气流, 把矿粒吹得在炉内一定空 间里剧烈沸腾,好象“沸 腾着的液体”一样。因此, 人们把这种炉子叫沸腾炉。 矿粒在这种沸腾情况下, 跟空气充分接触,燃烧快, 反应完全,提高了原料的 利用率。
返回
三.有关化学计算
•几个概念:化学计算中涉及到工业生产实际中 的“四率”(即转化率、利用率、产率、损失 率)和纯度。 •物质的纯度=(纯物质/不纯物质)×100% •产率=(实际产量/理论产量)×100% •利用率=(实际利用原料量/实际投入原料总量) ×100% •损失率:1-利用率 •在原料中:转化率=利用率
硫酸的工业制备

(S+O2点=燃=SO2)
3.设备:沸腾炉
干燥 洗涤 除尘 净化
原料 粉碎
沸腾炉
炉气
空气 思考:硫铁矿为什么要粉碎?
二、 SO2催化氧化生成SO3—接触氧化
1.反应原理:
催化剂
2SO2+O2 △ 2SO3 2.设备:接触室
温度较高气体
催化剂 (V2O5) 热气体
净化
沸腾炉
SO2、O2 冷气体
热交换器
1、原料 2、环保和成本 3、制备流程
化学工业制备的要求
(1)原料廉价且稳定,降低运输成本。 (2)从环保、成本等角度选择合适的化学反应。 (3)制备流程简单高效,能耗低,反应放出的热量 和剩余物质尽可能加以循环利用,生副产物较少。 (4)制备过程绿色环保,不使用或生成对环境有害 的物质。
SO3
温度较低气体
接触室
思考:沸腾炉中产生的气体通入接触室前为何除尘净ຫໍສະໝຸດ ?使用热交换器意义是什么?
三、SO3的吸收和硫酸的生成
1.反应原理:SO3+H2O==H2SO4 2.设备:吸收塔
思考:浓硫
酸为什么要从 上向下喷下?
思考:工业上并不是直接用水或稀硫酸来吸收SO3, 而是用98.3%的浓H2SO4吸收,为什么?
防止SO3溶于水时反应放出大量热导致酸雾, 降低吸收效率,常用浓硫酸(98.3%)吸收SO3。
沸腾炉
接触室
吸收塔
净
化
冷却
工业接触法制硫酸小结
S
硫化物
SO2
SO3
H2SO4
如FeS2
SO2的制取和净化 SO2转化成SO3 吸收SO3生成硫酸
沸腾炉
接触室
硫酸的工艺流程

硫酸的工艺流程
《硫酸的工艺流程》
硫酸是一种重要的化工产品,广泛用于冶金、化肥、石油加工、纺织、皮革和医药等行业。
其生产工艺主要包括硫磺氧化法、硅酸盐法和废液回收法等。
硫磺氧化法是目前最为常用的生产硫酸的工艺。
其主要步骤包括:
1. 硫磺熔炼:将硫磺加热至液态状态,然后注入反应器中。
2. 硫磺氧化:将空气或纯氧气通过反应器底部的鼓风管道注入,与硫磺发生氧化反应生成二氧化硫。
3. 二氧化硫氧化:将生成的二氧化硫与空气或纯氧气在催化剂的存在下发生氧化反应,形成二氧化硫。
4. 吸收:将二氧化硫通入吸收塔内,与稀硫酸反应生成浓硫酸溶液。
5. 蒸馏:用蒸汽对硫酸浓液进行蒸馏,使其浓缩至所需浓度。
硅酸盐法生产硫酸的主要步骤包括:
1. 生石灰的制备:将石灰石煅烧或石灰石加水生成生石灰。
2. 石膏制备:将生石灰与高岭土或石膏石反应生成石膏。
3. 石膏焙烧:将石膏加热至一定温度使其分解产生二氧化硫。
4. 二氧化硫氧化:将生成的二氧化硫与空气或纯氧气在催化剂的存在下发生氧化反应,形成二氧化硫。
5. 吸收:将二氧化硫通入吸收塔内,与稀硫酸反应生成浓硫酸溶液。
废液回收法则是利用工业废水或含硫废气中的二氧化硫进行回收,经过氧化和吸收过程得到浓硫酸。
以上是几种常见的硫酸生产工艺流程,随着技术的不断进步和环保要求的提高,硫酸的生产工艺也在不断完善和更新。
硫酸工艺流程

硫酸工艺流程硫酸是一种重要的化工原料,在工业生产中有着广泛的应用。
硫酸的生产工艺流程主要包括硫磺燃烧制酸和硫铁矿氧化制酸两种方法。
下面将详细介绍硫磺燃烧制酸的工艺流程。
一、硫磺燃烧制酸工艺流程。
1. 原料准备。
硫磺燃烧制酸的原料主要是硫磺和空气。
硫磺作为硫酸的原料,需经过破碎、熔化等工艺处理,以便于后续的燃烧反应。
同时,空气也需要通过净化处理,去除其中的杂质,以保证后续的燃烧反应能够顺利进行。
2. 燃烧反应。
将经过处理的硫磺和净化的空气送入燃烧炉中进行燃烧反应。
在燃烧炉中,硫磺与空气发生化学反应,生成二氧化硫气体。
燃烧反应的温度、压力、氧化剂的流速等参数需要严格控制,以确保反应的高效进行。
3. 吸收和转化。
生成的二氧化硫气体经过冷却后进入吸收塔,与稀释的硫酸溶液进行吸收反应,生成亚硫酸氢钠。
亚硫酸氢钠溶液经过进一步的氧化反应,得到硫酸的产物。
4. 结晶和分离。
通过结晶和分离工艺,将硫酸溶液中的杂质去除,得到纯净的硫酸结晶体。
同时,产生的亚硫酸氢钠溶液也需要进行回收利用,以减少资源浪费。
5. 成品包装。
最后,经过结晶和分离得到的硫酸结晶体将被包装成成品硫酸,以便于运输和使用。
总结,硫磺燃烧制酸工艺流程是一种成熟、高效的硫酸生产方法,通过严格控制各个环节的工艺参数,可以实现硫磺向硫酸的高效转化。
同时,该工艺流程还可以实现对硫酸溶液中杂质的去除和亚硫酸氢钠的回收利用,具有较好的经济效益和环保效益。
以上就是硫酸工艺流程的相关介绍,希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硫酸工业转化工艺
硫酸生产过程中转化是核心,转化率高,硫的利用率高,环境污染小;反之不仅硫的损失大,而且会给环境造成危害。
转化率的高低与转化过程所选择的转化流程有关,不同的转化流程,可能达到的最终转化率不同,硫的利用率及尾气中有害气体的含量不同。
转化流程选择的主要依据是生产中所采用的催化剂、进转化器的二氧化硫浓度及氧硫比、要求的总转化率等。
转化流程可分为“一转一吸”“两转两吸”和两大类。
1、“一转一吸”流程。
“一转一吸”流程亦为一次转化一次吸收工艺。
由于受催化剂用量及平衡转化率的限制,该工艺可能达到的最终转化率为97 %~98 % ,显然此转化率下,硫的利用率不够高,尾气中二氧化硫的含量远远超过排放标准,需进行尾气回收。
目前国内只有部分采用低浓度冶炼烟气制酸( 入转化工序二氧化硫浓度低于 6 %) 的企业采用此流程。
由于用碱性物质回收尾气产生的亚硫酸盐销路有限、用氨—酸法回收尾气副产品硫铵母液运输不便及销售困难,一些企业计划将“一转一吸”改为“两转两吸”从而使尾气直接达标排放。
2“两转两吸”流程按环保要求,除了有条件采用尾气回收工艺及气体浓度较低且规模较小的装置以外,一般硫酸装置都应采用“两转两吸”的转化流程。
“两转两吸”流程为两次转化两次吸收工艺,可能达到的最终转化率大于99.5 % 。
该工艺的总转化率受第一次转化率和第二转化率的制约。
第一次转化常用两段或三段催化剂床层来完成,其中第一段的转化率受出口温度的限制,若第一次转化采用两段,则仅是第二段来保证第一次转化率;若第一次转化采用三段,则是以第二、第三段两段保证第一次的转化率。
随着要求的总转化率的提高,对第一次转化率的要求亦在提高。
对第二次转化有用一段和两段催化剂床层之分。
若用一段,该段催化剂床层既要兼顾反应速率又要兼顾第二次转化率是难于两全的;若采用两段,则以前一段满足反应速率,以后一段满足转化率,这可使第二次转化率提高3 %左右,且对第一次转化率的波动有一定的承受能力。
该第一、二次转化所采用段数的组合可有“2 + 1”三段转化、“2 + 2”、“3 + 1”四段转化和“3 + 2”五段转化流程。
“3 + 1”与“2 + 2”组合方式相比,前者由于经过三段转化后进行中间吸收,在吸收塔中将有更多三氧化硫从系统中移走,
同时如果第二次转化所装填的催化剂反应温度足够低的话,则可获得较高的最终转化率,但换热面积将比后者组合稍大。
如若采用后者,中间吸收塔是放在一次转化第二段之后,二段出口转化气温度高,因而可允许有较大的换热温度差,用它预热返回转化器的气体,将有利于节省热换面积。
据估算,后者的换热温差约100 ℃,而前者的换热温差约70 ℃,故“2 + 2”组合方式可节省1/ 3 换热面积,但投资和操作费用将比“3 + 1”方式高。
综合各因素,目前国内硫酸生产中利用四段转化的大多采用“ 3 + 1”组合方式。
在设计转化器时可改变原来的由上而下设置一、二、三、四段的做法,可将一段转化设在转化器的底层,再由上而下分别设置二、三、四段,形成“先逆后顺”的交错流程,使一段催化剂装卸方便,但该设计必须使转化器的一、四段之间隔板具有可靠而长久的密封性能。
随着人们环保意识的增强,加之操作过程中存在着不稳定因素,采用“3 + 1”组合方式的2/ 3 的企业不能做到在进转化器气体二氧化硫浓度为9 %的条件下,总转化率≥ 5 %,尾气中二氧化硫的浓度≤ 99. 500ppm。
因此,二次转化采用二段的“3 + 2”组合方式在1994 年河北深州磷铵厂投产。
“3 + 2”与“3 + 1”组合方式相比,前者进转化器气体二氧化硫浓度可提高至9 %~9. 2 %,转化率达到99. 7 % ,具有投资省、矿耗低的经济效益和尾气二氧化硫浓度达到国家排放标准的环境效益。
同时催化剂对于SO2的氧化作用具有很大影响。
催化剂的开发含铯催化剂的研制和开发成功是继80 年代初成功开发大颗粒环状催化剂之后的重大发展,为提高转化过程的总转化率、降低尾气中SO2浓度提供了保证。
含铯催化剂具有起燃温度低、活性高的特点,与传统的钒催化剂相比,起燃温度低20~40 ℃,适用于处理二氧化硫浓度较低的气体或用富氧空气产生的SO2浓度较高的气体。
丹麦TOPSE 公司于1996 年开发出VK69 新型含铯钒催化剂,该催化剂改进了载体,使用新型粘合剂,提高了催化剂的孔隙率;外形采用菊形,同一直径下比表面积比环形大约 1. 5 倍;催化剂中V2O5 含量提高25 %,铯的存在保证了钒活性。
VK69 型含铯钒催化剂用于硫酸装置两转两吸工艺的第二级转化过程,可使尾气中二氧化硫浓度降低一半,并可在较低温度下开始反应。
对于现有四段转化设备,尾气中二氧化硫浓度可降低到0. 01 %以下。
如果维持现有二氧化硫排放浓度不变,则装置生产能力可以提高15 %~20 %,使用含铯钒催化剂
的效果是很显着的。
然而,含铯钒催化剂的价格较高,约为普通钒催化剂的 2.
5 倍。
所以,通常只用在第一段催化剂的上部或用在转化器的最后一段。
而工业上除了可以将“一转一吸”装置改为“两转两吸”外,还有以下三种方式:
1、将“一转一吸”装置加REGESOX 装置,与“一转一吸”装置改为“两转两吸”装置相比,其优点有:①适应性强,SO3气体中可含H2O 和H2SO4;
②投资少:③ REGESOX 安装期间,一转一吸厂可保持正在常生产,从而减少停车时间。
2、PEA 工艺( Process Engineering Associates) 公司推出了一种两段式硫酸生产工艺,其特点是SO2排放几乎为零PEA ( < 3cm3 / m3 )。
该工艺也可处理浓度低、波动大的SO2气体。
该工艺分两段:第一段是接触段,SO2 气体冷却净化后在一单层催化转化器中转化,转化率65 %~ω 70 %,可生产ω( H2SO4) 95 %~98 %的硫酸、( SO3 游离) 32 %的发烟酸,剩余气体进入第二段;第二段是一种改进的NOX 工艺( 即以前的铅室法或塔式法工艺,SO2在此几乎完全转化,生成ω( H2SO4 ) 76 %的硫酸。
由于该酸在塑料塔中生产的,故纯度极高,可作为特殊用途酸,也可返回接触段进一步提浓或生产发烟酸。
该工艺与标准两转两吸工艺相比具有压力损失小,产量高,酸纯度高的优点。
3、高浓度二氧化硫烟气转化的三转三吸。
随着富氧冶炼技术的迅猛发展,人们对高浓度二氧化硫气体制酸方法进行了研究。
1991年建成的国外某铜冶炼厂将起始二氧化硫浓度为50 %~60 %的混合烟气用空气稀释到12 %进入转化系统,采用“3 + 1”两转两吸流程制酸,Topse 与Chemetics 公司合作开发了采用含铯催化剂的“ 4 + 2”两转两吸流程以加工二氧化硫浓度为40 %用空气稀释到18 %的烟气。
由于国内低温高活性催化剂及650 ℃高温的催化剂尚未开发成功,采用国外开发的含铯催化剂和相关的两转两吸工艺技术所需费用可观。
为此,南化集团设计院应燮堂提出将高浓度二氧化硫烟气分别稀释成20 %用国产的普通催化剂采用三转二吸方法制酸,并对此做了技术论证,结论是高浓度二氧化硫烟气用三转三吸流程制酸技术可靠,经济合理,值得推荐。