福州大学有限元考试题

合集下载

有限单元法考试题及答案

有限单元法考试题及答案

有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。

这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。

答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。

2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。

首先,根据单元的形函数和材料属性,计算单元的应变和应力。

然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。

三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。

请使用有限元法求解该杆的位移和应力分布。

答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。

然后,为每个单元定义形函数,通常是线性形函数。

接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。

将所有单元的局部刚度矩阵组装成全局刚度矩阵。

由于杆两端固定,边界条件为位移为零。

最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。

应力可以通过位移和形函数计算得到。

有限元基础期末试题

有限元基础期末试题

有限元基础期末试题
1、简述单元分析的四个主要环节。

对于三结点三角形单元,写出单元分析各环节最终结果
的矩阵表达式。

2、以三结点三角形单元为例,解释位移模式概念并写出三结点三角形单元位移模式的具体
表达式。

3、结合三结点三角形单元位移模式的具体表达式,解释型函数概念并简述型函数的主要性
质。

4、写出推导单元刚度矩阵时所使用的虚功方程并解释其物理意义。

5、对下图所示离散化后的弹性平面应力问题,设弹性模量为E ,泊桑比为零,厚度为1:
a. 写出单元③由9个子矩阵组成、字符表达形式的单元刚度矩阵;
b. 按课堂教学时规定的原则,写出单元③的单元定位向量;
c. 写出单元③的单元刚度矩阵中所有子矩阵在总刚度矩阵中的位置;
d. 设所论平面应力问题中6个结点的位移解为:123456[,,,,,]T
∆=∆∆∆∆∆∆,计算单
元③的应变和应力。

有限元考试精彩试题及问题详解——第一组

有限元考试精彩试题及问题详解——第一组

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

5.简述四节点四边形等参数单元的平面问题分析过程。

(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

(完整版)福州大学有限元考试题

(完整版)福州大学有限元考试题

一 判断题(20分)(×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置(√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元(×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型(√)4. 四边形的平面单元尽可能作成接近正方形形状的单元(×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案(×)6. 用有限元法不可以对运动的物体的结构进行静力分析(√)7. 一般应力变化大的地方单元尺寸要划的小才好(×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度(√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小(×)10单元位移函数包括了常应变和刚体位移,则该单元一定是完备协调单元。

二、填空(20分)1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内;后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。

2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。

3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。

4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。

5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。

6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。

等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。

7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。

有限元复习题库

有限元复习题库

有限元复习一、选择题(每题1分,共10分)二、判断题(每空1分,共10分)三、填空题(每空1分,共10分)三、简答题(共44分)共6题四、综述题(共26分)两题一.基本概念1.平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线性与非线性问题平面应力问题(1)均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布在六个应力分量中,只需要研究剩下的平行于XOY平面的三个应力分量,即O、O、T =T (Q = 0, T =T = 0, T =T = 0)。

一般°Z=0,e z并不一定等于零,但可由\及°y求得,在分析问题时不必考虑。

于是只需要考虑8 J 8 J Ly三个应变分量即可。

平面应变问题(1)纵向很长,且横截面沿纵向不变。

(2)载荷平行于横截面且沿纵向均匀分布8z =Yyz="x= 0只剩下三个应变分量8X、8 y、L y。

也只需要考虑°J °y、T xy三个应力分量即可轴对称问题物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。

轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。

在轴对称问题中,周向应变分量卫是与二有关。

板壳问题一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。

如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。

杆梁问题杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。

在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。

平面(应力应变)问题与板壳问题的区别与联系平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。

而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化。

有限元试题及答案

有限元试题及答案

有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。

下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。

答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。

答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。

答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。

假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。

结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。

分析载荷为2000 N,施加在结构的中心节点上。

(完整版)有限元考试试题及答案

(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。

(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。

图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。

b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。

当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。

c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。

3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。

意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。

4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。

有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。

有限元期末考试题及答案

有限元期末考试题及答案

有限元期末考试题及答案一、选择题1. 有限元方法是一种数值分析方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 代数方程答案:B2. 在有限元分析中,单元的划分是基于什么原则?A. 单元数量B. 单元形状C. 问题域的几何特性D. 计算资源答案:C3. 下列哪项不是有限元分析中常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D二、填空题4. 有限元方法中,______是指将连续的物理域离散成有限数量的小区域,这些小区域称为单元。

答案:离散化5. 在进行有限元分析时,通常需要定义材料属性,包括______、密度和弹性模量等。

答案:泊松比三、简答题6. 简述有限元方法的基本步骤。

答案:有限元方法的基本步骤包括:定义问题域、离散化问题域、选择单元类型、定义材料属性、构建全局刚度矩阵、施加边界条件、求解线性代数方程、提取结果。

7. 解释什么是有限元分析中的收敛性,并说明影响收敛性的因素。

答案:收敛性是指随着单元数量的增加,有限元分析结果逐渐接近真实解的性质。

影响收敛性的因素包括单元的类型、形状、大小以及网格的布局等。

四、计算题8. 假设有一个长度为2米的杆,两端固定,中间施加了一个向下的力F=1000N。

如果杆的材料是钢,其弹性模量E=210 GPa,泊松比ν=0.3,请计算杆的弯曲位移。

答案:首先,根据Euler-Bernoulli梁理论,可以写出弯曲位移的方程为:\[ w(x) = \frac{F}{384EI} L^3 \]其中,\( w(x) \) 是位移,\( F \) 是施加的力,\( L \) 是杆的长度,\( E \) 是弹性模量,\( I \) 是截面惯性矩。

对于一个矩形截面,\( I \) 可以表示为:\[ I = \frac{bh^3}{12} \]假设杆的截面宽度为b,高度为h,代入上述公式,可以计算出位移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元考试试题及答案一、简答题(5道,共计25分)。

1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。

2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。

3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。

4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。

常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。

(2)结点位移3个分量。

(3)基本方程比平面问题多。

3个平衡方程,6个几何方程,6个物理方程。

二、论述题(3道,共计30分)。

1. 简述四节点四边形等参数单元的平面问题分析过程。

(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。

2.轴对称问题的简单三角形单元是否是常应力,常应变?为什么?(10分)答:不是常应力和常应变。

因为应变与位移分量的关系式为:⎭⎬⎫⎩⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=w u010rr u r u }{rz z r r z z r r w z u z w γεεεεθ,这里除含有微分算符外,还包含了r 的倒数项1/r ,则即使位移模式为线性的,但由于该项的存在,使得应变与坐标有关,即不会是常应变。

应力应变的物理关系为{}[]{}εσD = ,由于应变不是常应变,则所求得的应力也不会是常应力。

3.在薄板弯曲理论中做了哪些假设?薄板单元和厚板单元的基本假设有什么不同?(10分)答:四种假设: 1)变形前的中面法线在变形后仍为弹性曲面的法线。

2)变形前后板的厚度不变。

3)板变形时,中面无伸缩。

4)板内各水平层间互不挤压。

不同点:薄板单元假设横向纤维无挤压,板的中面法线变形后仍保持为直线,该直线垂直于变形后的中面,但是厚板单元的假设考虑横向变形的影响,板的中面法线变形后仍 基本保持为直线,但该直线不再垂直于变形后的中面,法线绕坐标轴的转角不再是挠度的导数,而是独立的变量。

三、计算题(3道,共计45分)。

1.如图所示等腰直角三角形单元,其厚度为t ,弹性模量为E ,泊松比0ν=;单元的边长及结点编号见图中所示。

求(1) 形函数矩阵N (2) 应变矩阵B 和应力矩阵S(3) 单元刚度矩阵e K (12分)解:设图1所示的各点坐标为点1(a ,0),点2(a ,a ),点3(0,0)于是,可得单元的面积为 ,及(1) 形函数矩阵为;(2) 应变矩阵和应力矩阵分别为,,;,,;(3) 单元刚度矩阵12A =2a N 12122121(0a a )a1(00a )a1(a a 0)aN x y N x y N x y =+-=++=-+[][]123123 N N N ==N I I I N N N B S 12a 010-a a -a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 220010a a a 0⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 32-a 0100a 0-a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B []123=B B B B 12a 00-a a 11-a a 22E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦S 22000a a 1a 02E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦S 32-a 000a 10-a 2E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦S [][]123123 ==S D B B B S S S eK 111213T 2122233132333110211312011110014020200200020111001e Et tA ---⎡⎤⎢⎥---⎢⎥⎡⎤--⎢⎥⎢⎥===⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎢⎥-⎢⎥--⎣⎦K K K K B DB K K K K K K2.如图所示的四结点矩形单元,求出节点3的位移。

设厚度t =1m ,μ=0,E为常量。

(13分)注:对于四节点矩形单元有:()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-=++=-+=--=ηξηξηξηξ1141114111411141.14321N N N N →)4,3,2,1()1)(1(41=++=i N i i i ηηξξ()[][][][]eT Aek k k k k k k k k k k k k k k k y x t B D B k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎰⎰44434241343332312423222114131211d d .2,[][][][][][][]()()()()())4,3,2,1,( 3111311a 212123111311218d d d d 21111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-===⎰⎰⎰⎰--j i b a b b a a b Et B D B abt y x t B D B k j i j i j i j i j i j i j i j i j i j i j i j i jTijTAiijηηξξμξξηηηξμξμηηξμξμηξξηημηηξξμηξ解:对于四节点矩形单元有:()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-=++=-+=--=ηξηξηξηξ11411141114111414321N N N N →)4,3,2,1()1)(1(41=++=i N i i iηηξξ[][][][]eT Aek k k k k k k k k k k k k k k k y x t B D B k ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==⎰⎰44434241343332312423222114131211d d , [][][][][][][]()()()()())4,3,2,1,( 3111311a 212123111311218d d d d 21111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-+-+⎪⎭⎫⎝⎛+-+⎪⎭⎫ ⎝⎛+-===⎰⎰⎰⎰--j i b a b b a a b Et B D B abt y x t B D B k j i j i j i j i j i j i j i j i j i j i j i j i jTijTAiijηηξξμξξηηηξμξμηηξμξμηξξηημηηξξμηξ[]{}{}e e e R k =δ,代入边界条件μ1=ν1=μ2=ν2=μ4=ν4=0,将对应的行和列划掉没剩下的方程为:[]⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧P P k --νμ3333,又)4,3,2,1()1)(1(41=++=i N i i i ηηξξ,且1133==ηξ,,a=1,b=1所以[]411483113112113113112833⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⨯=E E k 所以[]⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧P P k --νμ3333→⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡P P E --νμ4114833 解得⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧1158-νμ33E P 3.有一如图3(a)所示的剪力墙,墙顶作用竖向荷载P 。

将该剪力墙划分为两个三结点三角形常应力单元,单元和结点编号如图3(b)所示,并将荷载P 分成两个P/2作用在3、4结点。

已知单元厚度为t ,弹性模量为E ,泊松比μ=1/3。

求结点3和结点4的位移,以及单元①的应变和应力。

(20分)解:建立直角坐标系(注Y 轴向下为正),单元①i,j,m 对应的节点编号为3,1,4,单元②对应的节点编号为2,4,1。

对于单元①:i(0,0),j(0,4),m(2,0)bi=yi-ym=4;bj=ym-yi=0;bm=yi-yj=-4 ci=xm-xj=2;cj=xi-xm=-2;cm=xj-xi=0 三角形面积A=1/2*2*4=4几何矩阵[B]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----40000204024202000481弹性矩阵[D]=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--2100010112μμμμE单元刚度矩阵∆=t B D B k T]][[][][1=314)1(8001684)1(4)1(8)1(40816048)1(2)1(4)1(2)23(4)1(4)9(2)1(162⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------+--μμμμμμμμμμμμμμEt132)1(8001684)1(4)1(8)1(40816048)1(2)1(4)1(2)23(4)1(4)9(2][][12⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------+-==μμμμμμμμμμμμμk k然后合成总刚[K]。

整体节点力矢量为]022[}{2211P P F F F F F yx y x =节点位移矢量为[]44330000}{v u v u d =}]{[}{d K F =,采用缩减矩阵法划去位移为零的行与列,得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+--------02/02/)23(4)1(4)1(88)9(2)1(416)23(40)9(2)1(1644332P P v u v u Et μμμμμμμμμ 解得[]T Et P v u v u 88.199.850.142.84433-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡单元①的应变{}[]T EtP d B 56.047.0285.0}]{[11-==ε单元①的应力{}[]T tPd B D 84.068.158.0}]{][[11-==σ。

相关文档
最新文档