有限元考试试题及答案
有限单元法考试题及答案

有限单元法考试题及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。
A. 位移法B. 势能原理C. 能量守恒定律D. 牛顿第二定律答案:B2. 在有限元分析中,以下哪项不是网格划分时需要考虑的因素?()A. 网格数量B. 网格形状C. 材料属性D. 边界条件答案:C3. 有限元分析中,以下哪项不是结构分析的基本步骤?()A. 离散化B. 求解C. 后处理D. 优化设计答案:D4. 在有限元分析中,以下哪种类型的单元不适用于平面应力问题?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:C5. 有限元分析中,以下哪种边界条件不属于几何边界条件?()A. 固定支座B. 压力C. 温度D. 位移答案:C二、多项选择题(每题3分,共15分)6. 有限元法中,以下哪些因素会影响单元的精度?()A. 单元形状B. 单元数量C. 材料属性D. 网格划分答案:ABD7. 在有限元分析中,以下哪些是常见的数值积分方法?()A. 一阶积分B. 二阶积分C. 高斯积分D. 牛顿-莱布尼茨积分答案:ABC8. 有限元分析中,以下哪些是常见的单元类型?()A. 线性单元B. 二次单元C. 三次单元D. 非线性单元答案:ABCD9. 在有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 热分析答案:ABC10. 有限元分析中,以下哪些是常见的非线性问题?()A. 几何非线性B. 材料非线性C. 接触非线性D. 热应力问题答案:ABCD三、填空题(每题2分,共20分)11. 有限元法中,单元刚度矩阵的计算通常基于___________原理。
答案:势能12. 在有限元分析中,网格划分的目的是将连续的___________离散化为有限数量的单元。
答案:域13. 有限元分析中,___________是将实际问题转化为数学问题的关键步骤。
有限单元法考试题及答案

有限单元法考试题及答案一、选择题1. 有限元法是一种用于求解偏微分方程的数值方法,其基本思想是将连续域离散化成有限个互不重叠的子域。
这种说法正确吗?A. 正确B. 错误答案:A2. 在有限元法中,单元的选取通常遵循以下哪个原则?A. 单元越小越好B. 单元越大越好C. 单元大小应根据问题的具体需求来确定D. 单元大小固定不变答案:C3. 有限元分析中,边界条件的处理方式不包括以下哪一项?A. 强制边界条件B. 自然边界条件C. 忽略边界条件D. 周期性边界条件答案:C4. 在有限元法中,下列哪个不是常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D5. 有限元法中,形函数的作用是什么?A. 描述单元的几何形状B. 描述单元的物理属性C. 用于构建单元的局部刚度矩阵D. 用于描述单元内部的位移场答案:D二、简答题1. 简述有限元法的基本步骤。
答案:有限元法的基本步骤包括:定义问题域和边界条件,划分网格,选择单元类型,定义形函数,组装全局刚度矩阵,施加边界条件,求解线性方程组,提取结果。
2. 有限元法中,局部刚度矩阵是如何构建的?答案:局部刚度矩阵是通过单元的形函数和材料属性来构建的。
首先,根据单元的形函数和材料属性,计算单元的应变和应力。
然后,利用应变和应力,通过积分得到单元的局部刚度矩阵。
三、计算题1. 给定一个简单的一维弹性杆问题,其长度为L,两端固定,中间受力P。
请使用有限元法求解该杆的位移和应力分布。
答案:首先,将杆划分为若干个单元,每个单元的长度为Δx。
然后,为每个单元定义形函数,通常是线性形函数。
接着,根据形函数和材料属性(如杨氏模量E),构建每个单元的局部刚度矩阵。
将所有单元的局部刚度矩阵组装成全局刚度矩阵。
由于杆两端固定,边界条件为位移为零。
最后,将力P施加到中间节点,求解全局刚度矩阵对应的线性方程组,得到节点位移。
应力可以通过位移和形函数计算得到。
有限元试题及答案

有限元试题及答案一、选择题1. 有限元方法是一种用于求解工程和物理问题的数值技术,其核心思想是将连续域划分为有限数量的离散子域。
以下哪项不是有限元方法的特点?A. 网格划分B. 边界条件处理C. 局部近似D. 整体求解答案:D2. 在有限元分析中,以下哪项不是网格划分的常见类型?A. 三角形网格B. 四边形网格C. 六边形网格D. 圆形网格答案:D3. 对于线性弹性问题,以下哪种元素类型不适用于有限元分析?A. 线性三角形元素B. 二次三角形元素C. 线性四边形元素D. 三次四边形元素答案:D二、填空题1. 在有限元分析中,单元刚度矩阵的计算通常涉及到单元的_________。
答案:形状函数2. 有限元方法中,边界条件可以分为_________和_________。
答案:Dirichlet边界条件;Neumann边界条件3. 有限元软件通常采用_________方法来求解大型稀疏方程组。
答案:迭代三、简答题1. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:- 定义问题的几何域和边界条件。
- 将几何域划分为有限数量的小单元。
- 为每个单元定义形状函数。
- 计算单元刚度矩阵和载荷向量。
- 组装全局刚度矩阵和载荷向量。
- 施加边界条件。
- 求解线性方程组,得到节点位移。
- 计算单元应力和应变。
2. 为什么在有限元分析中需要进行网格划分?答案:网格划分是有限元分析中的一个重要步骤,因为它允许将连续的几何域离散化,使得问题可以被数值方法求解。
通过网格划分,可以: - 简化复杂几何形状的分析。
- 适应不同的材料属性和边界条件。
- 提供足够的细节以捕捉应力和位移的局部变化。
- 减少计算复杂度,提高求解效率。
四、计算题1. 假设有一个平面应力问题,已知材料的弹性模量E=210GPa,泊松比ν=0.3。
请计算一个边长为10mm的正方形单元在单轴拉伸下的单元刚度矩阵。
答案:单元刚度矩阵\[ K \]可以通过以下公式计算:\[K = \frac{E}{(1-\nu^2)} \int_{\Omega} \left[ B^T B \right] d\Omega\]其中,\( B \)是应变-位移矩阵,\( \Omega \)是单元的面积。
中国科学院大学有限元试题及答案

(1)引入边界条件: v1 0,1 0, v2 0, M 3 m, M 2 0, Y3 0 由后三个方程可求得 2、v3、 3 ,然后把 2、v3、 3 代入前三个方程,求得 Y1、M 1、Y2 。
例1:已知:p,l,EA。求: u 2 , v 2
解:方法1:1)划分单元,给节点编号 2)单元分析 ①单元: 0, cos 1, sin 0
3
p
10
9
7
y
8 5
1
1
解:
6
9
8
x
6
3
7
5
2
2
4
3
题3 图
4
题3图. 三角形结构网 格
(2) d 4,
M B 2(d1 v4 0
4
4
7
15 10
11
3
1
2
6
13 15
题3图
5
9 12 14
答: (2) d=4 , B=2(d+1)=10 (3) u1 u15 v1 v15 0
p 作用。杆件沿 y 轴方向,长为 a 1 m ,截面积 A 0.01m 2 ,
E2 E0 。载荷及约束信息如图示,自重不计。试采用图示的
1个三角形常应变元和1个平面杆元求: (1)结构整体的等效结点力列阵; (2)采用划行划列法引入已知结 点位移,计算出结点1和2的 a 位移; (3)杆件中内力。 i j m 单元2: 1 3 2 单元1: 2 4
答: 在有限单元法中,采用低阶多项式拟合振型。结构的低阶振 型曲线与低阶多项式比较通配,结构的高阶振型曲线与低阶 多项式曲线有着显著的差异。因而,有限元法中求出的低阶 频率和振型是可信的,而所求出的高阶频率和振型误差较大 ,甚至无效。
有限元试题及答案

有限元试题及答案一、选择题1.有限元分析是一种利用计算机数值方法进行结构分析的方法,下面哪个说法是正确的?A. 有限元分析对结构的约束条件没有要求B. 有限元分析只适用于静力分析C. 有限元分析可以用来研究结构的动力响应D. 有限元分析的计算结果一定是精确的答案:C2.有限元法的基本步骤包括以下几个环节:I. 离散化II. 单元划分III. 节点连接IV. 计算材料性质V. 施加边界条件VI. 构建刚度矩阵和载荷向量VII. 求解节点位移和应力VIII. 后处理与结果分析请问选择项中正确的顺序是:A. IV – I – II – III – V – VI – VII – VIIIB. I – II – III – IV – V – VI – VII – VIIIC. II – III – V – IV – VI – I – VII – VIIID. I – III – II – IV – V – VI – VII – VIII答案:B3.在有限元分析中,单元是指将结构划分为有限个小单元来近似表示结构的方法。
下面哪个选项给出了常用的结构单元类型?A. 三角形单元,四面体单元,六面体单元B. 矩形单元,六面体单元,圆形单元C. 圆形单元,矩形单元,六面体单元D. 四面体单元,矩形单元,三角形单元答案:D二、填空题1.有限元分析中,刚度矩阵的计算需要根据单元的_________和材料的_________计算得到。
答案:几何形状,物理性质2.有限元法最常用的数学插值函数是_________函数。
答案:形函数3.在有限元分析中,自由度是指结构中的每个_________未知量。
答案:位移三、计算题1.给定如图所示的二维结构,使用有限元法进行分析。
假设结构材料为线性弹性材料,其杨氏模量为200 GPa,泊松比为0.3。
结构整体尺寸为5m x 3m,单元尺寸为1m x 1m。
分析载荷为2000 N,施加在结构的中心节点上。
有限元考试题库及答案

有限元考试题库及答案一、单项选择题(每题2分,共10分)1. 有限元法中,单元刚度矩阵的计算是基于()。
A. 材料力学B. 结构力学C. 弹性力学D. 流体力学答案:C2. 在有限元分析中,边界条件不包括以下哪一项?()A. 位移边界条件B. 载荷边界条件C. 温度边界条件D. 速度边界条件答案:D3. 有限元分析中,以下哪种类型的单元是二维的?()A. 杆单元B. 梁单元C. 壳单元D. 体单元答案:C4. 有限元分析中,以下哪种类型的网格划分方法适用于复杂几何形状?()A. 结构化网格B. 非结构化网格C. 规则网格D. 混合网格答案:B5. 在有限元分析中,以下哪种方法用于求解线性方程组?()A. 高斯消元法B. 牛顿迭代法C. 有限差分法D. 有限体积法答案:A二、多项选择题(每题3分,共15分)6. 有限元分析中,以下哪些因素会影响网格划分的质量?()A. 网格大小B. 网格形状C. 网格数量D. 网格排列答案:ABCD7. 在有限元分析中,以下哪些是常见的单元类型?()A. 三角形单元B. 四边形单元C. 六面体单元D. 楔形单元答案:ABCD8. 有限元分析中,以下哪些是常见的边界条件?()A. 固定边界B. 自由边界C. 压力边界D. 位移边界答案:ACD9. 在有限元分析中,以下哪些是常见的求解器类型?()A. 直接求解器B. 迭代求解器C. 混合求解器D. 并行求解器答案:ABD10. 有限元分析中,以下哪些是常见的后处理技术?()A. 应力云图B. 位移云图C. 模态分析D. 频率响应分析答案:ABCD三、简答题(每题5分,共20分)11. 简述有限元分析中网格划分的基本原则。
答案:有限元分析中网格划分的基本原则包括:确保网格的几何形状规则、避免过度扭曲的单元、保持网格大小的一致性、在应力集中区域细化网格、以及考虑分析的精度和计算成本。
12. 描述有限元分析中单元刚度矩阵的物理意义。
(完整版)有限元考试试题及答案

e an dAl l t h i ng si nt he i rb ei n ga re go o2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)图23. 图示结点三角形单元的124边作用有均布侧压力q ,单元厚度为t ,求单元的等效结点荷载。
图3图1一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有nl⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k ⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+=⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+=⎥⎦⎤⎢⎣⎡0025.0043636E k k ==⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k ==⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++=⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k ==⎥⎦⎤⎢⎣⎡25.0005.046666E k k ==把上面计算出的,…,对号入座放到总刚矩阵中去,于是得到11k 66k []K的具体表达式。
有限元期末考试题及答案

有限元期末考试题及答案一、选择题1. 有限元方法是一种数值分析方法,主要用于求解什么类型的数学问题?A. 线性代数方程B. 微分方程C. 积分方程D. 代数方程答案:B2. 在有限元分析中,单元的划分是基于什么原则?A. 单元数量B. 单元形状C. 问题域的几何特性D. 计算资源答案:C3. 下列哪项不是有限元分析中常用的单元类型?A. 三角形单元B. 四边形单元C. 六面体单元D. 圆形单元答案:D二、填空题4. 有限元方法中,______是指将连续的物理域离散成有限数量的小区域,这些小区域称为单元。
答案:离散化5. 在进行有限元分析时,通常需要定义材料属性,包括______、密度和弹性模量等。
答案:泊松比三、简答题6. 简述有限元方法的基本步骤。
答案:有限元方法的基本步骤包括:定义问题域、离散化问题域、选择单元类型、定义材料属性、构建全局刚度矩阵、施加边界条件、求解线性代数方程、提取结果。
7. 解释什么是有限元分析中的收敛性,并说明影响收敛性的因素。
答案:收敛性是指随着单元数量的增加,有限元分析结果逐渐接近真实解的性质。
影响收敛性的因素包括单元的类型、形状、大小以及网格的布局等。
四、计算题8. 假设有一个长度为2米的杆,两端固定,中间施加了一个向下的力F=1000N。
如果杆的材料是钢,其弹性模量E=210 GPa,泊松比ν=0.3,请计算杆的弯曲位移。
答案:首先,根据Euler-Bernoulli梁理论,可以写出弯曲位移的方程为:\[ w(x) = \frac{F}{384EI} L^3 \]其中,\( w(x) \) 是位移,\( F \) 是施加的力,\( L \) 是杆的长度,\( E \) 是弹性模量,\( I \) 是截面惯性矩。
对于一个矩形截面,\( I \) 可以表示为:\[ I = \frac{bh^3}{12} \]假设杆的截面宽度为b,高度为h,代入上述公式,可以计算出位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 简答题(共40分,每题10分)1. 论述单元划分应遵循的原则。
2. 说明形函数应满足的条件。
3. 说明四边形等参数单元中“等参数”的含义,即为什么要引入等参数单元。
4. 阐述边界元法的主要优缺点。
二、 计算题(共60分,每题20分)1. 一杆件如图3所示,杆件上方固定后,在下方受垂直向下的集中力作用,已知:杆件材料的杨氏模量2721/100.3in lbf E E ⨯==,截面积2125.5in A =,2275.3in A =,长度in L L 1221==,集中力lbf P 100=,用有限元方法求解B 点和C 点位移。
备注:(1)1 lbf (磅力,libra force ) = N 。
(2)杨氏模量、弹性模量、Young 氏弹性模量具有相同含义(10分)2. 如图2所示,有一正方形薄板,沿对角承受压力作用,厚度t=1m ,载荷F=20KN/m ,设泊松比µ=0,材料的弹性模量为E ,试求它的应力分布。
(15分)学院 专业 学号 姓名 y图1图23. 图示结点三角形单元的124边作用有均布侧压力q,单元厚度为t,求单元的等效结点荷载。
图3一、简答题1. 答:1)合理安排单元网格的疏密分布2)为突出重要部位的单元二次划分3)划分单元的个数4)单元形状的合理性5)不同材料界面处及荷载突变点、支承点的单元划分6)曲线边界的处理,应尽可能减小几何误差7)充分利用结构及载荷的对称性,以减少计算量2. 答:形函数应满足的三个条件:a.必须能反映单元的刚体位移,就是位移模式应反映与本单元形变无关的由其它单元形变所引起的位移。
b.能反映单元的常量应变,所谓常量应变,就是与坐标位置无关,单元内所有点都具有相同的应变。
当单元尺寸取小时,则单元中各点的应变趋于相等,也就是单元的形变趋于均匀,因而常量应变就成为应变的主要部分。
c.尽可能反映位移连续性;尽可能反映单元之间位移的连续性,即相邻单元位移协调。
3. 答:含义:所谓的等参数单元,就是在确定单元形状的插值函数和确定单元位移场的插值函数中采用了完全相同的形函数。
意义:构造出一些曲边地高精度单元,以便在给定地精度下,用数目较少地单元,解决工程实际地具体问题。
4. 答:有限单元法是基于变分原理的里兹(Ritz)法的另一种形式,从而使里兹法分析的所有理论基础都适用子有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法.利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,面且事先不要求满足任何边界条件,因此它可以用来处理很复杂的连续介质问题。
有限单元法中所利用的主要是伽辽金(Galerkin)法。
它可以用于已经知道问题的微分方程和边界条件,但变分的泛函尚未找到或者根本不存在的情况,因而进一步扩大了有限单元法的应用领域。
三十多年来,有限单元法的应用已由弹性力学平面问题扩展到空间问题、板壳问题,由静力平衡问题扩展到稳定问题、动力问题和波动问题。
分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料等,从固体力学扩展到流体力学、传热学等连续介质力学领域。
在工程分析中的作用已从分析和校核扩展到优化设计并和计算机辅助设计技术相结合。
可以预计,随着现代力学、计算数学和计算机技术等学科的发展,有限单元法作为一个具有巩固理论基础和广泛应用效力的数值分析工具,必将在国民经济建设和科学技术发展中发挥更大的作用,其自身亦将得到进一步的发展和完善。
三、计算题1. 解:将杆件分解成两个元素, 元素1的刚度矩阵K 1=in Ibf /10125.13L E A 6111⨯=⨯, 元素2的刚度矩阵K2=in Ibf /10375.9L E A 6222⨯=⨯ 总刚度矩阵单元刚度矩阵形成后,应将各单元刚度矩阵组装集合成整体刚度矩阵(即总刚矩阵)。
如所示为杆系结构两单元节点编号示意图,可得总刚度矩阵为()()()()()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=33232223222222121112111100k k k k k k k k K (3-11)图3-3 杆系结构两单元节点编号示意图引入边界条件求解节点位移总刚矩阵[]K 组集完成后,即可获得整个结构的平衡方程为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--+--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧321222211113211101111011u u u l l l l l l l l E F F F (3-12) 整个结构的边界条件为01=u ,2F 、3F 已知,三个未知量三个方程,因此上式可求得唯一解。
⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡3221111321F F l l l l l E u u ()321F F F +-=解出节点位移:u 1=0 u 2=×10-5in u 3=×10-4in2. 解:(1)建立需要计算的力学模型以及划分单元由于该结构几何对称和受载也对称,故可利用其对称性,只需要取薄板的1/4作为计算对象。
为了简单起见,我们把它划分成4个三角形单元,单元和节点编号如图(b )所示。
由于对称,节点1,2,4,不可能有水平位移,节点4,5,6不可能有垂直位移,故施加约束如图(b )所示。
图 两类单元节点编号取总体y x ,坐标并确定各节点的坐标值。
由图看出,这里只有两类不同的单元,一类单元是1,2,4,另一类单元是3。
两类单元节点的编排如图所示。
单元1,单元节点 编排对应于结构的节点编号1,2,3。
三个节点坐标如下:0=i x , 0=j x , m x m 1=, m y i 2=, m y j 1=, m y m 1=代入得:0=-=m j i y y b ;1-=-=i m j y y b ;1=-=j i m y y b 1=-=j m i x x c ; 1-=-=m i j x x c ;0=-=i j m x x c三角形面积:221m =∆ 单元节点坐标以及单元和节点的编号是原始数据,可用手工输入,也可由计算机完成。
对于单元2,3,4定出单元节点 的坐标值后,同样可算出,以及各单元的面积。
(2)计算个单元的刚度矩阵e k 及组集成总刚K 由于m t 1=,0=μ,所以()2142EEt =∆-μ于是由式可求得单元刚度矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1331321311231221211131121111111111111k k k k k k k k k k k k k k k k k k k mmmjmi jm jjjiimijii e ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------=25.0025.025.0025.005.005.00025.0075.025.05.025.025.05.025.075.0025.0005.005.0025.0025.025.0025.0E同理可得单元2,4的刚度矩阵分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2552542522452442422252242222k k k k k k k k k k e,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4664654634564554534364354334k k k k k k k k k k e由于1,2,4单元算出的j i b b ,…等值以及三角形面积均相同,故算出2,4的单元刚度矩阵与单元1的刚度矩阵数值完全相同。
单元3的节点m j i ,,相应于总体编号中的2,5,3点,其节点坐标为my y m y m x m x x m j i m j i 1,0,11,1,0======由此得:.1,1,0,1,0,1m c m c c m b b m b m j i m j i =-====-=从而算出单元刚度矩阵为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3333353323533553523233253223333333333k k k k k k k k k k k k k k k k k k k mmmjmi jm jj jiimij ii e ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------=75.025.05.025.025.0025.075.0025.025.05.015.005.000025.025.0025.025.0025.025.0025.025.0005.00005.0E根据各单元刚度矩阵组集成总刚度矩阵[]K 为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++++++++=4664564555525524524443643533543333313332522522432312332222212211311211100000k k k k k k k k k k k k k k k k k k k k k k k k K 称)(对 由以上结果求得总刚度矩阵各元素为⎥⎦⎤⎢⎣⎡5.00025.011111E k k == ⎥⎦⎤⎢⎣⎡5.0025.025.011212---==E k k⎥⎦⎤⎢⎣⎡5.0025.0011313-==E k k⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡5.125.025.05.125.0005.05.00025.075.025.025.075.032222212222E E E E k k k k +=++= ⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---5.025.025.0125.025.005.025.0025.05.032312323E E E k k k =+= ⎥⎦⎤⎢⎣⎡---5.0025.025.022424E k k == ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡025.025.00025.0000025.0032522525E E E k k k =+= ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.15.00025.075.025.025.075.025.0005.043333313333E E E E k k k k =++= ⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---125.025.05.05.0025.025.05.025.0025.043533535E E E k k k =+= ⎥⎦⎤⎢⎣⎡0025.0043636E k k == ⎥⎦⎤⎢⎣⎡75.025.025.075.024444E k k == ⎥⎦⎤⎢⎣⎡---25.0025.05.024545E k k ==⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡5.125.025.05.175.025.025.075.05.00025.025.0005.045535525555E E E E k k k k =++= ⎥⎦⎤⎢⎣⎡---25.0025.05.045656E k k == ⎥⎦⎤⎢⎣⎡25.0005.046666E k k == 把上面计算出的11k ,…,66k 对号入座放到总刚矩阵[]K 中去,于是得到[]K 的具体表达式。