多元统计分析第六章 因子分析
多元统计分析期末复习

第一章、多元正态分布的参数估计二、判断题1.多元分布函数F (x )是单调不减函数,而且是右连续的。
(√)2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合α'X (α∈R p )都是一元正态分布。
(X)3.μ是一个P 维的均值向量,当A、B 为常数矩阵时,具有如下性质:(1)E(AX)=AE(X)(2)E(AXB)=AE(X)B (√)4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。
(√)5.一般情况下,对任何随机向量是正定阵。
(X )'X =(X 1, ,X p ),协差阵∑是对称阵,也6.多元正态向量的任意线性变换仍然服从多元正态分布。
(√)7.多元正态分布的任何边缘分布为正态分布,反之一样。
( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。
(√)9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。
(√)1S n 10.是∑的无偏估计。
( X )2χ11.Wishart 分布是分布在p 维正态情况下的推广。
(√)'X =(X 1, ,X p )12.若n X (α)~N p (μ,∑),α=1, ,n ,且相互独立,则样本离差阵(X (α)-X )'~W p(n -1,∑)S =∑(X (α)-X )α=1。
(√)13.若X ~W p (n ,∑)C CXC '~W p(n ,c ∑c '),为奇异矩阵,则。
( X )第二章多元正态分布均值向量和协差阵的检验二、判断题1.设X ~N p (μ,∑),S ~W p(n ,∑),n ≥p ,则称统计量T 2=nX 'S -1X 的分布为非中心HotellingT 2分布,记为T 2~T 2(p ,n ,μ)。
( X )12.在协差阵∑未知的情况下对均值向量进行检验,需要用样本协差阵S 去代n替∑。
多元统计分析之因子分析

(2)累计贡献率:前 k个主成分的累计贡献率指按照方差 贡献率从大到小排列,前 k 个主成分累计提取了多少的原 始信息,即前面 k 个主成分累计提取了x1,x2,…,xp多少 的信息。 一般来说,如果前 k 个主成分的累计贡献率达到 85%,表明前 k 个主成分包含了全部测量指标所具有的主 要信息,这样既减少了变量的个数,又便于对实际问题的 分析和研究。
KMO检验是依据变量间的简单相关与偏相关的比较。
其计算公式为所有原变量简单相关系数的平方和除以简单 相关系数平方和加偏相关系数平方和。即:
(0≤KMO≤1)
r 其中,ij2 是变量i和j的简单相关系数,
偏相关系数。
是变p量i2j i和变量j的
如果KMO值越接近1,则越适合于做因子分析,如果 KMO越小,则越不适合于做因子分析,其判断标准如下: 0.9<KMO:非常适合 0.8<KMO<0.9 :适合 0.7<KMO<0.8:一般 0.6<KMO<0.7:不太适合 KMO<0.5:不合适
3.因子分析的目的
因子分析的目的,通俗来讲就是简化变量维数。即要使 因素结构简单化,希望以最少的共同因素(公共因子), 能对总变异量作最大的解释,因而抽取得因子越少越好, 但抽取的因子的累积解释的变异量越大越好。
例: 在企业形象或品牌形象的研究中,消费者可以通过一个
由24个指标构成的评价体系,评价百货商场的24个方面的 优劣。但消费者主要关心的是三个方面,即商店的环境、 商店的服务和商品的价格。因子分析方法可以通过24个变 量,找出反映商店环境、商店服务水平和商品价格的三个 潜在的因子,对商店进行综合评价。而这三个公共因子可 以表示为:
方法二:巴特利特(Bartlett )球形检验
第六讲因子分析

第六讲因⼦分析第五讲因⼦分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,⽽且包含原变量提供的⼤部分信息。
因⼦分析就是为解决这⼀问题提供的统计分析⽅法。
以后,如⽆特别说明,都假定总体是⼀个p维变量:它的均值向量,协⽅差矩阵V=(ij)pp都存在。
第⼀节正交因⼦模型1.1 公共因⼦与特殊因⼦从总体中提取的综合变量:F1, F2, … , F m(m于是,我们有:变量X i的信息=公共因⼦可以表达部分公共因⼦不可表达部分这就是所谓因⼦模型。
⽬前,公共因⼦可以表达的部分由公共因⼦的线性组合表⽰。
即上⾯的因⼦模型可以写成以下的形式:1.2 正交因⼦模型设总体,均值向量,协⽅差矩阵。
因⼦模型有形式:其中m如果引⼊以下向量与矩阵:则因⼦模型的矩阵形式为:对于正交的因⼦模型,还要进⼀步要求:z1. 。
即有:公共因⼦是互相不相关的。
z2. 。
即:特殊因⼦和公共因⼦不相关。
1.3 因⼦载荷矩阵1.矩阵A称为因⼦载荷矩阵(component matrix),系数a ij称为变量X i在因⼦F j上的载荷(loading)。
由于特别,如果总体是标准化的,则有Var(X i)=1,从⽽有:于是:即变量X i在公共因⼦F j上的载荷a ij就是X i与F j的相关系数。
2.载荷矩阵的估计:主成分法。
主成分法是估计载荷矩阵的⼀种⽅法,由于其估计结果和变量的主成分仅相差⼀个常数倍,因此就冠以主成分法的名称。
在学到这⾥的时候,不要和主成分分析混为⼀谈。
主成分法是SPSS系统默认的⽅法,在⼀般情况下,这是⽐较好的⽅法。
以数据“应征⼈员”为例,按特征值⼤于1提取公共因⼦。
在⽤不同⽅法获得因⼦载荷时,公共因⼦对总体⽅差的贡献率以主成分法为最⾼:⽅法贡献率 %Principle components 81.476Maximum likelihood74.304Unweighted least squares74.485Principal axis factoring74.462Alpha factoring74.540Image factoring69.365关于主成分法的内容可参看任何⼀本多元统计分析书,例如:《应⽤多元统计分析》,⾼惠璇著,北京⼤学出版社,p301。
多元统计分析因子分析(方法步骤分析总结)

因子分析+聚类分析:一.对数据进行因子分析,实验步骤:1在SPSS窗口中选择:分析-降维-因子分析,在因子分析主界面将变量X1 移入变量框2点击“描述”,在对话框中,统计量选择:原始分析结果,相关矩阵选择:系数,以描述相关系数,点击继续3点击“抽取”,在对话框中,方法为主成份,分析选择:相关性矩阵,输出选择:未旋转的因子解和碎石图,抽取中选择基于特征值(特征值大于1)或者因子的固定数量(要提取的因子为2),点击继续4点击“旋转”,在对话框中,方法为最大方差法,在输出中选择旋转解和载荷图(当因子数=2时),点击继续5点击“得分”,在对话框中,选中“保存为变量”和“显示因子得分系数矩阵”,在方法中选择“回归”,点击继续6点击确定实验结果分析:1.特征根和累计贡献率由表中可以看出,因为成份1和2的特征值>1,被提取出来,而且由于第三个特征根相比下降比较快,我们也只选取两个公共因子,对1和2旋转后其累计贡献率为82.488%。
由碎石图,我们也可以看出1和2的特征值大于1,可以被提取出来,其余变量特征值过小,不予提取。
从旋转成份矩阵可以看出,经过旋转的载荷系数产生了明显的区别,横向找到最大的一个数,如上表中黄色部分画出,第一个公因子在v1,v3,v5上占有较大载荷,说明于这三个指标有较大的相关性,命名为;第二个公因子在v2,v4,v6上有较大载荷,有较大相关性,归为一类,可命名为。
该表为成分转换矩阵,给出旋转所需的矩阵可以用成份得分系数矩阵写出各个因子关于中心标准化后的变量的表达式。
F1=0.385x1-0.001x2+…..F2=…..(分析的举例:第一个因子在外貌自信心洞察力推销能力工作魄力志向抱负理解能力潜能等变量上有较大的系数,可以抽象为应聘者主客观工作能力因子第二个因子在简历格式工作经验适应力变量上有较大的系数,可抽象为应聘者对客观环境的适应力因子第三个因子在兴趣爱好诚信度求职渴望度变量上有较大的系数,可抽象为应聘者的兴趣和诚信因子。
多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
因子分析法详细步骤-因子分析法操作步骤

心理学研究
在心理学研究中,因子分析法 常用于人格特质、智力等方面 的研究。
社会学研究
在社会学研究中,因子分析法 可用于社会结构、文化等方面
的研究。
02 因子分析法操作步骤
数据标准化
总结词
消除量纲和数量级的影响
详细描述
在进行因子分析之前,需要对数据进行标准化处理,即将原始数据转换为均值为0、标准差为1的标准化数据,以 消除不同量纲和数量级对分析结果的影响。
案例三:品牌定位研究
总结词
通过因子分析法,明确品牌的定位和竞争优 势,以便更好地进行市场推广和竞争策略制 定。
详细描述
首先,收集市场上同类竞争品牌的定位和竞 争优势数据。然后,利用因子分析法对这些 数据进行处理,提取出几个主要的因子,这 些因子代表了不同品牌的定位和竞争优势。 最后,根据因子分析的结果,明确自己品牌 的定位和竞争优势,制定相应的市场推广和 竞争策略,以提高品牌的市场份额和竞争力
要点二
详细描述
首先,收集大量关于消费者行为和偏好的数据,包括购买 行为、品牌选择、价格敏感度等。然后,利用因子分析法 对这些数据进行降维处理,提取出几个主要的因子,这些 因子代表了消费者不同的需求和偏好。最后,根据这些因 子对市场进行细分,将消费者划分为不同的群体,并为每 个群体制定相应的营销策略。
计算相关系数矩阵
总结词
评估变量间的相关性
详细描述
计算标准化数据的相关系数矩阵,用于评估变量之间的相关性。相关系数矩阵 是一个对称矩阵,矩阵中的元素表示不同变量之间的相关系数,用于衡量变量 间的关联程度。
因子提取
总结词
找出主要因子
详细描述
通过因子提取的方法,从相关系数矩阵中找出主要因子。常用的因子提取方法有主成分分析法和公因 子分析法等。这一步的目标是找出能够解释原始数据变异的少数几个公共因子。
多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理数据的标准化是将数据按比例缩放,使之落入一个小的特定区间;在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权;其中最典型的就是0-1标准化和Z 标准化;2、欧氏距离与马氏距离的优缺点是什么欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离;在二维和三维空间中的欧氏距离的就是两点之间的距离;缺点:就大部分统计问题而言,欧氏距离是不能令人满意的;每个坐标对欧氏距离的贡献是同等的;当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离;当各个分量为不同性质的量时,“距离”的大小与指标的单位有关;它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求;没有考虑到总体变异对距离远近的影响;马氏距离表示数据的协方差距离;为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离;优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关;由标准化数据和中心化数据计算出的二点之间的马氏距离相同;马氏距离还可以排除变量之间的相关性的干扰;缺点:夸大了变化微小的变量的作用;受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出;3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关;如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离;4、如果正态随机向量12(,,)p X X X X '=的协方差阵为对角阵,证明X 的分量是相互独立的随机变量;解: 因为12(,,)p X X X X '=的密度函数为 又由于21222p σσσ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭Σ 则1(,...,)p f x x则其分量是相互独立;5.1y 和2y 是相互独立的随机变量,且1y ~)1,0(N ,2y ~)4,3(N ;(a )求21y 的分布;(b )如果⎥⎦⎤⎢⎣⎡-=2/)3(21y y y ,写出y y '关于1y 与2y 的表达式,并写出y y '的分布; (c )如果⎥⎦⎤⎢⎣⎡=21y y y 且y ~∑),(μN ,写出∑-'1y y 关于1y 与2y 的表达式,并写出∑-'1y y 的分布;解:a 由于1y ~)1,0(N ,所以1y ~)1(2χ; b 由于1y ~)1,0(N ,2y ~)4,3(N ;所以232-y ~)1,0(N ;故2221)23(-+='y y y y ,且y y '~)2(2χ第2章 均值向量和协方差阵的检验1、略2、试谈Wilks 统计量在多元方差分析中的重要意义;3、题目此略多元均值检验,从题意知道,容量为9的样本 ,总体协方差未知假设H0:0μμ= , H1:0μμ≠ n=9 p=5检验统计量/n-1)()(0102μμ-'-=-X S X n T 服从P,n-1的2T 分布 统计量2T 实际上是样本均值与已知总体均值之间的马氏距离再乘以nn-1,这个值越大,相等的可能性越小,备择假设成立时,2T 有变大的趋势,所以拒绝域选择2T 值较大的右侧部分,也可以转变为F 统计量零假设的拒绝区域 {n-p/n-1p}2T >,()p n p F α-1/102T >F5,45μ0= 2972 ’样本均值 ’样本均值-μ0’=协方差矩阵降维——因子分析——抽取Inter-Item Covariance Matrix人均GDP元三产比重%人均消费元人口增长%文盲半文盲%人均GDP元三产比重%人均消费元人口增长%文盲半文盲%协方差的逆矩阵计算:2T=9s^-1 ’F统计量=> 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与全国平均水平有显着差异;4、略第3章聚类分析1.、聚类分析的基本思想和功能是什么聚类分析的基本思想是研究的样品或指标之间存着程度不同的相似性,于是根据一批样品的多个观测指标,具体找出一些能够度量样品或指标之间的相似程度的统计量,以这些统计量作为划分类型的依据,把一些相似程度较大的样品聚合为一类,把另外一些彼此之间相似程度较大的样品又聚合为另外一类,直到把所有的样品聚合完毕,形成一个有小到大的分类系统,最后再把整个分类系统画成一张分群图,用它把所有样品间的亲疏关系表示出来;功能是把相似的研究对象归类;2、试述系统聚类法的原理和具体步骤;系统聚类是将每个样品分成若干类的方法,其基本思想是先将各个样品各看成一类,然后规定类与类之间的距离,选择距离最小的一对合并成新的一类,计算新类与其他类之间的距离,再将距离最近的两类合并,这样每次减少一类,直至所有的样品合为一类为止; 具体步骤:1、对数据进行变换处理;不是必须的,当数量级相差很大或指标变量具有不同单位时是必要的2、构造n个类,每个类只包含一个样本;3、计算n个样本两两间的距离ijd;4、合并距离最近的两类为一新类;5、计算新类与当前各类的距离,若类的个数等于1,转到6;否则回4;6、画聚类图;7、决定类的个数,从而得出分类结果;3、试述K-均值聚类的方法原理;K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心均值类中,它是把样品聚集成K个类的集合,类的个数k可以预先给定或者在聚类过程中确定,该方法应用于比系统聚类法大得多的数据组;步骤是把样品分为K个初始类,进行修改,逐个分派样品到期最近均值的类中通常采用标准化数据或非标准化数据计算欧氏距离重新计算接受新样品的类和失去样品的类的形心;重复这一步直到各类无元素进出;4、试述模糊聚类的思想方法;模糊聚类分析是根据客观事物间的特征、亲疏程度、相似性,通过建立模糊相似关系对客观事物进行聚类的分析方法,实质是根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;基本思想是要把需要识别的事物与模板进行模糊比较,从而得到所属的类别;简单地说,模糊聚类事先不知道具体的分类类别,而模糊识别是在已知分类的情况下进行的;模糊聚类分析广泛应用在气象预报、地质、农业、林业等方面;它有两种基本方法:系统聚类法和逐步聚类法;该方法多用于定性变量的分类;5、略第4章判别分析1、应用判别分析应该具备什么样的条件答:判别分析最基本的要求是,分组类型在两组以上,每组案例的规模必须至少在一个以上,解释变量必须是可测量的,才能够计算其平均值和方差;对于判别分析有三个假设:1每一个判别变量不能是其他判别变量的线性组合;有时一个判别变量与另外的判别变量高度相关,或与其的线性组合高度相关,也就是多重共线性;2各组变量的协方差矩阵相等;判别分析最简单和最常用的的形式是采用现行判别函数,他们是判别变量的简单线性组合,在各组协方差矩阵相等的假设条件下,可以使用很简单的公式来计算判别函数和进行显着性检验;3各判别变量之间具有多元正态分布,即每个变量对于所有其他变量的固定值有正态分布,在这种条件下可以精确计算显着性检验值和分组归属的概率;2、试述贝叶斯判别法的思路;答:贝叶斯判别法的思路是先假定对研究的对象已有一定的认识,常用先验概率分布来描述这种认识,然后我们取得一个样本,用样本来修正已有的认识先验概率分布,得到后验概率分布,各种统计推断都通过后验概率分布来进行;将贝叶斯判别方法用于判别分析,就得到贝叶斯判别;3、试述费歇判别法的基本思想;答:费歇判别法的基本思想是将高维数据点投影到低维空间上来,然而利用方差分析的思想选出一个最优的投影方向;因此,严格的说费歇判别分析本身不是一种判别方法,只是利用费歇统计量进行数据预处理的方法,以使更有利于用判别分析方法解决问题;为了有利于判别,我们选择投影方向a应使投影后的k个一元总体能尽量分开同一总体中的样品的投影值尽量靠近;k要做到这一点,只要投影后的k个一元总体均值有显着差异,即可利用方差分析的方法使组间平方和尽可能的大;则选取投影方向a使Δa达极大即可;4、什么是逐步判别分析答:具有筛选变量能力的判别方法称为逐步判别分析法;逐步判别分析法就是先从所有因子中挑选一个具有最显着判别能力的因子,然后再挑选第二个因子,这因子是在第一因子的基础上具有最显着判别能力的因子,即第一个和第二个因子联合起来有显着判别能力的因子;接着挑选第三个因子,这因子是在第一、第二因子的基础上具有最显着判别能力的因子;由于因子之间的相互关系,当引进了新的因子之后,会使原来已引入的因子失去显着判别能力;因此,在引入第三个因子之后就要先检验已经引入的因子是否还具有显着判别能力,如果有就要剔除这个不显着的因子;接着再继续引入,直到再没有显着能力的因子可剔除为止,最后利用已选中的变量建立判别函数;5、简要叙述判别分析的步骤及流程答:1研究问题:选择对象,评估一个多元问题各组的差异,将观测个体归类,确定组与组之间的判别函数;2设计要点:选择解释变量,样本量的考虑,建立分析样本的保留样本;3假定:解释变量的正态性,线性关系,解释变量间不存在多重共线性,协方差阵相等;4估计判别函数:联立估计或逐步估计,判别函数的显着性;5使用分类矩阵评估预测的精度:确定最优临界得分,确定准则来评估判对比率,预测精确的统计显着性;6判别函数的解释:需要多少个函数;评价单个函数主要从判别权重、判别载荷、偏F值几个方面;评价两个以上的判别函数,分为评价判别的函数和评价合并的函数;7判别结果的验证:分开样本或交叉验证,刻画组间的差异;6、略第5章主成分分析1、主成分的基本思想是什么在对某一事物进行实证研究时,为更全面、准确地反映事物的特征及其发展规律,往往考虑与其有关的多个指标,在多元统计中也称为变量;一方避免遗漏重要信息而考虑尽可能多的指标看,另一方面考虑指标的增多,又难以避免信息重叠;希望涉及的变量少,而得到的信息量有较多;主成分的基本思想是研究如何通过原来的少数几个线性组合来解释原来变量绝大多数信息的一种多元统计方法;研究某一问题涉及的众多变量之间有一定的相关性,必然存在着支配作用的公共因素;通过对原始变量相关矩阵或协方差矩阵内部结构关系的研究,利用原始变量的线性组合形成几个无关的综合指标主成分来代替原来的指标;通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标;最经典的做法就是用F1选取的第一个线性组合,即第一个综合指标的方差来表达,即VarF1越大,表示F1包含的信息越多;因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分,如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求CovF1,F2=0则称F2为第二主成分,依此类推可以构造出第三、第四······,第P个主成分;2、主成分在应用中的主要作用是什么作用:利用原始变量的线性组合形成几个综合指标主成分,在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾;通过主成分分析,可以从事物之间错综复杂的关系中找出一些主要成分,从而能有效利用大量数据进行定量分析,解释变量之间的内在关系,得到对事物特征及其发展规律的一些深层次的启发,把研究工作引向深入;主成分分析能降低所研究的数据空间的维数,有时可通过因子载荷aij的结论,弄清X变量间的某些关系,多维数据的一种图形表示方法,用主成分分析筛选变量,可以用较少的计算量来选择,获得选择最佳变量子集合的效果;3.由协方差阵出发和由相关阵出发求主成分有什么不同1由协方差阵出发设随即向量X=X1,X2,X3,……Xp’的协方差矩阵为Σ,1≥2≥……≥p为Σ的特征值,γ1,γ2,……γp为矩阵A各特征值对应的标准正交特征向量,则第i个主成分为Yi=γ1iX1+γ2iX2+……+γpiXp,i=1,2,……,p此时VARYi=i,COVYi,Yj=0,i≠j我们把X1,X2,X3,……Xp的协方差矩阵Σ的非零特征根1≥2≥……≥p>0向量对应的标准化特征向量γ1,γ2,……γp分别作为系数向量,Y1=γ1’X, Y2=γ2’X,……, Yp=γp’X分别称为随即向量X的第一主成分,第二主成分……第p主成分;Y的分量Y1,Y2,……,Yp依次是X的第一主成分、第二主成分……第p主成分的充分必要条件是:1Y=P’X,即P为p阶正交阵,2Y的分量之间互不相关,即DY=diag1,2,……,p,3Y的p个分量是按方差由大到小排列,即1≥2≥……≥p;2由相关阵出发对原始变量X进行标准化,Z=Σ^1/2^-1X-μ covZ=R原始变量的相关矩阵实际上就是对原始变量标准化后的协方差矩阵,因此,有相关矩阵求主成分的过程与主成分个数的确定准则实际上是与由协方差矩阵出发求主成分的过程与主成分个数的确定准则相一致的;λi,γi 分别表示相关阵R的特征根值与对应的标准正交特征向量,此时,求得的主成分与原始变量的关系式为:Yi=γi’Z=γi’Σ^1/2^-1X-μ在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰到好处;有些数据涉及到指标的不同度量尺度使指标方差之间不具有可比性,对于这类数据用协方差矩阵进行主成分分析也有不妥;相关系数矩阵计算主成分其优势效应仅体现在相关性大、相关指标数多的一类指标上;避免单个指标方差对主成分分析产生的负面影响,自然会想到把单个指标的方差从协方差矩阵中剥离,而相关系数矩阵恰好能达到此目的;4、略第6章因子分析1、因子分析与主成分分析有什么本质不同答:1因子分析把诸多变量看成由对每一个变量都有作用的一些公共因子和一些仅对某一个变量有作用的特殊因子线性组合而成,因此,我们的目的就是要从数据中探查能对变量起解释作用的公共因子和特殊因子,以及公共因子和特殊因子的线性组合;主成分分析则简单一些,它只是从空间生成的角度寻找能解释诸多变量绝大部分变异的几组彼此不相关的新变量2因子分析中,把变量表示成各因子的线性组合,而主成分分析中,把主成分表示成各变量的线性组合3主成分分析中不需要有一些专门假设,因子分析则需要一些假设,因子分析的假设包括:各个因子之间不相关,特殊因子之间不相关,公共因子和特殊因子之间不相关;4在因子分析中,提取主因子的方法不仅有主成分法,还有极大似然法等,基于这些不同算法得到的结果一般也不同;而主成分分析只能用主成分法提取;5主成分分析中,当给定的协方差矩阵或者相关矩阵的特征根唯一时,主成分一般是固定;而因子分析中,因子不是固定的,可以旋转得到不同的因子;6在因子分析中,因子个数需要分析者指定,结果随指定的因子数不同而不同;在主成分分析中,主成分的数量是一定的,一般有几个变量就有几个主成分; 7与主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势;而如果想把现有的变量变成少数几个新的变量新的变量几乎带有原来所有变量的信息来进行后续的分析,则可以使用主成分分析;2、因子载荷ij a 的统计定义是什么它在实际问题的分析中的作用是什么答:1因子载荷ij a 的统计定义:是原始变量i X 与公共因子j F 的协方差,i X 与j F ),...,2,1;,...,2,1(m j p i ==都是均值为0,方差为1的变量,因此ij a 同时也是i X 与j F 的相关系数;(2)记),,...,2,1(...222212m j a a a g pjj j j =+++=则2j g 表示的是公共因子j F 对于X 的每一分量),...,2,1(p i X i =所提供的方差的总和,称为公共因子j F 对原始变量X 的方贡献,它是衡量公共因子相对重要性的指标;2j g 越大,表明公共因子j F 对i X 的贡献越大,或者说对X的影响作用就越大;如果因子载荷矩阵对A 的所有的),...,2,1(2m j g j =都计算出来,并按大小排序,就可以依此提炼出最有影响的公共因子;3、略第7章 对应分析1、试述对应分析的思想方法及特点;思想:对应分析又称为相应分析,也称R —Q 分析;是因子分子基础发展起来的一种多元统计分析方法;它主要通过分析定性变量构成的列联表来揭示变量之间的关系;当我们对同一观测数据施加R 和Q 型因子分析,并分别保留两个公共因子,则是对应分析的初步;对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;特点:对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来;它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性;另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数主因子以及分类的依据,是一种直观、简单、方便的多元统计方法;2、试述对应分析中总惯量的意义;总惯量不仅反映了行剖面集定义的各点与其重心加权距离的总和,同时与2x 统计量仅相差一个常数,而2x 统计量反映了列联表横联与纵联的相关关系,因此总惯量也反映了两个属性变量各状态之间的相关关系;对应分析就是在对总惯量信息损失最小的前提下,简化数据结构以反映两属性变量之间的相关关系;3、略 第8章 典型相关分析1、试述典型相关分析的统计思想及该方法在研究实际问题中的作用;答: 典型相关分析是研究两组变量之间相关关系的一种多元统计方法;用于揭示两组变 量之间的内在联系;典型相关分析的目的是识别并量化两组变量之间的联系;将两z |Uz |V 组变量相 关关系的分析转化为一组变量的线性组合与另一组变量线性组合之间的相关关系;基本思想:1在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数;即:X X 1, X 2, , , X p 、XX 1, X 2, , , X q 是两组相互关联的随机变量,分别在两组变量中选取若干有代表性的综合变量 U i 、Vi,使是原变量的线性组合;U i a 1X 1 a 2 X 2..... a P X P ≡ a ‘XV i b 1Y 1 b 2 Y 2 .... b q Y q ≡ b‘Y 在 D aX D bX 1 的条件下,使得 aX , bX 达到最大;2选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对;(3)如此继续下去,直到两组变量之间的相关性被提取完毕为此;其作用为:进行两组变量之间的相关性分析,用典型相关系数衡量两组变量之间的相关性;2、简述典型相关分析中冗余分析的内容及作用;答:典型型冗余分析的作用即分析每组变量提取出的典型变量所能解释的该组样本总方差的比 例,从而定量测度典型变量所包含的原始信息量;第一组变量样本的总方差为 t r R 11 p ,第二组变量样本的总方差为 t r R 22 q ;*A ˆz和*B ˆz 是样本典型相关系数矩阵,典型系数向量是矩阵的行向量, Z z z **A ˆU ˆ=,Z z z **B ˆV ˆ=前 r 对典型变量对样本总方差的贡献为则第一组样本方差由前 r 个典型变量解释的比例为:第二组样本方差由前 r 个典型变量解释的比例为:3、典型变量的解释有什么具体方法实际意义是什么答:主要使用三种方法:1典型权重标准相关系数:传统的解释典型函数的方法包括观察每个原始变量在它的典型变量中的典型权重,即标准化相关系数StandardizedCanonical Coefficients 的符号和大小;有较大的典型权重,则说明原始变量对它的典型变量的贡献较大,反之则相反;原始变量的典型权重有相反的符号说明变量之间存在一种反面关系,反之则有正面关系;但是这种解释遭到了很多批评;这些问题说明在解释典型相关的时候应慎用典型权重;(2)典型载荷结构系数:由于典型载荷逐步成为解释典型相关分析结果的基础;典型载荷分析,即典型结构分析Canonical Structure Analyse,是原始变量自变量或者因变量与它的典型变量间的简单线性相关系数;典型载荷反映原始变量与典型变量的共同方差,它的解释类似于因子载荷,就是每个原始变量对典型函数的相对贡献;(3)典型交叉载荷交叉结构系数:它的提出时作为典型载荷的替代,也属于典型结构分析;计算典型交叉载荷包括每个原始因变量与自变量典型变量直接相关,反之亦然;交叉载荷提供了一个更直接地测量因变量组与自变量组之间的关系的指标;实际意义:即使典型相关系数在统计上是显着的,典型根和冗余系数大小也是可接受的,研究者仍需对结果做大量的解释;这些解释包括研究典型函数中原始变量的相对重要性;4.、略。
多元统计实验报告--因子分析

多元统计实验报告设计题目:因子分析一、分析数据1995年我国社会发展状况的数据二、基本原理因子分析的基本思想是把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子。
三、实验步骤及其结果分析1、选择Analyze→Data Reduction→Factor,打开Factor Analysis主对话框;2、选择变量X1至X6,点击向右的箭头按钮,将六个变量移到Variable栏中;3、点击Descriptives…按钮,打开Descriptives子对话框。
在此对话框的Statistics下选择Initial solution;Correlation Matrix下选择coefficients,单击Continue按钮,返回Factor Analysis主对话框;4、单击Extraction…按钮,打开Extraction子对话框。
在此对话框的Method 下选择Principal components;Analyze下选择Correlation Matrix;Extract下选择Number of Factor,并在其右端的矩形框键入6;Display下选择Unrotated factor 和Scree plot,单击Continue按钮,返回Factor Analysis主对话框;点击OK按钮,显示结果清单。
(1)相关矩阵从表Correlation Matrix(相关矩阵)可知,各变量间存在较强的相关关系,因此有必要进行因子分析。
表中主对角线上的元素为1,表明变量自身于自身的相关系数为1。
(2)解释总方差从表Total Variance Explained(解释总方差)可知,前三个因子一起解释总方差的93.466%(累计贡献率),这说明前三个因子提供了原始数据的足够信息。
5、根据以上分析提取因子情况,单击Extraction…按钮,打开Extraction子对话框。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章因子分析6.1 因子分析数学模型因子分析是很有用的统计分析工具,因子分析的实质就是找出少量不可观测的随机变量,用它们表示众多的可观测随机变量。
以下例子能说明因子分析的意义。
例6.1对一个班的学生,进行五门课程(力学、物理、代数、分析、统计)考试,其中力学和物理闭卷考试,代数、分析、统计开卷。
这5门功课的成绩是可观测的随机向量。
每个学生的成绩可以看成5维随机向量的一个观测,见表6-1。
表6-1 五门课程考试成绩经过一定计算(因子分析)后发现存在不可观测的随机变量:1f 、2f ,它们和51,...x x 间有关系 521542143213221212116377.1091469.9750.678264.162258.5364.721559.013358.6909.720269.564838.7523.721220.864570.8409.62v f f x v f f x v f f x v f f x v f f x +-+=+-+=+-+=+++=+++= (6.1) 其中1f 、2f 是不可观测的随机变量。
我们认为它们分别表示学生的学习能力和适应开闭卷能力,所以可分别称为学习因子和适应开闭卷因子。
(6.1)揭示了这两个因子如何影响5门功课的成绩,也揭示5门课成绩的实质:每门课的成绩由学习因子和适应开闭卷因子的线性组合,加上常数,再加上随机变量而得。
这是是很有意义的。
象例6.1那样,找出少量不可观测因子(例如1f 、2f ),并给出它们影响可观测随机变量(例如51,...x x )方式的统计分析,就是因子分析。
因子分析与主成分分析不同:主成分分析是寻求若干个可观测随机变量的少量线性组合,说明其含义;因子分析主要的目的是找出不一定可观测的潜在变量作为公共因子,并解释公共因子的意义,及如何用不可观测随机变量,计算可观测随机变量。
因子分析方法在心理学,经济,医学,生物学,教育学等方面有重要用途。
例如为了测验应聘者的素质,出40道题,让应聘者回答,每道题有一得分, 40题得分被认为可以观测的随机变量。
我们希望找出有限个不可观测的潜在变量来解释这40个随机变量,这些不可观测的潜在变量不一定能表示为原来随机变量的线性组合,但却是有实际意义的,例如交际能力,应变能力,语言能力、推理能力、艺术修养、历史知识和生活常识等。
又如分析生物生长状况时,从生物的实测指标(长、宽和体重等)可以分析出生长因子和控制因子,找出它们在不同时刻的作用。
有关因子分析细节可参看方开泰(1989)、Richard(2003)和Gorsuch (1983)。
因子分析模型包括正交和斜交因子模型,本书只介绍正交因子分析模型,表述如下:定义6.1 设X 为p 维可观测随机向量,其均值向量为μ,协差阵为∑=)var(X ,若X 能表为u f X +Λ+=μ (6.2)其中Λ是k p ⨯待定常数阵,f 是k 维随机变量(通常k 小于p ),u 是p 维随机向量,且⎪⎩⎪⎨⎧==ψ====0),c o v (),...()v a r (,0)()v a r (,0)(221u f d i a g u u E I f f E p ψψ (6.3) 则满足条件(6.3)的(6.2)式称为X 有k 个因子的因子分析模型。
f 称为公共因子,u 称为特殊因子,Λ叫做因子负荷矩阵,其元素ij λ称为第i 个变量在第j 个因子上的负荷。
例6.1中)',,,,(54321X X X X X X =,)'750.67,364.72,909.72,523.72,409.62(=μ,)',(21f f f =,)',,,,(54321v v v v v u =,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=Λ6377.1091469.98264.11559.00269.51220.862258.513358.664838.764570.8由(6.2)式可见,因子负荷矩阵特别重要:第i 个变量的值ij kf X λ∑=1j j i 由再加上常数项i μ和特殊因子i u 而成。
ij λ的大小反映第j 个因子对第i 个变量的影响。
令∑==kj ij ih122λ,则它反映了所有公共因子对X 第i 个变量的影响大小。
定义6.2 2i h 称为共同度(communality)或共性方差(commonvariance)。
例6.1中共性方差是22252222224223222221)6377.10(91469.9)8264.1()1559.0(0269.51220.862258.513358.664838.764570.8-+=--+=+=+=+=h h h h h51,...v v 表示这门课程成绩的分散性(它由测试题目的区分度决定)和测量误差,因子分析中不讨论它们。
因子分析的重点在寻求因子负荷阵和解释公共因子,一般不对特殊因子研究。
通常,因子分析的计算由X 的协方差阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∑pp p p σσσσ... (1)111 的分解而完成: 由(6.2)和(6.3)可见∑=ψ+ΛΛ=')var(X (6.4)由已知∑解(6.4),可得ψΛ和。
其实只要解得Λ即可,因为∑对角线上元素22122i i kj i ijii h ψψλσ+=+=∑= i=1,…p于是由ψΛ可得。
但是,(6.4)的解是否存在?如果无解,能否作因子分析?当k=p 时,取0,2/1=ψ∑=Λ就是(6.4)的解,因而(6.4)总有解。
然而k=p 不符合因子分析的目的:用少量不可观测的随机变量表示维数很高的随机向量 。
不幸的是,当k<p 时,(6.4)不一定有解,这从下面例6.2可见。
例6.2 设3维随机向量的协方差阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=∑14.7.4.19.7.9.1且只取一个公共因子,即k=1,则由∑=ψ+ΛΛ'非对角线元素的相等,可得3等式9.02111=λλ,4.0,7.031213111==λλλλ。
由后2式得7.0/4.01121λλ=,代入9.02111=λλ,可得575.1211=λ。
从而021<ψ这与(6.3)矛盾。
好在实际问题中,只能得到样本协差阵和样本相关阵,总体协差阵或总体相关阵用它们估计。
而样本协差阵和样本相关阵的分量是随机变量,一般与总体协差阵或总体相关阵不等,从而(6.4)近似成立即可,关于这一问题的讨论见本章例6.4。
另一方面值得注意的是,若(6.4)有解,则因子负荷阵不是唯一的:若已解出公共因子f,因子负荷阵kp ⨯Λ,使得u f X +Λ+=μ设Γ是任一k 阶正交阵,则(6.4)也可写为u f X +ΓΛΓ+=))((Tμ (6.5)若将ΛΓ作为因子负荷阵,f TΓ作为公共因子,(6.5)也是X 有k 个因子的因子分析模型。
例如,对于例6.1,做4/π旋转,取⎥⎦⎤⎢⎣⎡-=Γ7071.07071.07071.07071.0则可得另一因子分析模型52154214321322121211)6377.1091469.9(7071.0)6377.1091469.9(7071.0750.67)8264.162258.5(7071.0)8264.162258.5(7071.0364.72)1559.013358.6(7071.0)1559.013358.6(7071.0909.72)0269.564838.7(7071.0)0269.564838.7(7071.0523.72)1220.864570.8(7071.0)1220.864570.8(7071.0409.62v f f x v f f x v f f x v f f x v f f x +-+++=+-+++=+-+++=+++-+=+++-+=要强调指出的是:因子负荷阵的不唯一性,使我们对f 有更多的选择余地,反而是有利的:当用某种方法找出的f 没有明确的意义时,我们可以选择Γ,使f TΓ的意义变得更明确。
这称为因子旋转,将在6.3节细述。
6.2 因子分析模型参数的估计由于(6.4)不一定有精确解,通常采用近似解法。
常用的有主成分法、极大似然法、主因子法和迭代主因子法,以下分别叙述其原理。
为了减少可观测变量的单位,对因子分析的影响,人们常常把随机变量标准化后再做因子分析,这时(6.4)中的∑化为相关阵,从而221i i h -=ψ。
和主成分分析情况一样,同样的数据,用协方差阵和用相关阵做因子分析,得到的结果不一样。
实际问题中,总是得到随机向量的n 个观测值)(i X ,当可观测变量有n 次观测)()1(,...n XX时,因子分析模型变为n i uf Xi i i ,...1)()()(=+Λ+=μ其中)()(,i i uf是公共因子和特殊因子的样品。
μ可用样本均值∑=-)(1i XnX 估计,(6.2)化为u f X X +Λ=-,因而总设X 是零均值化的;∑用样本方差阵)')((11)()(-----X X X Xn i i 或样本相关阵估计,再由主成分法、极大似然法、主因子法、迭代主因子法等方法估计因子负荷阵。
(1)主成分法的原理是:设*X 是X 的标准化,设∑=)(C o r r X 的特征值和相应单位特征向量分别是p p a a a ,...,;,...,2121λλλX 的全部主成分是*'11X a y =,*'22X a y =,…*'X a y p p =;设主成分分析认定只需选取k 个主成分。
因为0)(=i y E ,i i y Var λ=)(,i i i y f λ/=的方差是1,想到取公共因子为i i i y f λ/=,i=1,…k ; 令],...[1p a a A =*'*'...'...11X A X a a y y Y p p =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (6.6)因为A 的列向量是单位向量,彼此正交,A 是正交阵;所以AY X =*,将A 剖分,[]21,A A A =,其中[]k a a A ,...11=,则由(6.5)得 uf f B y y a a f f B y y a a f f diag A y y a a y y A AY X k p k p k k p k p k k kp k p k k +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==++++++......],...[......],...[...],...[...],...[...*111111*********λλ于是可取],...,[2111k diag A B λλλ==Λ为因子负荷阵,k f f ,...1为公共因子,∑+==pk j j j a y u 1为特殊因子。