第六章因子分析(2)
第六章 因子分析

因此:因子也是综合变量;因子具有更 明确的指标意义;具有不同意义的因子 便于揭示事物变化的内在结构;提取少 量重要因子可以达到降维和简化分析的 作用。
(二)因子分析的一般模型:
令因子为 F(factor),当我们研究 m 个因子对实 际问题的影响时可以建立因子模型,即
X i ai1F1 ai 2 F2 aim Fm + i 。 其中的 F 是对所有
(三)基本思想:
基于对因子的认识,因子分析的基本思想就是通过变 量(或样品)的相关系数矩阵(或相似系数矩阵)内 部结构的研究,找出能控制所有变量(或样品)的少 数几个随机变量去描述多个变量(或样品)之间的相 关(或)相似关系。在分解原始变量的基础上,从中 归纳出潜在的“类别”,相关性较强的变量归为一类, 不同类间变量的相关性则较低。从而实现因子分析的 两个目的:一简化分析,二将原变量分类,对公因子 的意义作出合理可信的解释。
而进行因子分析的起点就是因子模型,我们通 过估计因子模型中的参数即因子负荷和方差对 各因子的重要程度进行衡量,并利用因子负荷 矩阵所体现的各变量或样品之间的相关程度提 取出具有明确意义的公因子F,赋予其有实际 背景的解释进而给以命名,从而达到降维和分 类的目的。
三、因子分析的数学原理。
因R型因子分析应用广泛,故本章的解释均是 以R型因子分析为对象。 (一)正交因子模型: 因子分析的一般模型为:
X 1 a11F1 a12 F2 a1m Fm 1 X 2 a21F1 a22 F2 a2 m Fm 2 X p a p1F1 a p 2 F2 a pm Fm p
i
可将上式写成简单的矩阵形式
6-因子分析

上式是假定了因子模型中特殊因子是不重要的,因而 从∑的分解中忽略掉特殊因子的方差 如果考虑了特殊因子以后,协差阵为:
当∑未知,可用样本协差阵S去代替,要经过标准化 处理,则S与相关阵R相同,仍然可作上面类似的表示。 一般设 则因子载荷阵的估计 即 为样本相关阵尺的特征根, 设 m < p, 相应的标准正交化特征向量为;
所以
也是公共因子,
ቤተ መጻሕፍቲ ባይዱ
也是因子载荷阵。
因子载荷这个不唯一性,从表面上看是不利的,但后面将 会看到当因子载荷阵A的结构不够简化时,可对A实行变 换以达到简化目的,使新的因子更具有鲜明的实际意义。 从因子分析的数学模型上看,它与多变量回归分析也有类 似之处,但本质的区别是因子分析模型作为“自变量”的 F是不可观测的。 2 因子模型中公共因子、因子载荷和变量共同度的 统计意义 为了便于对因子分析计算结果做解释,将因子分析数 学模型中各个量的统计意义加以说明是十分必要的, 假定因子模型中,各个变量以及公共因子、特殊因子 都已经是标准化(均值为0,方差为1)的变量。 (1)因子载荷的统计意义 已知模型:
为了说明它的统计意义,将下式两边求方差,即
由于
已标准化了,所以有
此式说明变量 的方差由两部分组成:第一部分为共 度 它刻划全部公共因子对变量 的总方差所作的贡 献, 越接近1,说明该变量的几乎全部原始信息都被 所选取的公共因子说明了,如 则说明 的 97%的信息被m个公共因子说明了,也就是说由原始变量 空间转为因子空间转化的性质越好, 保留原来信息量
A经过Tk j ,旋转(变换)后,矩阵A=A T k j ,其元素为
其中旋转角度
仍按下面公式求得:
m个因子,每次取两个全部配对进行旋转,共需旋转
第六章 温度因子分析

不同生态系统生产力
化,形成与此相应的植物发育节律,称为物候。 • 植物发芽、生长、现蕾、开花、结实、落叶、 休
眠等生长发育阶段的开始和结束称为物候期。 • 植物物候具有稳定性,可以用来指导林业生产。
影响物候的因素
• 纬度、经度和海拔 • 霍普金斯通过研究发现: • 在北美洲温带,每向北移动纬度1度,或向
东移动经度5度,或海拔上升124m,植物 在春天和初夏 物候会延迟4天。这一规律称 为霍普金斯定律。 • 南京和北京,纬度相差6度,桃、李开花 间 差19天;但到4、5月间,两地物候相差9天。
二、关于温度的一些生态概念
• (一)三基点温度 • 最适温度:生物生长发育或生理活动得以
正常进行的温度范围。 • 最低温度和最高温度:植物生长发育和生
理活动的低温和高温限度。 • 合称为三基点温度。
• (二)积温: 积温既能说明某一地区的热 量条件,又能说明生物各生长发育阶段或 整个生长期所需要的热量条件。
• *昼夜变温与种子萌发
•
有一些植物的种子在变温下萌发良好。
低温有利于增加氧在细胞中的溶解度;提
高透性。
• 昼夜变温与生长发育 • 较低的夜温和适宜的昼温对植物生长、开花、结
实和物质的贮藏有利。 • 云南松林:1000m 3/ha。 • 波密云杉林:2000m 3/ha。 • (二)物候 • 季节明显地区,植物适应于气候条件的节律性 变
第六章 因子分析 (2)

第五章主成分分析clearset more offcd"C:\Users\zhou\OneDrive\Lectures_ebook\multivariate_statistics\labora tory\03principal"use data*定义变量的标签label var area "省份"label var x1 "GDP(亿元)"label var x2 "居民消费水平(元)"label var x3 "固定资产投资(亿元)"label var x4 "职工平均工资(元)"label var x5 "货物周转量(亿吨公里)"label var x6 "居民消费价格指数(上年100)"label var x7 "商品零售价格指数(上年100)"label var x8 "工业总产值(亿元)"describesumcorr//findit factortest//ssc install factortest//check the datafactortest x1-x8pca x1-x8, correlation /*主成分估计*/pca x1-x8, covariance component(3) /*主成分估计*///testestat kmo /*KMO检验,越高越好*/estat smc /*SMC检验,值越高越好*/screeplot /* 碎石图(特征值等于1处的水平线标示保留主成分的分界点)*/ loadingplot , yline(0) xline(0)/*载荷图 */loadingplot , combined factors(3) yline(0) xline(0)/*载荷图 */predict f1 f2 f3 /*预测变量得分*/scoreplot,mlabel(area) yline(0) xline(0) /*得分图*/scoreplot,xtitle("经济社会总量") ytitle("人民生活水平") mlabel(area) yline(0) xline(0) /*得分图*/scatter f2 f3,xtitle("人民生活水平") ytitle("物价水平") mlabel(area) yline(0) xline(0) /*得分图*/scoreplot, factors(3) mlabel(area) /*得分图*/scoreplot,combined factors(3) mlabel(area) yline(0) xline(0) /*得分图*///ranking by scoredescribe f1-f3sort f1 //sortinggen rank_nature=_n //rankingbrowse area f1 rank_nature // show datgsort -f1 //generalized sortinggen rank_nature1=_n //rankingbrowse area f1 rank_nature rank_nature1 // show datcor x1-x8matrix CM=r(C) //define covariance matrixpcamat CM, comp(3) n(1000) names(a1 a2 a3 a4 a5 a6 a7 a8)//rotate /*旋转*/。
第六章因子分析

第六章因子分析第六章因子分析§6.1因子分析的基本原理与模型一、因子分析的基本思想基本思想:根据相关性的大小将变量分组,使得同组内变量间的相关性较高,不同组间的相关性较低。
每组变量代表一个基本结构,并用一个不可观测的综合变量形式表示,这个基本结构成为公共因子。
此时的原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
目的:从一些有错综复杂的问题中找出几个主要因子,每个主要因子代表原始变量间相互依赖的一种作用。
二、因子分析的基本模型常用的因子分析模型:R型因子分析和Q 型因子分析(一)R型因子分析模型R型因子分析是对变量作因子分析。
R型因子分析中的公共因子是不可直接观测但又客观存在的共同影响因素,每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:其中:称为公共因子,称为的特殊因子矩阵表达式:且满足:(1)(2),即公共因子与特殊因子是不相关的(3),即各公共因子不相关且方差为1(4),即各个特殊因子不相关,方差不要求相等模型中称为因子载荷,是第个变量在第个因子上的负荷,如果把变量看成维空间中的一个点,则表示它在坐标轴上的投影,因此矩阵称为因子载荷矩阵。
(二)Q型因子分析Q型因子分析是对样品作因子分析。
模型同上注:主成分分析与因子分析的区别主成分分析的数学模型本质上是一种线性变换,是将原始坐标变换到变异程度大的方向上去,相当于从空间上转换观看数据的的角度,突出数据变异的方向,归纳重要信息。
因子分析与主成分分析一样都属降低变量维数的方法。
但因子分析的本质是从显在变量去“提炼”潜在因子的过程。
模型中应注意的问题:(1)变量的协方差阵的分解式为即(2)因子载荷不是唯一的。
三、因子载荷阵的统计意义(一)因子载荷的统计意义对于因子模型可知的协方差若对作标准化处理,的标准差为1,且的标准差为1则(相关系数)综上可知:对于标准化后的,是的相关系数,一方面表示的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量对公共因子的相对重要性。
《因子分析》PPT课件 (2)

24.12.2020
精选PPT
8
输出结果及其解释
这是用主成分分析法提取初始公因子的第1部分
结果,相关矩阵的特征值总和为4(指标数),前
2个特征值1.718252和1.093536都大于1,下面将
根据这2个较大的特征值提取2个相应的初始
公因子。
24.12.2020
精选PPT
9
含有2个公因子的初始公因子模型为:
24.12.2020
精选PPT
11
24.12.2020
精选PPT
12
经最大方差旋转法旋转后的因子模型为:
x1= 0.87226G1+0.30149G2
x2= 0.94758G1-0.08748G2 x3=-0.09851G1+0.94739G2
x4= 0.13687G1+0.35848G2 旋转后的第1和第2公因子能解释的方差 分别为1.687177和1.124611;4个标准化指标共 性之和以及它们各自的共性估计值与旋转前相 同。
精选PPT
28
(3)转轴法:正交转轴法(最大变异法,VARIMAX
ROTATION) Rotation Method:Varimax
转换矩阵
1 2
Orthogonal Transformation Matrix
1
2
0.74346
0.66878
-0.66878
0.74346
24.12.2020
精选PPT
置置所h有2i为的在h20i =与11;之间服
⑤SMC[S] 相关系数的平均。
置h2i为xi与其他指标之间全
24.12.2020
精选PPT
5
因子分析在教育质量评价中的实际案例分析(Ⅱ)

因子分析在教育质量评价中的实际案例分析教育质量评价是教育管理中非常重要的一个环节,它可以帮助学校和教育机构了解教学质量的现状,找出存在的问题,并制定改进措施。
因子分析是一种多变量统计方法,可以帮助我们理解变量之间的内在结构,并找出潜在的因子。
在教育质量评价中,因子分析可以帮助我们识别影响学校教学质量的关键因素,从而有针对性地改进教育质量。
下面,我们通过一个实际案例来探讨因子分析在教育质量评价中的应用。
案例背景某市教育局想要对该市中小学的教育质量进行评价,并且希望通过评价结果找出存在的问题,为学校的改进提供科学依据。
为了达到这一目的,教育局决定对学校的教学质量、教师水平、学生综合素质等方面进行评价,以期找出影响教学质量的关键因素,并制定相应的改进措施。
数据收集教育局首先收集了相关数据,包括学校的师生比、师资水平、学生素质等多个变量。
这些数据既包括客观指标,如教师的学历、学生的考试成绩,也包括主观指标,如教师对学校教学环境的满意度、学生对学校教学质量的评价等。
因子分析在收集完数据后,教育局委托统计专家对数据进行了因子分析。
通过因子分析,专家发现在所收集的变量中,存在一些内在的联系,例如教师的学历、教学经验和对教学环境的满意度之间存在一定的关联。
通过因子分析,专家将这些变量归纳整合,得到了几个潜在的因子,如“教师水平”、“学校教学环境”等。
结果解读通过因子分析后,教育局得到了一些关键的结论。
首先,教师的学历、教学经验和对教学环境的满意度等因素构成了“教师水平”这一因子,这表明学校可以通过提升教师的学历和经验,改善教学环境来提高教学质量。
其次,学生的综合素质、学校的学习氛围等因素构成了“学校教学环境”这一因子,这表明学校可以通过加强学生的综合素质培养,营造良好的学习氛围来提高教学质量。
改进建议基于因子分析的结果,教育局提出了一系列的改进建议。
针对“教师水平”这一因子,教育局建议学校加强教师的培训和发展,提升教师的专业水平和教学能力;针对“学校教学环境”这一因子,教育局建议学校重视学生的综合素质培养,加强学校管理,营造良好的学习氛围。
第六章 因子分析

9
寻找基本结构
在多元统计中,经常遇到诸多变量之间存在强相关的问题,它 会对分析带来许多困难。通过因子分析,可以找出几个较少的有实
际意义的因子,反映出原来数据的基本结构。
例如:调查汽车配件的价格中,通过因子分析从 20 个指标中概 括出原材料供应商、配件厂商、新进入者、后市场零部件厂商、整 车厂和消费者6个基本指标。从而找出对企业配件价格起决定性作用 的几个指标。
本包含了原来变量的所有信息。
12
主成分分析的数学模型
13
主成分分析与因子分析公式上的区别
y1 a11 x1 a12 x2 a1 p x p
主成分分析
y2 a21 x1 a22 x2 a2 p x p y p a p1 x1 a p 2 x2 a pp x p
由于umn为随机向量X的相关矩阵的特征值对 应的特征向量的分量,特征向量之间彼此正交, 实际上从X到F的转换关系是可逆的,即:
x1 11 F1 21 F2 p1 Fp x2 12 F1 22 F2 p 2 Fp x F F F 1p 1 2p 2 pp p p
1、因子分析的核心:用较少的、相互独立的因 子反映原有变量的绝大部分信息。 因子分析的数学模型:设有p个变量,每个变量 的均值为0,标准差为1。将每个原有变量用k个 (k<p)因子f1,f2,…,fk 的线性组合表示,即
x1 a11 f1 a12 f 2 a1k f k 1 x2 a21 f1 a22 f 2 a2 k f k 2 x p a p1 f1 a p 2 f 2 a pk f k p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章因子分析(2)
第五章主成分分析
clear
set more off
cd
"C:\Users\zhou\OneDrive\Lectures_ebook\multivariate_stati stics\labora tory\03principal"
use data
*定义变量的标签
label var area "省份"
label var x1 "GDP(亿元)"
label var x2 "居民消费水平(元)"
label var x3 "固定资产投资(亿元)"
label var x4 "职工平均工资(元)"
label var x5 "货物周转量(亿吨公里)"
label var x6 "居民消费价格指数(上年100)"
label var x7 "商品零售价格指数(上年100)"
label var x8 "工业总产值(亿元)"
describe
sum
corr
//findit factortest
//ssc install factortest
//check the data
factortest x1-x8
pca x1-x8, correlation /*主成分估计*/
pca x1-x8, covariance component(3) /*主成分估计*/
//test
estat kmo /*KMO检验,越高越好*/
estat smc /*SMC检验,值越高越好*/
screeplot /* 碎石图(特征值等于1处的水平线标示保留主成分的分界点)*/ loadingplot , yline(0) xline(0)/*载荷图 */
loadingplot , combined factors(3) yline(0) xline(0)/*载荷图 */ predict f1 f2 f3 /*预测变量得分*/
scoreplot,mlabel(area) yline(0) xline(0) /*得分图*/
scoreplot,xtitle("经济社会总量") ytitle("人民生活水平") mlabel(area) yline(0) xline(0) /*得分图*/
scatter f2 f3,xtitle("人民生活水平") ytitle("物价水平") mlabel(area) yline(0) xline(0) /*得分图*/
scoreplot, factors(3) mlabel(area) /*得分图*/
scoreplot,combined factors(3) mlabel(area) yline(0) xline(0) /*得分图*/
//ranking by score
describe f1-f3
sort f1 //sorting
gen rank_nature=_n //ranking
browse area f1 rank_nature // show dat
gsort -f1 //generalized sorting
gen rank_nature1=_n //ranking
browse area f1 rank_nature rank_nature1 // show dat
cor x1-x8
matrix CM=r(C) //define covariance matrix
pcamat CM, comp(3) n(1000) names(a1 a2 a3 a4 a5 a6 a7 a8) //rotate /*旋转*/。