2013-2014学年高一下学期数学活动单学案:(29)点到直线的距离 2
点到直线的距离公式教案

点到直线的距离公式教案一、教学目标:1.知识目标:了解点到直线的距离的概念和计算公式。
2.能力目标:学会运用点到直线的距离公式解决实际问题。
3.情感目标:培养学生的数学思维能力和解决问题的能力,增强对数学的兴趣和自信心。
二、教学重难点:1.重点:理解点到直线的距离的概念和计算公式。
2.难点:如何将点到直线的距离公式运用到实际问题中。
三、教学过程:1.导入新知识:教师通过实例引导学生回顾如何计算点到直线的距离。
即,点离直线的距离等于点到直线上任意一点所在的垂直平面的距离。
2.点到直线的距离公式的推导:教师通过几何证明或向量证明的方式,推导出点到直线的距离公式。
3.生命周期函数的说明:教师解释什么是函数,如何用函数表示点到直线的距离。
4.点到直线距离公式的使用:教师给出一些实际题材的例子,如房屋平面图中特定点离直线的距离、飞机在空中的高度等,要求学生运用点到直线的距离公式解决问题。
5.练习与讨论:教师布置一些相关的练习题,让学生独自或小组合作解答,并讨论解题思路和方法。
6.示范与操练:教师随机抽一道题目,为学生演示解题过程,并请学生依次完成该题目的解答。
7.温故知新:教师总结重要知识点和思路,帮助学生复习和巩固所学的知识。
8.拓展应用:教师设计一些能够拓展学生思维的应用题,要求学生分析问题并运用点到直线的距离公式解决。
9.讲评与总结:教师和学生共同讨论和总结此次学习的内容,强化学生对点到直线的距离公式的理解和应用。
四、教学评价:1.学生的课堂表现,包括参与讨论、解答问题的积极性和准确性。
2.学生完成的练习题和应用题答案的准确性和深入性。
3.学生在讲评环节的思维能力和解决问题的方法。
五、教学反思:本节课通过引入实例、推导公式、训练练习和应用题拓展等方式,帮助学生掌握了点到直线的距离的计算公式。
同时,通过讨论和解析问题,提高学生的数学思维能力。
但是,需要对练习和应用题的设计进行修改,增加一些开放性和质量较高的题目,以提高学生的解决问题的能力。
点到直线的距离 教案

点到直线的距离教案教案标题:点到直线的距离教学目标:1. 理解点到直线的距离的概念。
2. 掌握计算点到直线的距离的方法。
3. 能够应用点到直线的距离解决实际问题。
教学准备:1. 教师准备:白板、黑板笔、投影仪、教学课件、练习题、实际问题案例。
2. 学生准备:纸和铅笔。
教学过程:引入:1. 引导学生回顾点和直线的概念,并提问:你们知道如何计算一个点到一条直线的距离吗?2. 引导学生思考:当我们知道直线的方程和一个点的坐标时,如何计算点到直线的距离?探究:1. 展示一条直线和一个点的坐标,通过讨论的方式引导学生发现计算点到直线距离的方法。
2. 教师通过投影仪展示计算点到直线距离的公式,并解释公式的含义。
3. 以几个具体的例子,引导学生使用公式计算点到直线的距离。
实践:1. 学生独立完成练习题,巩固计算点到直线距离的方法。
2. 学生分组,解决实际问题案例,应用点到直线距离解决实际问题。
3. 学生展示自己的解决思路和答案,并互相评价。
总结:1. 教师总结点到直线距离的计算方法,并强调掌握这一方法的重要性。
2. 教师提醒学生在实际问题中运用点到直线距离的方法时要注意问题的特点和条件。
3. 教师鼓励学生继续巩固和应用所学的知识。
拓展:1. 提供更多的练习题,让学生进一步巩固和应用点到直线距离的方法。
2. 引导学生思考:如何计算点到平面的距离?并与点到直线的距离进行比较。
评估:1. 教师观察学生在课堂上的表现和回答问题的能力。
2. 教师收集学生独立完成的练习题和实际问题案例的答案,进行评估和反馈。
教学延伸:1. 学生在课后自主学习相关的数学知识,拓宽对点到直线距离的应用场景的理解。
2. 学生探究其他几何图形的距离计算方法,如点到曲线的距离等。
注意事项:1. 教师应根据学生的实际情况和学习进度,适当调整教学内容和难度。
2. 在教学过程中要鼓励学生积极参与讨论和思考,培养他们的数学思维能力和解决问题的能力。
数学教案:点到直线的距离

示范教案错误!教学分析点到直线的距离的公式的推导方法很多,可探究的题材非常丰富.除了本节课探究方法外,还有应用三角函数、应用向量等方法.因此“课程标准"对本节教学内容的要求是:“探索并掌握点到直线的距离公式,会求两条平行线间的距离”.希望通过本节课的教学,能让学生在公式的探索过程中深刻地领悟到蕴涵其中的重要的数学思想和方法,学会利用数形结合思想、化归思想和分类方法,由浅入深、由特殊到一般地研究数学问题,培养学生的发散思维.三维目标1.让学生掌握点到直线的距离公式,并会求两条平行线间的距离,培养转化的数学思想.2.引导学生构思距离公式的推导方案,培养学生观察、分析、转化、探索问题的能力,鼓励创新.重点难点教学重点:点到直线距离公式的推导和应用.教学难点:对距离公式推导方法的感悟与数学模型的建立.课时安排1课时错误!导入新课设计1。
点P(0,5)到x轴的距离是多少?更进一步,在平面直角坐标系中,如果已知某点P的坐标为(x0,y0),直线l的方程是Ax+By+C=0,怎样由点的坐标和直线的方程直接求点P到直线l 的距离呢?教师引出课题.设计2.我们知道点与直线的位置关系有两种:点在直线上和点不在直线上,当点不在直线上时,怎样求出该点到直线的距离呢?教师引出课题.推进新课错误!错误!(1)设坐标平面上(如下图),有点P(x1,y1)和直线l:Ax+By+C =0(A2+B2≠0).作直线m通过点P(x1,y1),并且与直线l垂直,设垂足为P0(x0,y0).求证:①B(x0-x1)-A(y0-y1)=0;②C=-Ax0-By0。
(2)试求出(x1-x0)2+(y-y0)2.(3)写出点P到直线l的距离d的计算公式.(4)写出求点P(x1,y1)到直线Ax+By+C=0的距离的计算步骤.讨论结果:(1)证明:①设直线m的方程为Bx-Ay+D=0,∵P(x1,y1)在m上,∴Bx1-Ay1+D=0,∴D=Ay1-Bx1,∴直线m的方程为Bx-Ay+(Ay1-Bx1)=0,即B(x-x1)-A(y-y1)=0。
点到直线的距离教案

点到直线的距离教案一、教学目标:1. 知识与技能:(1)理解点到直线的距离的定义;(2)学会使用点到直线的距离公式;(3)能够运用点到直线的距离解决实际问题。
2. 过程与方法:(1)通过实例直观感受点到直线的距离;(2)引导学生发现点到直线的距离与垂线段的关系;(3)引导学生运用点到直线的距离解决几何问题。
3. 情感态度与价值观:(1)培养学生的空间想象力;(2)培养学生解决问题的能力;(3)激发学生对数学的兴趣。
二、教学重点与难点:1. 教学重点:(1)点到直线的距离的定义;(2)点到直线的距离公式的运用。
2. 教学难点:(1)点到直线的距离的直观理解;(2)在实际问题中运用点到直线的距离公式。
三、教学准备:1. 教师准备:(1)点到直线的距离的相关知识;(2)教学课件或黑板;(3)实例和练习题。
2. 学生准备:(1)掌握直线、点和垂线的基本概念;(2)了解垂线段的概念。
四、教学过程:1. 导入:(1)利用实例引入点到直线的距离的概念;(2)引导学生观察和思考点到直线的距离与垂线段的关系。
2. 新课讲解:(1)介绍点到直线的距离的定义;(2)讲解点到直线的距离公式;(3)通过图示和实例解释点到直线的距离的求法。
3. 课堂练习:(1)出示练习题,让学生独立完成;(2)讲解答案,分析解题思路。
4. 拓展与应用:(1)引导学生运用点到直线的距离解决实际问题;(2)出示几何问题,让学生运用点到直线的距离公式解决。
五、课后作业:1. 巩固知识点:(1)复习点到直线的距离的定义和公式;(2)回顾课堂练习的解题思路。
2. 提高练习:(1)解决一些有关点到直线的距离的应用问题;(2)进行一些有关点到直线的距离的证明题。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及与合作学习中的表现,评价学生的学习态度和合作精神。
2. 练习完成情况评价:检查学生课后作业的完成质量,评价学生对点到直线的距离知识的理解和运用能力。
高中数学3.3 点到直线的距离 教案2人教版必修2

《点到直线的距离》教学设计一.内容和内容解析“点到直线的距离”是新课标《数学必修2》第三章第3节“直线的交点与距离公式”中的重要知识点。
教材按照“提出问题(如何求点到直线的距离)、解决问题(推导公式)、应用公式”的线索展开研究,既是直线方程应用的延续,又是坐标法这一核心知识的发展,同时还是充分展现用代数方法研究几何问题优越性的载体。
作为直线方程的一个应用,公式的推导过程蕴涵了丰富的数学思想方法,转化思想,数形结合,分类讨论,属于具有较高思维价值和探究价值的教学内容。
同时,该公式还将在学生今后的代数、立体几何及圆锥曲线学习过程中,作为解析几何的一个重要工具广泛用之于问题的求解过程当中,因此,该内容又具有很大的应用价值。
不仅如此,该内容还是刚刚学过的两直线交点及两点间距离公式的用武之地。
就内容本身来说,作为公式的学习与应用又是引领学生运用平面几何知识、强化直线方程的建立过程的好素材。
因此,这是一节具有承上启下、继往开来作用的一个重要基础内容,是今后进一步学习研究解析几何的重要工具。
二.重、难点及教学目标解析本节课是在学生已经积累了两点间的距离公式、直线的倾斜角、斜率、直线方程的各种形式,两直线间位置关系判断的依据等知识,并且经历了建立这些公式、解决这些问题的过程,积累了一定的用坐标法思想解决问题的经验与各种具体方法的前提下来探究点到直线的距离公式的。
学生要经历从平面几何的定性作图过渡到高中解析几何的定量计算这样一个认识过程,其学习平台是学生已经掌握了直线的倾角、斜率、直线的位置关系、直线方程、两直线的交点等相关知识。
因此,这节课既是问题教学,又是公式教学。
要着力解决的问题是如何在已知点的坐标及直线方程的情况下求的点到直线的距离。
为此:教学重点:公式的推导和应用。
教学难点:公式的推导。
教学关键:怎样发现并理出推导公式的思路。
根据本节课在教材中所处的地位和作用,结合本节知识容量,将这节课的教学目标确定为:知识培养目标:在经历发现推导公式的基础上,理解推导方法,掌握公式特点,学会公式的运用,领会蕴涵在公式推导及范例解决过程中的数学思想与方法。
《点到直线的距离》(教案)

《点到直线的距离》(教案)教学目标:1、学习直线和点的基本概念,并能对其进行简单的区分和操作。
2、学习什么是点到直线的距离,掌握用不同方法求点到直线的距离。
3、能够在实际问题中运用所学知识,解决相关问题。
教学重点:1、点和直线的概念,及其区分;2、点到直线的距离的定义,及其求法。
教学难点:1、点到直线的距离的求法;2、两种方法的运用能力的提高。
教学方法:情景教学法。
教学资源:黑板、白板、笔、纸教学过程:一、导入新课1、分发习题册,并让学生先自学第十一章的内容。
2、提问:“在课堂上,你们了解过直线和点吗?”由此扩展对点和直线的概念和区分。
二、学习点到直线的距离1、引导学生思考,如何求点到直线的距离?2、讲解点到直线的距离的定义,即“点到直线距离是从该点引一条垂线到直线上,垂线的长度就是点到直线的距离”。
3、讲解两种方法如何求出点到直线的距离,并带着学生通过案例进行实际运用,进行验证。
4、补充例题,让学生通过自己的计算和思考来解题,并让学生相互交流。
5、公开课进行示范教学。
三、练习1、就教室内的物体进行距离计算,如教室门口离桌子的距离。
2、让学生阅读小问题,通过图像求解答案。
四、课外拓展1、出示各种图形,让学生独立计算各种情况下的到直线的距离。
2、让学生去实验室或其他地方,进行实地考察、测量点到直线的距离。
五、总结1、总结点到直线的距离的求法,并列举案例。
2、解释什么是求点到直线的距离,如何通过数学方法进行计算。
六、作业布置1、课堂上布置练习题,分组进行解决。
2、预习下一课的内容。
七、教学评价1、教师定期对学生进行小测验,以检查学生对本课题的掌握程度。
2、教师跟踪观察在课外拓展的实验中,学生是否有很好的理解和应用课堂所学知识。
3、收集学生的答题作业,从中发现问题并进行针对性教学。
八、教学反思1、教师观察到很多学生在学习过程中对于点和直线的区分还不是很明确,需要更好的引导和讲解。
2、在课堂规划中,需要考虑更具体和实用的案例,以便让学生真正地理解并运用所学知识。
点到直线的距离的教案

点到直线的距离的教案教案标题:点到直线的距离的教案教案目标:1. 理解点到直线的距离的概念和计算方法。
2. 掌握使用坐标系计算点到直线的距离的技巧。
3. 能够应用点到直线的距离的概念解决实际问题。
教学资源:1. 白板、黑板或投影仪。
2. 教学PPT或教学素材。
3. 学生练习册或作业本。
教学步骤:引入活动:1. 使用一张图片或实际物体,让学生观察并描述点到直线的距离。
2. 引导学生思考点到直线的距离的概念,并与学生进行讨论。
知识讲解:1. 介绍点到直线的距离的定义,并与学生一起探讨如何计算点到直线的距离。
2. 解释使用坐标系计算点到直线的距离的方法,并通过示例演示计算过程。
示范练习:1. 在白板上绘制一个坐标系,并给出一条直线的方程。
2. 随机选择一个点,让学生使用计算公式计算该点到直线的距离。
3. 逐步引导学生完成计算过程,并解答学生可能遇到的问题。
合作探究:1. 将学生分成小组,每组选择一个直线方程和一个点的坐标。
2. 学生通过合作讨论和计算,互相检查答案并解释计算过程。
3. 每个小组选择一组问题,向全班展示他们的计算结果和解题思路。
拓展应用:1. 给学生一些实际问题,让他们运用点到直线的距离的概念解决问题,如建筑设计、地理测量等。
2. 引导学生思考如何应用点到直线的距离的概念解决更复杂的问题,并鼓励他们尝试解决。
总结回顾:1. 对本节课所学内容进行总结,并强调点到直线的距离的重要性和应用。
2. 回答学生提出的问题,并解释可能存在的困惑或误解。
3. 鼓励学生在课后继续练习和应用点到直线的距离的知识。
评估与反馈:1. 布置一些练习题或作业,以检验学生对点到直线的距离的理解和应用能力。
2. 对学生的作业进行评估,并提供及时的反馈和指导。
教学延伸:1. 鼓励学生进一步研究点到直线的距离的相关知识,并进行更深入的探究。
2. 提供一些拓展资源,如相关的视频、教学网站等,供学生自主学习和探索。
教学注意事项:1. 确保学生理解点到直线的距离的概念和计算方法。
《点到直线的距离》教学设计(通用3篇)

《点到直线的距离》教学设计(通用3篇)《点到直线的距离》篇1一、教材分析:1、地位与作用:解析几何第一章主要研究的是点线、线线的位置关系和度量关系,其中以点点距离、点线距离、线线位置关系为重点,点到直线的距离是其中最重要的环节之一,它是解决其它解析几何问题的基础。
本节是在研究了两条直线的位置关系的判定方法的基础上,研究两条平行线间距离的一个重要公式。
推导此公式不仅完善了两条直线的位置关系这一知识体系,而且也为将来用代数方法研究曲线的几何性质奠定了基础。
而更为重要的是:通过认真设计这一节教学,能使学生在探索过程中深刻地领悟到蕴涵于公式推导中的重要的数学思想和方法,学会利用化归思想和分类方法,由浅入深,由特殊到一般地研究数学问题,同时培养学生浓厚的数学兴趣和良好的学习品质。
2、重点、难点及关键:重点是“公式的推导和应用”,难点是“公式的推导”,关键是“怎样自然地想到利用坐标系中的x轴或y轴构造rt△,从而推出公式”。
对于这个问题,教材中的处理方法是:没有说明原因直接作辅助线(呈现教材)。
这样做,无法展现为什么会想到要构造rt△这一最需要学生探索的过程,不利于学生完整地理解公式的推导和掌握与之相应的丰富的数学思想方法。
如果照本宣科,则不能摆脱在客观上对学生进行灌注式教学。
事实上,为了真正实现以学生为主体的教学,让学生真正地参与进来,起关键作用的是设计出有利于学生参与教学的内容组织形式。
因此,我没有像教材中那样直接作辅助线,而是对教学内容进行剪裁、重组和铺垫,构建出在探索结论过程中侧重于学生能力培养的一系列教学环节,采用将一般转化到特殊的方法,引导学生通过对特殊的直观图形的观察、研究,自己发现隐藏其中的rt△,从而解出|pq|。
在此基础上进一步将特殊问题还原到一般,学生便十分自然地想在坐标系中探寻含pq的rt△,找不到,自然想到构造,此时再过p点作x轴或y轴的平行线就显得“瓜熟蒂落,水到渠成”了。
本设计力求以启迪思维为核心,设计出能启发学生思维的“最近发展区”,从而突破难点的关键,推导出公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重 点: 点到直
线的距离公式及应用.
难 点: 点到直线的距离公式的推导
过 程:
活动一:
1.平面上两点P 1(x 1 , y 1) , P 2(x 2 , y 2)之间的距离公式为P 1P 2=_____________________ .
2.①P 1(x 1 , y 2) , P 2(x 2 , y 2),线段P 1P 2的中点是M(x 0 , y 0), 则x 0=_______ , y 0=_________. ②△ABC 中, A(x 1 , y 1) , B(x 2 , y 2) , C(x 3 , y 3), 若△ABC 重心是G(x 0 , y 0) ,
则x 0=__________ , y 0=___________
3. 已知点M(-1,2), 点N(8,10), 光线通过M 点被直线l :x -y -1=0反射后过点N,光线从点M 到点N 的路程为 .
4. 如图,点D(1,4)到直线l :3x -4y+1=0的距离
为 .
活动二: 已知l : Ax+By+C=0 (A 、B 不同时为0), P(x 0 ,
y 0), 则P 到l 的距离为d= .
说明:
(1)公式成立的前提需把直线l 方程写成 式;
(2)公式推导过程中利用了等价转换, 数形结合的思想方法, 且推导方法不惟一;
(3)当点P(x 0 , y 0)在直线l 上时, 公式仍然成立;
(4)P(x 0 , y 0)到直线x=a 的距离为________ ; P(x 0 , y 0)到直线y=b 的距离为_________ .
三.数学应用
例1.求点P(-1 , 2)到下列直线的距离:
(1) 2x+y -10=0 ___________ (2) y=2x ___________
(3) 3x=2 ___________ (4) y=3 ___________
变式:已知2x+y -10=0
_____________ . 例2.已知直线l 经过点P(5 , 10) , 且原点到它的距离为
5 , 求直线l 的方程.
l :3x -4y+1=0
例3.建立适当的直角坐标系, 证明: 等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.
四.归纳小结
1.点到直线的距离公式及其特殊情况?
2.已知直线上一点,怎样求直线的方程?需要注意什么?
3.怎样用代数方法处理平面几何问题?。