函数综合复习

合集下载

高三数学函数、三角函数、不等式综合复习

高三数学函数、三角函数、不等式综合复习

函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。

会证明函数的奇偶性,周期性和单调性。

会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。

教学重点:综合应用函数知识和分析问题及解决问题的能力。

教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。

解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。

2.已知函数的反函数为,。

(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。

解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。

3.已知函数是奇函数,当时有最小值2,且。

(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。

若存在,求出这两点的坐标,若不存在说明理由。

解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。

∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x0,y0)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。

4.设函数的定义域为R,对任意实数x1,x2恒有,且,。

(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。

解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。

由,∴,即(3)设,则∵且在上∴,,即时恒有。

设0≤x1<x2≤π,则,∴,∴∴故在上是单减函数。

5.已知函数,x∈R。

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷高一上学期数学北师大版(2019)必修第一册

第二章 函数 期末综合复习测评卷一、单选题 1.函数()g x =) A .(2,0)(0,1)- B .[2,0)(0,1]- C .(1,0)(0,1]-⋃ D .[1,0)(0,2]-⋃2.已知(),()f x g x 都是定义在R 上的函数,下列两个命题: ①若()f x 、()g x 都不是单调函数,则(())f g x 不是增函数. ①若()f x 、()g x 都是非奇非偶函数,则(())f g x 不是偶函数. 则( ) A .①①都正确B .①正确①错误C .①错误①正确D .①①都错误3.设()f x 为定义在R 上的奇函数,且满足()(4)f x f x =+,(1)1f =,则(1)(8)f f -+=( ) A .2-B .1-C .0D .14.设函数17,0()20xx f x x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨≥,若()1f a <,则实数a 的取值范围是( )A .(,3)-∞-B .(1,)+∞C .(3,1)-D .(,3)(1,)-∞-⋃+∞5.函数()f x 在(),-∞+∞单调递减,且为奇函数,若()21f =-,则满足()111f x -≤-≤的x 的取值范围为( )A .[]22-,B .[]1,3-C .[]1,3D .[]1,1-6.函数y =331x x -的图象大致是( )A .B .C .D .7.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大整数,如[]1,81=,[]1,82-=-.下面说法错误的是( )A .当[)0,1x ∈时,()f x x =;B .函数()y f x =的值域是[)0,1;C .函数()y f x =与函数14y x =的图象有4个交点;D .方程()40f x x -=根的个数为7个.8.黎曼函数()R x 是由德国数学家黎曼发现并提出的,在高等数学中有着广泛的应用,()R x 在[]0,1上的定义为:当qx p =(p q >,且p ,q 为互质的正整数)时,()1R x p=;当0x =或1x =或x 为()0,1内的无理数时,()0R x =.已知a ,b ,[]0,1a b +∈,则( )注:p ,q 为互质的正整数()p q >,即qp为已约分的最简真分数. A .()R x 的值域为10,2⎡⎤⎢⎥⎣⎦B .()()()R a b R a R b ⋅≥⋅C .()()()R a b R a R b +≥+D .以上选项都不对二、多选题9.函数()y f x =的图象如图所示,则( )A .函数()f x 的定义域为[-4,4)B .函数()f x 的值域为[)0,+∞C .此函数在定义域内是增函数D .对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应10.某条公共汽车线路收支差额y 与乘客量x 的函数关系如图8-3-1所示(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(1)不改变车票价格,减少支出费用;建议(2)不改变支出费用,提高车票价格.下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )A .①反映建议(1)B .①反映建议(1)C .①反映建议(2)D .①反映建议(2)11.有下列几个命题,其中正确的是( ) A .函数y =2x 2+x +1在(0,+∞)上是增函数 B .函数y =11x +在(-∞,-1)①(-1,+∞)上是减函数C .函数y [-2,+∞)D .已知函数g (x )=23,0(),0x x f x x ->⎧⎨<⎩是奇函数,则f (x )=2x +312.对于定义在 R 上的函数()f x ,下列判断错误的有( ). A .若()()22f f ->,则函数()f x 是 R 的单调增函数 B .若()()22f f -≠,则函数()f x 不是偶函数 C .若()00f =,则函数()f x 是奇函数D .函数()f x 在区间 (−∞,0]上是单调增函数,在区间 (0,+∞)上也是单调增函数,则()f x 是 R 上的单调增函数三、填空题 13.若函数()2743kx f x kx kx +=++的定义域为R ,则实数k 的取值范围是__________ .14.已知函数()()3,01,0x x f x f x x ≤⎧=⎨->⎩,则56f ⎛⎫= ⎪⎝⎭_______ 15.已知函数()f x x=()2g x x ,则()()f x g x +=_________. 16.已知偶函数()y f x =定义在(1,1)-上,且在(1,0]-上是单调增加的.若不等式(1)(31)f a f a -<-成立,则实数a 的取值范围是___________.四、解答题17.已知幂函数22()(22)m f x m m x +=+-,且在(0,)+∞上是减函数. (1)求()f x 的解析式;(2)若(3)(1)m m a a ->-,求a 的取值范围.18.已知函数11()1(0)2f x x x =-+>.(1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.19.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,()22f x x x =+.(1)求出函数()f x 在R 上的解析式,并补出函数()f x 在y 轴右侧的图像; (2)①根据图像写出函数()f x 的单调递减区间;①若[]1,x m ∈-时函数()f x 的值域是[]1,1-,求m 的取值范围.20.已知函数f (x )=221x x +.(1)求f (2)+f 12⎛⎫ ⎪⎝⎭,f (3)+f 13⎛⎫⎪⎝⎭的值;(2)由(1)中求得的结果,你发现f (x )与f 1x ⎛⎫⎪⎝⎭有什么关系?并证明你的发现.(3)求2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭的值.21.已知函数2(1)(f x ax bx a b =++,均为实数),x ∈R , (),0()(),0f x x F x f x x >⎧=⎨-<⎩.(1)若(1)0f -=,且函数()f x 的值域为[0)+∞,,求()F x 的解析式; (2)在(1)的条件下,当2][2x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围; (3)设000mn m n a <+>>,,,且()f x 为偶函数,判断()()F m F n +是否大于零,并说明理由.22.已知函数()y x ϕ=的图象关于点(),P a b 成中心对称图形的充要条件是()()2a x a x b ϕϕ++-=.给定函数()61f x x x =-+. (1)求函数()f x 图象的对称中心;(2)判断()f x 在区间()0,∞+上的单调性(只写出结论即可);(3)已知函数()g x 的图象关于点()1,1对称,且当[]0,1x ∈时,()2g x x mx m =-+.若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围.参考答案1.B 【分析】首先根据题中所给的函数解析式,结合偶次根式和分式的要求列出不等式组求得结果.【解析】由题意得2200x x x ⎧--+≥⎨≠⎩,即2200x x x ⎧+-≤⎨≠⎩,解得21x -≤≤且0x ≠,所以函数()g x =[2,0)(0,1]-, 故选:B. 2.D【解析】解::当1,0()()0,0x f x g x x x ⎧≠⎪==⎨⎪=⎩,则(())f g x x =,故①不正确;当2()(1)f x x =+,()1g x x =-,则2(())f g x x =,故①不正确. ①①①都错误. 故选:D . 3.B 【解析】解:()f x 是定义在R 上的奇函数,(0)0f =,满足()(4)f x f x =+,(8)(4)(0)0f f f ∴===,又(1)(1)1f f -=-=-,(1)(8)1f f ∴-+=-.故选:B. 【点睛】本题考查了利用奇偶性和周期性求函数值,属于基础题. 4.C 【分析】0a <时,()1f a <即1()712a-<,0a1<,分别求解即可.【解析】0a <时,()1f a <即1()712a-<,解得3a >-,所以30a -<<;0a1,解得01a <综上可得:31a -<< 故选:C . 【点睛】本题考查分段函数解不等式问题,考查了分类讨论思想的应用,属基本题,难度不大. 5.B【分析】根据函数的奇偶性以及函数的单调性求出x 的范围即可. 【解析】解:因为()f x 为奇函数, 所以()()221f f -=-=,于是()111f x -≤-≤等价于()()()212f f x f ≤-≤-, 又()f x 在(,)-∞+∞单调递减,212x ∴-≤-≤,13x ∴-≤≤.故选:B . 【点睛】本题考查了函数的单调性和奇偶性问题,考查转化思想,属于中档题. 6.C【解析】由函数解析式可得,该函数定义域为(-∞,0)①(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x→+∞时,3x-1远远大于x 3的值且都为正,故331xx -→0且大于0,故排除D ,选C. 7.C 【分析】作出函数()[]f x x x =-的图像,结合图像可判断A ,B 均正确,再作出14y x =,14y x =的图像,结合方程的根与函数零点的关系,可判断C ,D 是否正确.【解析】解:作出函数()[]f x x x =-的图像如图所示,显然A ,B 均正确; 在同一坐标系内作函数14y x =的图像(坐标系内第一象限的射线部分), 作出14y x =的图像(图像中的折线部分),可以得到C 错误,D 正确. 故选:C.【点睛】本题考查了函数图像的应用,考查了函数值域的求解,考查了函数的零点与方程的根.本题的关键是由题目条件,作出()[]f x x x =-的图像.本题的难点是作图时,临界点空心圆、实心圆的标定. 8.B 【分析】设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数) ,B ={x |x =0或x =1或x 是[0,1]上的无理数},然后对A 选项,根据黎曼函数()R x 在[]0,1上的定义分析即可求解;对B 、C选项:分①a A ∈,b A ∈;①a B ∈,b B ∈;①a A b B ∈⎧⎨∈⎩或a Bb A ∈⎧⎨∈⎩分析讨论即可.【解析】解:设q A x x p ⎧⎫==⎨⎬⎩⎭,(p q >,且p ,q 为互质的正整数),B ={x |x =0或x =1或x 是[0,1]上的无理数},对A 选项:由题意,()R x 的值域为1110,,,,,23p ⎧⎫⎨⎬⎩⎭,其中p 是大于等于2的正整数, 故选项A 错误; 对B 、C 选项:①当a A ∈,b A ∈,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅; ①当a B ∈,b B ∈,则()()()R a b R a R b +=+,()()()R a b R a R b ⋅≥⋅=0;①当a A b B ∈⎧⎨∈⎩或a B b A ∈⎧⎨∈⎩,则()()()R a b R a R b +≤+,()()()R a b R a R b ⋅≥⋅,所以选项B 正确,选项C 、D 错误, 故选:B. 【点睛】关键点点睛:本题解题的关键是牢牢抓住黎曼函数()R x 在[]0,1上的定义去分析. 9.BD 【分析】结合函数图象一一分析即可;【解析】解:由题图可知,函数()f x 的定义域为[][)4,01,4-⋃,故A 错误; 函数()f x 的值域为[)0,+∞,故B 正确; 函数()f x 在定义域内不单调,故C 错误;对于任意的()5,∈+∞y ,都有唯一的自变量x 与之对应,故D 正确. 故选:BD .【分析】由于图象表示收支差额y 与乘客量x 的函数关系,因此需要正确理解图中直线的倾斜角及纵截距的含义.同时对于建议(1)(2)前后图象的变化,也可以理解为对原图象做平移或旋转得到新的图象【解析】对于建议(1)因为不改变车票价格,故建议后的图象(虚线)与目前的图象(实线)倾斜方向相同(即平行),由于减少支出费用,收支差变大,则纵截距变大,相当于将原图象向上平移即可得到,故①反映建议(1);对于建议(2)因为不改变支出费用,则乘客量为0时前后的收支差是相等的,即前后图象纵截距相等,由于提高车票价格,故建议后的图象(虚线)比目前的图象(实线)的倾斜角大.相当于将原图象绕与y 轴的交点按逆时针旋转一定的角度得到的图象,故①反映建议(2). 故选:AC. 11.AD 【分析】根据简单函数的单调性,复合函数的单调性,以及由函数奇偶性求函数解析式,即可容易判断和选择.【解析】由y =2x 2+x +1=2217()48x ++在1[,)4-+∞上递增知,函数y =2x 2+x +1在(0,+∞)上是增函数,故A 正确; y =11x +在(-∞,-1),(-1,+∞)上均是减函数, 但在(-∞,-1)①(-1,+∞)上不是减函数, 如-2<0,但112101<-++故B 错误;y [),(5,)2,1--+∞上无意义, 从而在[-2,+∞)上不是单调函数,故C 错误; 设x <0,则-x >0,g (-x )=-2x -3,因为g (x )为奇函数,所以f (x )=g (x )=-g (-x )=2x +3,故D 正确. 故选:AD . 【点睛】本题考查函数单调区间的求解,复合函数的单调性判断以及利用函数奇偶性求函数解析式,属中档题. 12.ACD利用单调性的定义及性质,奇偶函数定义进行判断即可.【解析】A 选项,由()()22f f ->,则()f x 在 R 上必定不是增函数; B 选项,正确;C 选项,()2f x x =,满足()00f =,但不是奇函数;D 选项,该函数为分段函数,在x =0 处,有可能会出现右侧比左侧低的情况,故错误. 故选:ACD 【点睛】本题考查了函数的单调性的定义和性质,考查了函数奇偶性的性质,属于基础题. 13.30,4⎡⎫⎪⎢⎣⎭【分析】分析可知,对任意的x ∈R ,2430kx kx ++≠恒成立,分0k =、0k ≠两种情况讨论,结合已知条件可求得实数k 的取值范围. 【解析】因为函数()2743kx f x kx kx +=++的定义域为R ,所以,对任意的x ∈R ,2430kx kx ++≠恒成立. ①当0k =时,则有30≠,合乎题意;①当0k ≠时,由题意可得216120k k ∆=-<,解得304k <<. 综上所述,实数k 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭.14.12-【分析】利用函数()f x 的解析式可求得56f ⎛⎫⎪⎝⎭的值.【解析】因为()()3,01,0x x f x f x x ≤⎧=⎨->⎩,所以,511136662f f ⎛⎫⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:12-.15.()0x x -> 【分析】求出函数()f x 、()g x 的定义域,将函数()f x 、()g x 解析式相加即可得解.【解析】函数()f x x =()2g x x =的定义域均为()0,∞+, 因此,()()()0f x g x x x +=->.故答案为:()0x x ->.16.1(0,)2【分析】由()y f x =在(1,0]-上为单调增,结合函数的奇偶性,可得()y f x =在[)0,1上为单调减,将(1)(31)f a f a -<-转化为131a a ->-,结合定义域,解不等式可得a 的取值范围. 【解析】偶函数()y f x =在(1,0]-上为单调增,∴()y f x =在[)0,1上为单调减,∴(1)(31)f a f a -<-等价于1311111311a a a a ⎧->-⎪-<-<⎨⎪-<-<⎩,解得:10202203a a a ⎧<<⎪⎪<<⎨⎪⎪<<⎩∴实数a 的取值范围是1(0,)2. 故答案为:1(0,)2. 【点睛】本题主要考查利用函数的奇偶性和单调性求解不等式问题,考查计算能力,属于中档题. 17.(1)()1f x x=;(2){|23a a <<或1}a <. 【分析】(1)根据幂函数的定义和单调性建立条件关系即可得到结论,(2)令3()g x x -=,根据其单调性即可求解结论.【解析】解:(1)函数是幂函数,2221m m ∴+-=, 即2230m m +-=,解得1m =或3m =-,幂函数()f x 在(0,)+∞上是减函数,20m ∴+<,即2m <-,3m ∴=-,(2)令3()g x x -=,因为()g x 的定义域为(-∞,0)(0⋃,)+∞,且在(,0)-∞和(0,)+∞上均为减函数,33(3)(1)a a --->-,310a a ∴-<-<或031a a <-<-或301a a ->>-,解得23a <<或1a <,故a 的取值范围为:{|23a a <<或1}a <.18.(1)2;(2)32m =,12n =. 【分析】(1)根据绝对值定义去掉绝对值,由()()f m f n =化简即可得出结果;(2)根据01n m <<≤,1m n >≥,01n m <<<三种情况去掉绝对值,根据函数的单调性,列出方程,计算求解即可得出结果.【解析】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, 所以1111m n -=-或1111m n -=-,因为0m n >>,所以112m n+=. (2)1 当01n m <<≤时,11()2f x x =-在[],n m 上单调递减,因为函数()f x 的定义域与值域均为[],n m ,所以()()f n m f m n=⎧⎨=⎩,两式相减得1mn =不合,舍去. 2 当1m n >≥时,31()2f x x =-在[],n m 上单调递增,因为函数()f x 的定义域与值域均为[],n m ,所以()()f m m f n n =⎧⎨=⎩,无实数解. 3 当01n m <<<时,11,[,1],2()31,(1,],2x n x f x x m x⎧-∈⎪⎪=⎨⎪-∈⎪⎩ 所以函数()f x 在[,1]n 上单调递减,在(]1,m 上单调递增.因为函数()f x 的定义域与值域均为[],n m ,所以1(1)2n f ==,13()22m f ==.综合所述,32m =,12n =. 【点睛】本题考查分段函数的单调性及值域问题,考查分类讨论的思想,属于中档题.19.(1)()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩,图象答案见解析;(2)①减区间为:(),1-∞-和()1,+∞;①1m ⎡⎤∈⎣⎦.【分析】(1)由奇函数的定义求得解析式,根据对称性作出图象.(2)由图象的上升与下降得增减区间,解出方程221x x -+=-的正数解,可得结论.【解析】(1)当0x >,0x -<,则()()2222f x x x x x -=--=-因为()f x 为奇函数,则()()f x f x -=-,即0x >时,()22f x x x =-+ 所以()222,02,0x x x f x x x x ⎧+≤=⎨-+>⎩, 图象如下:(2)如图可知,减区间为:(),1-∞-和()1,+∞()11f -=-,()11f =令22212101x x x x x -+=-⇒--=⇒==①1x >①1x =故由图可知1m ⎡⎤∈⎣⎦. 【点睛】本题考查函数的奇偶性,考查图象的应用,由图象得单调区间,得函数值域.是我们学好数学的基本技能.20.(1)f (2)+f 12⎛⎫ ⎪⎝⎭=1,f (3)+f 13⎛⎫ ⎪⎝⎭=1;(2)f (x )+f 1x ⎛⎫ ⎪⎝⎭=1;证明见解析;(3)2018. 【分析】(1)根据函数解析式,代值计算即可;(2)观察(1)中所求()11f x f x ⎛⎫+= ⎪⎝⎭,结合函数解析式,即可证明; (3)根据(2)中所求,两两配对,即可容易求得结果.【解析】(1)因为f (x )=221x x +, 所以f (2)+f 12⎛⎫ ⎪⎝⎭=22212++2212112⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1 f (3)+f 13⎛⎫ ⎪⎝⎭=22313++2213113⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭=1. (2)由(1)可发现f (x )+f 1x ⎛⎫ ⎪⎝⎭=1.证明如下: f (x )+f 1x ⎛⎫ ⎪⎝⎭=221x x ++22111x x ⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭ =221x x ++211x +=2211x x ++=1,是定值. (3)由(2)知,f (x )+f 1x ⎛⎫ ⎪⎝⎭=1, 因为f (1)+f (1)=1,f (2)+f 12⎛⎫ ⎪⎝⎭=1, f (3)+f 13⎛⎫ ⎪⎝⎭=1, f (4)+f 14⎛⎫ ⎪⎝⎭=1, …f (2018)+f 12018⎛⎫ ⎪⎝⎭=1,所以2f (1)+f (2)+f 12⎛⎫ ⎪⎝⎭+f (3)+f 13⎛⎫ ⎪⎝⎭+…+f (2017)+f 12017⎛⎫ ⎪⎝⎭+f (2018)+f 12018⎛⎫ ⎪⎝⎭=2018.【点睛】本题考查函数值的求解,注意观察,属基础题.21.(1)22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩;(2)(][)26∞∞-,-,+;(3)大于零,理由见解析. 【分析】(1)由(1)0f -=,得10a b -+=及函数()f x 的值域为[0)+∞,,得240a b -=, 联立求解可得;(2)由222(2)()124()k k g x x --=++-,当2][2x ∈-,时,()()g x f x kx =-是单调函数,则222k -≤-或222k -≥得解; (3)()f x 为偶函数,则2()1f x ax =+,不妨设m n >,则0n <,由0m n +>,得0m n >->,则22m n >所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=得解【解析】(1)因为(1)0f -=,所以10a b -+= ①.又函数()f x 的值域为[0)+∞,,所以0a ≠. 由224()24b a b y a x a a-=++知2404a b a -=, 即240a b -=①.解①①,得12a b ==,. 所以22()21(1)f x x x x =++=+.所以22(1),0()(1),0x x F x x x ⎧+>=⎨-+<⎩; (2)由(1)得2222(2()())()21()124k k g x f x kx x k x x --=-=-=++-++ 因为当2][2x ∈-,时,()()g x f x kx =-是单调函数, 所以222k -≤-或222k -≥, 即2k ≤-或6k ≥,故实数k 的取值范围为(][)26∞∞-,-,+(3)大于零.理由如下:因为()f x 为偶函数,所以2()1f x ax =+,所以221,0()1,0ax x F x ax x ⎧+>=⎨--<⎩不妨设m n >,则0n <由0m n +>,得0m n >->所以22m n >又0a >,所以2222()()()()(1)(1)()0F m F n f m f n am an a m n +=-+-+=->=,所以()()F m F n +大于零.【点睛】本题考查函数性质的应用,涉及分段函数解析式、函数的值域,单调性,奇偶性,属于基础题.22.(1)()1,1--;(2)()f x 在区间()0,∞+上为增函数;(3)[]2,4-.【分析】(1)根据题意可知,若函数()f x 关于点(),a b 中心对称,则()()2f a x f a x b ++-=, 然后利用()61f x x x =-+得出()f a x +与()f a x -,代入上式求解; (2)因为函数y x =及函数61y x =-+在()0,∞+上递增,所以函数()61f x x x =-+在()0,∞+上递增; (3)根据题意可知,若对任意[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,则只需使函数()g x 在[]10,2x ∈上的值域为()f x 在[]21,5x ∈上的值域的子集,然后分类讨论求解函数()g x 的值域与函数()f x 的值域,根据集合间的包含关求解参数m 的取值范围.【解析】解:(1)设函数()f x 图象的对称中心为(),a b ,则()()20f a x f a x b ++--=. 即()()662011x a x a b x a x a +-+-+--=++-++, 整理得()()()()22161a b x a b a a -=-+-+,于是()()()()21610a b a b a a -=-+-+=,解得1a b ==-.所以()f x 的对称中心为()1,1--;(2)函数()f x 在()0,∞+上为增函数;(3)由已知,()g x 值域为()f x 值域的子集.由(2)知()f x 在[]1,5上单增,所以()f x 的值域为[]2,4-.于是原问题转化为()g x 在[]0,2上的值域[]2.4A ⊆-.①当02m ≤,即0m ≤时,()g x 在[]0,1单增,注意到()2g x x mx m =-+的图象恒过对称中心()1,1,可知()g x 在(]1,2上亦单增,所以()g x 在[]0,2上单增,又()0g m =,()()2202g g m =-=-,所以[],2A m m =-.因为[][],22,4m m -⊆-,所以224m m ≥-⎧⎨-≤⎩,解得20m -≤≤. ①当012m <<,即02m <<时,()g x 在0,2m ⎛⎫ ⎪⎝⎭单减,,12m ⎛⎫ ⎪⎝⎭单增, 又()g x 过对称中心()1,1,所以()g x 在1,22m ⎛⎫- ⎪⎝⎭单增,2,22m ⎛⎤- ⎥⎝⎦单减; 此时()()min 2,,max 0,222m m A g g g g ⎛⎫⎧⎫⎧⎫⎛⎫⎛⎫=-⎨⎬⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭⎝⎭. 欲使[]2,4A ⊆-,只需()()222022224g g m m m g m ⎧=-=-≥-⎪⎨⎛⎫=-+≥- ⎪⎪⎝⎭⎩且()2042224224g m m m m g g m ⎧=≤⎪⎨⎛⎫⎛⎫-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎩解不等式得24m -≤,又02m <<,此时02m <<.①当12m ≥,即2m ≥时,()g x 在[]0,1单减,在(]1,2上亦单减, 由对称性,知()g x 在[]0,2上单减,于是[]2,A m m =-.因为[][]2,2,4m m -⊆-,所以224m m -≥-⎧⎨≤⎩,解得24m ≤≤. 综上,实数m 的取值范围为[]2,4-。

函数的性质(高考总复习)

函数的性质(高考总复习)

---------------------------------------------------------------最新资料推荐------------------------------------------------------函数的性质(高考总复习)函数的性质一、函数的奇偶性 1.奇、偶函数的概念一般地,如果对于函数 f(x) 的定义域内任意一个 x,都有 f(-x) =f(x) ,那么函数 f(x)就叫做偶函数.一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x) =-f(x) ,那么函数f(x)就叫做奇函数. 2.奇、偶函数的性质⑴奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.⑵奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反⑶若奇函数 f(x)在 x=0 处有定义,则 f(0)=0. 3. 设f(x) , g(x) 的定义域分别是 D1, D2,那么在它们的公共定义域上:奇+奇=奇,偶+偶=偶,偶+非零常数=偶,奇+非零常数=非奇非偶,奇奇=偶,偶偶=偶,奇偶=奇,练习 1.若函数 f(x) =x2-| x+a| 为偶函数,则实数 a=_______.2.若函数 f(x) =(x+a) (bx+2a) (常数 a、 bR) 是偶函数,且它的值域为(-,4],则该函数的解析式f(x) =_____ ___. 3.对于定义域为 R 的奇函数 f(x) ,下列结论成立的是( ) A. f(x) -f(-x) 0 C. f(x) f(-x) 0 4.如下图,给出了奇函数 y=f(x) 的局部图象,则 f(-2) 的值为( ) B. f(x) -f(-x) 0 D. f(x) f(-x) 0 A.32 B.-32 C.12 D.-12 5.已知函数( )f x 是定义在 R 上的奇函数,若1 / 7当时,,则当时,( )f x 的表达式为()A....6.已知函数的图像关于坐标原点对称,则实数a=( ) A、 1 B、 -1 C、 0 D、.如果奇函数在区间[3, 7]上是增函数且最小值为 5,那么在区间上是 ( ) A.增函数且最小值为.增函数且最大值为.减函数且最小值为.减函数且最大值为.若偶函数)(xf在上是增函数,则下列关系式中成立的是() A..) 2 (f)23()..2 (.设奇函数)(xf的定义域为,若当时, )(xf的图象如右图, 则不等式的解是 10.如果定义在区间[2-a, 4]上的函数 y=f(x) 为偶函数,那么 a=___ _____. 11.已知函数 f(x)=ax2+bx+3a+b 为偶函数,其定义域为[a-1, 2a],则 a的值为________. 12.若 f(x) =(m-1) x2+6mx+2 是偶函数,则f(0) 、f(1) 、f(-2) 从小到大的顺序是____ __. 13.已知奇函数 ( )f x 的定义域为上单调递减,且满足条件求a的取值范围。

必修1第二单元函数综合复习

必修1第二单元函数综合复习

必修 1 第二单元函数综合复习 1.“函数”概念辨析 一、定义域 1.函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示. 2.求函数定义域的方法 x+2 例 1 求 y= x+2+ 的定义域. |x|-4 例 2 已知函数 y=f(x+1)的定义域为(-1,1),求函数 y=f(x)的定义域. 例 3 一矩形的周长为 20,长 y 是宽 x 的函数,求其解析式和定义域. 二、对应关系:例 4 已知函数 f(x)=x2-2x,求 f(1)、f(a)、f(2x). 三、值域 1.函数的值域即为函数值的集合,一般由定义域和对应关系确定,常用集合或区间来表示. 2.值域的求法,就我们现在所学的知识而言,暂时介绍如下三种方法: (1)二次函数型利用“配方法”:例 5 求函数 y=-2x2+4x+6 的值域. (2)换元法(注意换元后新元的范围).:例 6 求函数 y=2x+4 1-x的值域. (3)形如 y= ax+b (a,c≠0)的函数用分离常数法. cx+d )
(1)求证:f(x)在 R 上是减函数;
跟踪训练:函数 f(x)的定义域为 D={x|x≠0},且满足对于任意 x1,x2∈D,有 f(x1·x2)=f(x1)+f(x2). (1)求 f(1)的值; (2)判断 f(x)的奇偶性并证明你的结论;
(3)如果 f(4)=1,f(x-1)<2,且 f(x)在(0,+∞)上是增函数,求 x 的取值范围.
)
10.已知定义在 R 上的奇函数满足 f(x)=x2+2x(x≥0),若 f(3-m2)>f(2m),则实数 m 的取值范围是________. 三、解答题 11.函数 f(x)=4x2-4ax+a2-2a+2 在区间[0,2]上有最小值 3,求 a 的值.
12.已知二次函数 f(x)=ax2+bx(a,b 为常数,且 a≠0)满足条件:f(x-1)=f(3-x),且方程 f(x)=2x 有两等根. (1)求 f(x)的解析式;(2)求 f(x)在[0,t]上的最大值.

高三数学函数、三角函数、不等式综合复习

高三数学函数、三角函数、不等式综合复习

高三数学函数、三角函数、不等式综合复习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。

会证明函数的奇偶性,周期性和单调性。

会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。

教学重点:综合应用函数知识和分析问题及解决问题的能力。

教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。

解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。

2.已知函数的反函数为,。

(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。

解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。

3.已知函数是奇函数,当时有最小值2,且。

(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。

若存在,求出这两点的坐标,若不存在说明理由。

解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。

∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x,y)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。

4.设函数的定义域为R,对任意实数x1,x2恒有,且,。

(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。

解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。

中考总复习:函数综合--知识讲解(基础)

中考总复习:函数综合--知识讲解(基础)

中考总复习:函数综合—知识讲解(基础)【考纲要求】1.平面直角坐标系的有关知识平面直角坐标系中各象限和坐标轴上的点的坐标的特征,求点关于坐标轴、坐标原点的对称点的坐标,求线段的长度,几何图形的面积,求某些点的坐标等;2.函数的有关概念求函数自变量的取值范围,求函数值、函数的图象、函数的表示方法;3.函数的图象和性质常见的题目是确定图象的位置,利用函数的图象确定某些字母的取值,利用函数的性质解决某些问题.利用数形结合思想来说明函数值的变化趋势,又能反过来判定函数图象的位置;4.函数的解析式求函数的解析式,求抛物线的顶点坐标、对称轴方程,利用函数的解析式来求某些字母或代数式的值.一次函数、反比例函数和二次函数常与一元一次方程、一元二次方程、三角形的面积、边角关系、圆的切线、圆的有关线段组成综合题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.相关概念(1)平面直角坐标系 (2)象限 (3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标 (1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标 (3)平行于坐标轴的直线上的点的坐标 (4)关于x 轴、y 轴、原点对称的点的坐标 4.距离(1)平面上一点到x 轴、y 轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离 (3)平面上任意两点间的距离 5.坐标方法的简单应用(1)利用坐标表示地理位置 (2)利用坐标表示平移 要点诠释:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ;(3)点P(x,y)到原点的距离等于22y x .考点二、函数及其图象 1.变量与常量 2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象 要点诠释:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.考点三、一次函数1.正比例函数的意义2.一次函数的意义3.正比例函数与一次函数的性质4. 一次函数的图象与二元一次方程组的关系5.利用一次函数解决实际问题 要点诠释:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k ;确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b.解这类问题的一般方法是待定系数法.考点四、反比例函数 1.反比例函数的概念2.反比例函数的图象及性质3.利用反比例函数解决实际问题 要点诠释:反比例函数中反比例系数的几何意义,如下图,过反比例函数)0(≠=k xky 图像上任一点),(y x P 作x 轴、y 轴的垂线PM ,PN ,垂足为M 、N ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙.,y xk=∴||k S k xy ==,.考点五、二次函数 1.二次函数的概念2.二次函数的图象及性质3.二次函数与一元二次方程的关系4.利用二次函数解决实际问题 要点诠释:1、两点间距离公式(当遇到没有思路的问题时,可用此方法拓展思路,以寻求解题方法) 如图:点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则AB 间的距离,即线段AB 的长度为()()221221y y x x -+-.2、函数平移规律:左加右减、上加下减.考点六、函数的应用1.一次函数的实际应用2. 反比例函数的实际应用3. 二次函数的实际应用要点诠释:分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论.在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型.【典型例题】类型一、用函数的概念与性质解题1.已知一次函数y=(3a-2)x+(1-b),求字母a, b的取值范围,使得:(1)y随x的增大而增大;(2)函数图象与y轴的交点在x轴的下方;(3)函数的图象过第一、二、四象限.【思路点拨】(1)y=kx+b (k≠0)的图象,当k>0时,y随x的增大而增大;(2)当b<0时,函数图象与y轴的交点在x轴的下方;(3)当k<0, b>0时时,函数的图象过第一、二、四象限.【答案与解析】解:a、b的取值范围应分别满足:(1)由一次函数y=kx+b(k≠0)的性质可知:当k>0时,函数值y随x的增大而增大,即3a-2>0,∴23a>, 且b取任何实数.(2)函数图象与y 轴的交点为(0,1-b ), ∵ 交点在x 轴的下方,∴ ,即a≠, b >1.(3)函数图象过第一、二、四象限,则必须满足 .【总结升华】下面是y=kx(k≠0), y=kx+b (k≠0)的图象的特点和性质的示意图,如图1,当k >0时,y 随x 的增大而增大;当b >0时,图象过一、二、三象限,当b=0时,是正比例函数,当b <0时,图象过一、三、四象限;当y=x 时,图象过一、三象限,且是它的角平分线.由于常数k 、b 不同,可得到不同的函数,k 决定直线与x 轴夹角的大小,b 决定直线与y 轴交点的位置,由k 定向,由b 定点.同样,如图2,是k <0的各种情况,请你指出它们的图象的特点和性质.举一反三:【变式】作出函数y=x, 2x y x=,2()y x =的图象,它们是不是同一个函数?【答案】 函数2()y x =的自变量x 的取值范围是x≥0;函数2x y x=在x≠0时,就是函数y=x ;而x=0不在函数2x y x=的自变量x 的取值范围之内.由此,作图如下:可见它们不是同一个函数.类型二、函数图象及性质2.已知:(1)m为何值时,它是一次函数.(2)当它是一次函数时,画出草图,指出它的图象经过哪几个象限?y是随x的增大而增大还是减小?(3)当图象不过原点时,求出该图象与坐标轴交点间的距离,及图象与两轴所围成的三角形面积. 【思路点拨】一次函数应满足:一次项(或自变量)的指数为1,系数不为0.【答案与解析】(1)依题意:,解得m=1或m=4.∴当m=1或m=4时,它是一次函数.(2)当m=4时,函数为y=2x,是正比例函数,图象过一,三象限,y随x的增大而增大.当m=1时,函数为y=-x-3,直线过二,三,四象限,y随x的增大而减小.(3)直线y=-x-3不过原点,它与x轴交点为A(-3,0),与y轴交点为B(0,-3),..∴直线y=-x-3与两轴交点间的距离为,与两轴围成的三角形面积为.【总结升华】(1)某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.(2)判断函数的增减性,关键是确定直线y=kx+b(k≠0)中k、b的符号.(3)直线y=kx+b(k≠0)与两轴的交点坐标可运用x轴、y轴上的点的特征来求,当直线y=kx+b(k ≠0)上的点在x轴上时,令y=0,则,交点为;当直线y=kx+b(k≠0)上的点在y轴上时,令x=0,则y=b,即交点为(0,b).举一反三:【高清课程名称:函数综合1 高清ID号:369111关联的位置名称(播放点名称):经典例题2】【变式】已知关于x的方程2(3)40--+-=.x m x m(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m 的取值范围;(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 【答案】证明:(1)22224(3)4(4)1025(5)b ac m m m m m ∆=-=---=-+=-≥0,所以方程总有两个实数根.解:(2)由(1)2(5)m ∆=-,根据求根公式可知,方程的两根为:23(5)2m m x -±-= 即11x =,24x m =-,由题意,有448m <-<,即812m <<.(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -), 由题意,可得14m -=-或44m m -=-,所以3m =或4m =.3.抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2﹣2x﹣3,则b 、c 的值为( )A .b=2,c=2B .b=2,c=0C .b=﹣2,c=﹣1D .b=﹣3,c=2 【思路点拨】易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值. 【答案】B . 【解析】解:由题意得新抛物线的顶点为(1,﹣4), ∴原抛物线的顶点为(﹣1,﹣1),设原抛物线的解析式为y=(x ﹣h )2+k 代入得:y=(x+1)2﹣1=x 2+2x , ∴b=2,c=0. 故选B .【总结升华】抛物线的平移不改变二次项系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.4.若一次函数y=kx+1的图象与反比例函数1y x=的图象没有公共点,则实数k 的取值范围是 . 【思路点拨】因为反比例函数1y x = 的图象在第一、三象限,故一次函数y=kx+1中,k <0,将解方程组 11y kx y x =+⎧⎪⎨=⎪⎩转化成关于x 的一元二次方程,当两函数图象没有公共点时,只需△<0即可.【答案】1-4k<.【解析】由反比例函数的性质可知,1yx=的图象在第一、三象限,∴当一次函数y=kx+1与反比例函数图象无交点时,k<0,解方程组11y kxyx=+⎧⎪⎨=⎪⎩,得kx2+x-1=0,当两函数图象没有公共点时,△<0,即1+4k<0,解得1-4k<,∴两函数图象无公共点时,1-4k<.故答案为:1-4k<.【总结升华】本题考查了反比例函数与一次函数的交点问题.关键是转化成关于x的一元二次方程,再确定k的取值范围.类型三、函数综合题5.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1【思路点拨】先判断出函数反比例函数y=的图象所在的象限,再根据图象在每一象限的增减性及每一象限坐标的特征进行判断.【答案】B.【解析】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选B.【总结升华】本题考查了反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.举一反三:【变式】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A. B. C. D.【答案】由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选D.类型四、函数的应用6.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,求绳子的最低点距地面的距离为多少米?【思路点拨】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答. 【答案】解:以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系, 由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y=ax 2+bx+c ,把A 、B 、C 三点分别代入得出c=2.5, 同时可得4a+2b+c=2.5,0.25a+0.5b+c=1 解之得a=2,b=﹣4,c=2.5.∴y=2x 2﹣4x+2.5=2(x ﹣1)2+0.5. ∵2>0,∴当x=1时,y=0.5米. ∴故答案为:0.5米.【总结升华】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题. 举一反三:【高清课程名称: 函数综合1 高清ID 号: 369111 关联的位置名称(播放点名称):经典例题3】 【变式】抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.(1)求证:1023b a +>; (2)抛物线经过点1(,)2P m ,Q (1,)n .① 判断mn 的符号;② 抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (A 在B 左侧),请说明116x <,2112x <<.【答案】(1)证明:∵ 2360a b c ++=,∴ 12362366b a b c c a a a a++==-=-. ∵ a >0,c <0,∴0c a <,0c a->. ∴ 1023b a +>.(2)解:∵ 抛物线经过点P 1(,)2m ,点Q (1,)n , ∴ 11 ,42 .a b c m a b c n ⎧++=⎪⎨⎪++=⎩① ∵ 2360a b c ++=,a >0,c <0,∴ 223a b c +=-,223a b c =--. ∴ 1112111()42424312b c m a b c a a a a +=++=+=+-=-<0. 2(2)33a a n a b c a c c c =++=+--+=->0. ∴ 0mn <.② 由a >0知抛物线2y ax bx c =++开口向上.∵ 0m <,0n >,∴ 点P 1(,)2m 和点Q (1,)n 分别位于x 轴下方和x 轴上方.∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足2112x <<. ∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知123b a -<, ∴ 12123x x +<. ∴ 12221332x x <-<-,即116x <.。

高考综合复习 专题7 函数的概念与性质专题练习

高考综合复习 专题7 函数的概念与性质专题练习

高考综合复习专题七函数的概念与性质专题练习一.选择题1.下列函数既是奇函数,又在区间[-1,1]上单调递减的是()A.f(x)=sinxB.f(x)=-C.f(x)=D.f(x)=2.函数,若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1, -D.1,3.若函数f(x)是定义在R上的偶函数,在(-∞,0)上是减函数,且f(2)=0,则使f(x)<0的x的取值范围是()A.(-∞,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.(-2,2)4.已知函数y=f(x)的图象关于直线x=-1对称,且当x>0时f(x)= ,则当x<-2时,f(x)=()A.-B.C.-D.-5.已知y=f(x)是R上的减函数,且y=f(x)的图象经过点A(0,1)和点B(3,-1),则不等式<1的解集为()A.(-1,2)B.(0,3)C.(-∞,-2)D.(-∞,3)6.已知f(x)是定义在R上的单调函数,实数≠,≠-1, =,.若,则()A.<0B.=0C.0<<1D.≥17.若函数f(x)=(a>0,a≠1)在区间(-,0)内单调递增,则a的取值范围是()A.[-,1)B.[,1)C.(,+∞)D.(1, )8.已知f(x)是定义在R上的函数,且满足f(x)+f(x-1)=1,当x∈[0,1]时,f(x)=现有4个命题:①f(x)是周期函数,且周期为2;②当x∈[1,2]时,f(x)=2x-;③f(x)为偶函数;④f(-2005.5)= .其中正确命题的个数是()A.1B.2C.3D.4二.填空题.1.若函数f(x)= (a≠0)的图象关于直线x=2对称,则a=.2.已知函数y=f(x)的反函数为y=g(x),若f(3)=-1,则函数y=g(x-1)的图象必经过点.3.定义在R上的函数f(x)对一切实数x都有f[f(x)]=x,则函数f(x)图象的自身关于对称.4.设f(x)是定义在R上的偶函数,且f(x+3)=1-f(x),又当x∈(0,1]时,f(x)=2x,则f(17.5)=.三.解答题.1.设函数f(x)=,求使f(x)≥2的x的取值范围.2.已知函数f(x)= (a,b为常数),且方程f(x)-x+12=0有两个实根为=3,=4.(1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式f(x)< .3.设f(x)是定义在R上的增函数,若不等式f(1-ax-)<f(2-a)对任意x∈[0,1]都成立,求实数a的取值范围.4.已知定义在R上的函数f(x)对任意实数,满足关系f(+)=f()+f()+2.(1)证明:f(x)的图象关于点(0,-2)对称.(2)若x>0,则有f(x)>-2,求证:f(x)在R上为增函数.(3)若数列满足=-,且对任意n∈N﹡有=f(n),试求数列的前n项和.答案与解析:一.选择题.1.选D.分析:这里f(x)为奇函数,由此否定B.C;又f(x)在[-1,1]上单调递减,由此否定A.故应选D.2.选C.分析:注意到这里a的可能取值至多有3个,故运用代值验证的方法.当a=1时,由f(1)+f(a)=2得f(1)=1;由f(x)的表达式得f(1)==1,故a=1是所求的一个解,由此否定B.当a=-时,由f(x)的表达式得f(-)=sin=1,又f(1)=1,故f(1)+f(-)=2,a=-是所求的一个解,由此否定A.D.本题应选C.3.选D.分析:由f(x)在(-∞,0)上是减函数,且f(x)为偶函数得f(x)在(0,+∞)上是增函数,∴f(x)在(-∞,-2]上递减,在[2,+∞)上递增.又∵f(2)=0, ∴f(-2)=0∴f(x)在(-∞,-2]上总有f(x)≥f(-2)=0,①f(x)在[2,+∞)上总有f(x)≥f(2)=0②∴由①②知使f(x)<0的x的取值范围是(-2,2),应选D.4.选C.分析:由f(x)的图象关于直线x=-1对称得f(x)=f(-2-x)①∴当x<-2时, -2-x>0∴再由已知得f(-2-x)= ②于是由①②得当x<-2时f(x)= ,即f(x)= -.应选C.5.选A.分析:由已知条件得f(0)=1,f(3)=-1,∴(※)又f(x)在R上为减函数.∴由(※)得0<x+1<3-1<x<2故应选A.6.选A.分析:注意到直接推理的困难,考虑运用特取——筛选法.在选项中寻觅特殊值.当=0时, =,=,则,由此否定B,当=1时,= ,f()=f(),则,由此否定D;当0<<1时, 是数轴上以分划定点,所成线段的定比分点(内分点),是数轴上以>1分划上述线段的定比分点(内分点),∴此时又f(x)在R上递减,∴由此否定C.因而应选A.7.选B.分析:令u=g(x)= ,y=f(x)则y=由题意知当x∈(-,0)时,u>0注意到g(0),故u=g(x)在(-,0)上为减函数.①又y=f(x)在(-,0)上为增函数,∴y=在u的相应区间上为减函数.∴0<a<1再由①得u'=g'(x)= 在(-,0)上满足u'≤0②而u'=在(-,0)上为减函数,且是R上的连续函数.③∴由②③得u'(-)≤0∴-a≤0,即a≥④于是由①,④得≤a<1应选B.点评:从复合函数的“分解”切入.利用复合函数的单调性与所“分解”出的内层函数与外层函数的单调性之间的联系(同增异减)初步确定a的取值范围0<a<1.但是,由于u=为x的三次函数, u'为x的二次函数.故还要从u'在(-,0)上的符号入手进一步确认a的正确的范围.”粗” 、“细”结合,双方确定所求参数的范围,乃是解决这类问题的基本方略.8.选B.分析:从认知f(x)的性质入手,由f(x)+f(x-1)=1得f(x-1)=1-f(x)(※)∴f(x-2)=1-f(x-1)(※※)∴由(※),(※※)得f(x)=f(x-2)∴f(x)为周期函数,且2是f(x)的一个周期.(1)由上述推理可知①正确.(2)当x∈[1,2]时,有x-1∈[0,1].∴由题设得f(x)=1-f(x-1)=1-(x-1)=2x-x,由此可知②正确(3)由已知条件以及结果①、②得,又f()=,∴f()≠f(-)∴f(x)不是偶函数即③不正确;(4)由已知条件与f(x)的周期性得f(-2005.5)=f(-2005.5+2×1003)= f()=故④不正确.于是由(1)(2)(3)(4)知,本题应选B.二.填空题.1.答案: .分析:由题设知f(0)=f(4)(a≠0),∴(a≠0)0<=1(a≠0)4a-1=1或4a-1=-1(a≠0)a=即所求a=.2.答案: (0,3)分析:f(3)=-1y=f(x)的图象经过点(3,-1)y=g(x)的图象经过点(-1,3)g(-1)=3g(0-1)=3y=g(x)的图象经过点(0,3).3.答案:直线y=x分析:根据函数的定义,设x为f(x)定义域内的任意一个值,则f(x)为其相应的函数值,即为y,即y= f(x),则有x=( y)①又由已知得f[f(x)]=f(y)= x②∴由①②知f(x)与其反函数(x)为同一函数,∴函数f(x)的图象自身关于直线y=x对称.4.答案:1分析: 从认知f(x)的性质切入已知f(x+3)=1-f(x)①以-x代替①中的x得f(-x+3)=1-f(-x)②又f(x)为偶函数∴f(-x)=f(x)③∴由②③得f(-x+3)=1-f(x)④∴由①④得f(3+x)=f(3-x)f(x)图象关于直线x=3对称f(-x)=f(6+x)∴由③得f(x)=f(6+x)即f(x)是周期函数,且6是f(x)的一个周期.⑤于是由③⑤及另一已知条件得f(17.5)=f(17.5-3×6)=f(-0.5)=f(0.5)=2×0.5=1三.解答题.1.分析:注意到f(x)为复合的指数函数,故考虑令u=,而后利用指数函数的性质将所给不等式转化为关于u的不等式解.解:令u=, y=f(x),则y=2为u的指数函数.∴f(x)≥2≥2≥u≥①∴f(x) ≥≥②(1)当x≥1时,不等式②(x+1)-(x-1) ≥2≥成立.(2)当-1≤x<1时,由②得,(x+1)-(1-x) ≥x≥即≤x<1;(3)当x<-1时,由②得-(x+1)-(1-x) ≥即-2≥不成立.于是综合(1)(2)(3)得所求的x的取值范围为[,1]∪[1,+∞),也就是[,+∞)点评:对于复合函数y=f[p(x)],令u=p(x),将其分解为y=f(u),u=p(x).于是所给问题转化为内层函数u=p(x)的问题或转化为外层函数y=f(u)的问题.这种分解----转化的手法,是解决复合指数函数或复合对数函数的基本策略.2.分析:注意到f(x)为分式函数,故相关方程为分式方程,相关不等式为分式不等式,因此,求解此类问题要坚定地立足于求解分式问题的基本程序:移项,通分,分解因式;化“分”为“整”以及验根等等.解:(1)将=3, =4分别代入方程得由此解得∴f(x)= (x≠2).(2)原不等式<-<0<0<0(x-2)(x-1)(x-k)>0注意到这里k>1,(ⅰ)当1<k<2时,原不等式的解集为(1,k)∪(2,+∞);(ⅱ)当k=2时,原不等式(x-2)2(x-1)>0x>1且x≠2.∴原不等式的解集为(1,2)∪(2,+∞);(ⅲ)当k>2时,原不等式的解集为(1,2) ∪(k,+∞);于是综合(ⅰ) (ⅱ) (ⅲ)得当1<k≤2时,原不等式解集为(1,k)∪(2,+∞);当k>2时,原不等式解集为(1,2) ∪(k,+∞);点评:在这里,运用根轴法求解不等式(x-2)(x-1)(x-k)>0快捷准确.此外,在分式不等式转化为高次不等式后,分类讨论时不可忽略对特殊情形:k=2的讨论;综合结论时需要注意相关情况的合并,以最少情形的结论给出最佳答案.3.分析:所给不等式含有抽象的函数符号f,故首先需要“反用”函数的单调性定义脱去“f”,转化为普通的含参不等式的问题.进而,再根据个人的熟重和爱好选择不同解法.解:∵f(x)是R上的增函数.∴不等式f(1-ax-)<f(2-a) 对任意x∈[0,1]都成立.不等式1-ax-<2-a对任意x∈[0,1]都成立+ax-a+1>0对任意x∈[0,1]都成立①解法一: (向最值问题转化,以对称轴的位置为主线展开讨论.)令g(x)= +ax-a+1,则①式g(x)>0对任意x∈[0,1]都成立.g(x)在区间[0,1]上的最小值大于0.②注意到g(x)图象的对称轴为x=-(1)当-≤0即a≥0时,由②得g(0)>0-a+1>0a<1,即0≤a<1;(2)当0<-≤1时,即-2≤a<0时,由②得g(-)>01-a->0+4a-4<0<8当-2≤a<0时,这一不等式也能成立.(3)当->1即a<-2时.由②得g(1)>02>0即当a<-2时,不等式成立.于是综合(1)(2)(3)得所求实数a的取值范围为[0,1)∪[-2,0]∪(-∞,-2), 即(-∞,1).解法二: (以△的取值为主线展开讨论)对于二次三项式g(x)= +ax-a+1,其判别式△=+4(a-1)=+4a-4△<0<8--2<a<-2(1)当△<0时,g(x)>0对任意x∈[0,1]都成立,此时--2<a<-2;(2)当△≥0时,由g(x)>0对任意x∈[0,1]都成立得-2≤a<1或a≤--2.于是由(1)(2)得所求a的取值范围为(--2,-2)∪[-2,1)∪(-∞, --2]即(-∞,1).点评:解法一归统为最值问题,以g(x)图象的对称轴的位置为主线展开讨论;解法二直面g(x)>0在x∈[0,1]上成立,以g(x)的判别式△的取值为主线展开讨论,两种解法各有千秋,都解决这类问题的主要策略.以××为主线展开讨论,这是讨论有理有序,不杂不漏的保障.4.分析:为了认知和利用已知条件,从”特取”切入:在已知恒等式中令==0得f(0)=-2.为利用f(0)=-2,寻觅f(x)的关系式,又在已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2故得f(x)+f(-x)=-4证明(1),由此式展开.对于(2)面对抽象的函数f(x),则只能运用定义;对于(3),这里a n=f(n),a n+1=f(n+1),因此,从已知恒等式入手寻觅{a n}的递推式或通项公式,便称为问题突破的关键.解:(1)证明:在已知恒等式中令==0得f(0)=-2①又已知恒等式中令=x, =-x得f(0)=f(x)+f(-x)+2∴f(x)+f(-x)=-4②设M(x,f(x))为y=f(x)的图象上任意一点则由②得③∴由③知点M(x,f(x))与N(-x,f(-x))所成线段MN的中点坐标为(0,-2),∴点M与点N关于定点(0,-2)对称.④注意到点M在y=f(x)图象上的任意性,又点N亦在y=f(x)的图象上,故由④知y=f(x)的图象关于点(0,-2)对称.(2)证明:设,为任意实数,且<,则->0∴由已知得f(-)>-2⑤注意到=(-)+由本题大前提中的恒等式得f()=f[(-)+] =f(-)+ f()+2∴f()-f()=f (-)+2⑥又由⑤知f (-)+2>0,∴由⑥得f()-f()>0,即f()>f().于是由函数的单调性定义知,f(x)在R上为增函数.(3)解:∵a n=f(n),∴a1=f(1)=-,a n+1=f(n+1)又由已知恒等式中令=n, =1得f(n+1)=f(n)+f(1)+2∴a n+1= a n+∴a n+1-a n=(n∈N﹡)由此可知,数列{ a n }是首项为=-,公差为的等差数列.∴=-n+×即=(n2-11n).点评:充分认识与利用已知条件中的恒等式,是本题解题的关键环节. 对于(1)由此导出f(x)+f(-x)=-4;对于(2)由此导出f()=f()+f(-)+2;对于(3)由此导出f(n+1)=f(n)+f(1)+2即a n+1-a n=.。

函数复习题及答案

函数复习题及答案

函数复习题及答案一、选择题1. 函数f(x) = 2x^2 + 3x - 5的图像关于哪条直线对称?A. x = -1B. x = 1C. x = 0D. x = 3答案: B2. 如果函数f(x) = x^3 - 2x^2 + x + 2的导数为0,那么x的值是多少?A. -1B. 0C. 1D. 2答案: C3. 函数g(x) = 1/x在区间(0, +∞)上的单调性是?A. 单调递增B. 单调递减C. 先递增后递减D. 先递减后递增答案: B二、填空题4. 函数h(x) = 4x^3 - 5x^2 + 2x + 1的极值点是______。

答案: x = 0 或 x = 5/45. 如果函数f(x) = sin(x) + cos(x)的最大值为√2,那么x的取值范围是______。

答案:[2kπ + π/4, 2kπ + 5π/4] (k ∈ Z)三、简答题6. 描述函数y = x^2在区间[-1, 1]上的性质。

答案:函数y = x^2在区间[-1, 1]上是单调递增的,且图像是一个开口向上的抛物线,顶点在原点。

7. 解释什么是函数的周期性,并给出一个周期函数的例子。

答案:函数的周期性是指函数值在某个固定的间隔内重复出现的性质。

例如,正弦函数sin(x)就是一个周期函数,它的周期是2π。

四、计算题8. 计算函数f(x) = 3x^2 - 4x + 5在x = 2时的值。

答案: f(2) = 3 * (2)^2 - 4 * 2 + 5 = 12 - 8 + 5 = 99. 求函数f(x) = x^3 - 6x^2 + 9x + 2的一阶导数和二阶导数。

答案:一阶导数:f'(x) = 3x^2 - 12x + 9二阶导数:f''(x) = 6x - 12五、证明题10. 证明对于任意实数x,函数f(x) = x^3 - 3x + 2的值总是大于0。

答案:首先求导f'(x) = 3x^2 - 3,令导数为0得到x = ±1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y0,l2x0,xl 2
2xy, 2xl2x, xl 4
2.有关函数概念的问题
1.已知函数 y3(m2)xm23 是一
次函数,则 m___,_图像经过
第_____象限.
解:由题意:
m2 3 1 m 2 0
解得
m m
2 2
m2 解析式为 y4x3
这时图像过一、 二、四象限.
m 2.函数 y xm2m3 是正比例函
(4,m),求m和 k ;
解:(1)由题意:一次函数的图像与反比例函数 的图像交于点(4,m),
m 4 8
m
k 4
解得km146
2.已知反比例函数 y k (k 0) x
和一次函数 yx8.
(2) k满足什么条件时,这两个函数图像有
两个不同的交点;
解:若两个函数的图像相交,则交点的坐标满
OC 3 即3a 3,a
3;
3
②当∠ACB>90º时,
则 O C3,3即 a3,a 3. 3
所以0a 3. 3
y
O Bx
C
一、知识概述
二、例题分析
1. 求自变量的取值范围:
(1)y x 2 x3
x20
x30
x2且 x3
(2)y 3 3x x2
3x0 x20
2x3
(3)如图,等腰△ABC的
A
周长为 l,腰长为 x,底
边长为 y,则 y与 x的函
数关系式及自变量 x的取 x
x
值_y__范_l_围_2__x____(_4l___x__2_l_)___B. y C
当k
0时,y
k 的图像位于第二、四 限象 , x
与直y线 x8的两个交点分、 别四 在象 第
∴∠AOB>90º,故∠AOB为钝角.
(3)∵抛物线开口向上,∴ a 0,
OC3a3a
∵∠ACB≥90º,
①当∠ACB=90º时, 有Rt△BOC∽Rt△COA,
A
O 2 C O O A 3 B 1 3
B(m,0),且经过第四象限的点C(1,n),而 m+n=-1,mn=-12,求此抛物线的解析式.
解:由题意,可设m、n是方程 x2x120
的两个根, 解这个方程,得 x14,x23
∵C(1,n)在第四象限,∴n<0, ∴n=-4 从而m=3. ∵抛物线经过A(-1,0)、B(3,0)、C(1,-4)

y
k
x
y x 8
消去 y,整理得 x28xk0
由 0,即 ( 8)24k0, 得k 16
又k 0, k1且 6k0.
(3)设(2)中的两个交点A、B,试判断∠AOB
是锐角还是钝角.
当0k16时, y k的图像位于第一、三 限象 , x
与直线 yx8的两个交点必在限 第一象
∴∠AOB<90º,故∠AOB为锐角.
故可设抛物线的解析式为 ya(x1)x(3)
将C(1,-4)代入,得 a 1
∴抛物线的解析式为 y (x 1 )x ( 3 ) x2 2 x 3 .
二次函数的三种常见的表达式:
1.一般式:yax2bxc 2.顶点式:ya(xh)2k
其中抛物线的顶点坐标为(h, k)
3.两根式:ya(xx1)x (x2)
若不存在,请说明理由.
B
A
-4 -3 -2 -1 O
x
解:在一次函数y 3 x 2中
y
令 x 0 ,则 y 2 ,令 y 0 3,则 x 23 C B
A(2 3,0),B(0,2) OA 2 3,OB 2
A
K
-4 -3 -2 -1 O x
在 R A t 中 OA B , B O 2 A O 2 B 4
P3(2 3,0)
x
P4 O P2(2 34,0)
以AB为腰的等腰△ ABP1 , 则 P1(42 3,0)
以AB为腰的等腰△ ABP2 , 则P2(2 34,0)
以AB为腰的等腰△
以AB为底的等腰△

P4(
2 3
3,0)
ABP3 ABP4
,,O 则4PP3(22c3o,60t)0o 233,
2.已知反比例函数
数,且图像通过第二、四象限,
则m=_____.
m2 m3 1
解:由题意: m0
解得
m m
2或m 0
1m1.
3.如果函数 y kx2k2k2 的图像
是双曲线,且在第二、四象限内,
那么 k的值是多少?
解:由题意:
2k2
k
2
1
k 0
解得
k
1或 k
1 2
k 0
k1
3.确定函数解析式的问题
x 2.已知一抛物线与 轴的交点是A(-1,0)、
过O作OC⊥AB于C,过C作CK⊥x轴于K.
OC OAOB 3
AB
在Rt△AOB中,tan∠BAO=
OB OA
3 3
∴ ∠BAO=30º, ∴ ∠AOC=60º.
y
OKOC co6s0o 3
CB
2
CKOC si6n0o3 2-4 NhomakorabeaA
-3
K -2 -1
O
x
C点的坐(标 3为 ,3). 22
y
B
P1(42 3,0) A
y
k x
(k
0)
和一次函数 yx8 .
(1)若一次函数和反比例函数的图像交 于点(4,m),求m和 k;
(2) k满足什么条件时,这两个函数图
像有两个不同的交点;
(3)设(2)中的两个交点A、B,试判断 ∠AOB是锐角还是钝角.
2.已知反比例函数 y k (k 0) x
和一次函数 yx8 .
(1)若一次函数和反比例函数的图像交于点
其中x1、x2是相应的一元二次方程
a2xbxc0的两个根
5.有关函数应用的问题
1.如图,在直角坐标系 xOy中,一次函数
y 3x
交于点3 B.
2的图像与
x轴交于点A、与
y轴
(1)若以原点为圆心的圆与直线AB相切于点C,
求切点C的坐标;
x (2)在 轴上是否存在点P,使△PAB为等腰三
角形?若存在,请直接写出点P的坐标;y
相关文档
最新文档