一次函数大题综合

合集下载

苏科版八年级数学上册试题 第6章 一次函数综合测试卷 (含详解)

苏科版八年级数学上册试题 第6章 一次函数综合测试卷 (含详解)

第6章《一次函数》综合测试卷一、选择题(本大题共10小题,每小题2分,共20分)1.一次函数y =(a+1)x+a+2的图象过一、二、四象限,则a 的取值是( )A .a <﹣2B .a <﹣1C .﹣2≤a ≤﹣1D .﹣2<a <﹣12.若点,在直线上,则m 与n 的大小关系是( ).A .B .C .D .无法确定3.如图,若一次函数y 1=﹣x ﹣1与y 2=ax ﹣3的图像交于点P(m ,﹣3),则关于的不等式﹣x ﹣1>ax ﹣3的解集是( )A .x <2B .x >﹣3C .x >2D .x <﹣34.一次函数中,当函数值时,自变量x 的取值范围为( )A .B .C .D .5.如图1,在等边中,点D 是边的中点,点P 为边上的一个动点,设,图1中线段的长为y ,若表示y 与x 的函数关系的图象如图2所示,则等边的周长为())A m 3,2B n ⎛⎫ ⎪⎝⎭1y x =+m n >m n <m n =36y x =-+0y <ABC V BC AB AP x =DP ABC VA .4B .C .12D .6.如图,点A ,B ,C 在一次函数y =-2x +b 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积和是( )A .1B .3C .3(b -1)D.7.如图,直线与直线相交于点P ,若不等式的解集是,则的值等于( )A .B .C .3D .8.如图,一次函数与一次函数的图象交于P (1,3),则下列说法正确的个数是( )个(1)方程的解是(2)方程组的解是(3)不等式的解集是(4)不等式的解集是.()223b -1:3m y x =+2:m y kx b =+(3)0kx b x +-+<1x >-b k 1313-3-1y ax b =+24y kx =+3ax b +=1x =4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩4ax b kx ++>1x >44kx ax b ++>>01x <<A .1B .2C .3D .49.在地球中纬度地区,从地面到高空大约之间,气温随高度的升高而下降,每升高,气温大约下降;高于但不高于,气温几乎不再变化,某城市地处中纬度地区,该市某日的地面气温为,设该城市距离地面高度为处的气温为,则与的函数图像是( )A .B .C .D .10.如图,在平面直角坐标系中,点是直线与直线的交点,点B 是直线与y 轴的交点,点P 是x 轴上的一个动点,连接PA ,PB ,则的最小值是()11km 1km 6C ︒11km 20km 20C ︒()km 020x x ≤≤C y ︒y x ()3,A a 2y x =y x b =+y x b =+PA PB +A .6B .C .9D .二、填空题(本大题共6小题,每小题2分,共12分)11.已知正比例函,当时,.则比例系数k=__________.12.若是正比例函数,则______.13.若直线是由直线向下平移了3个单位长度得到的,则kb =______.14.直线y =kx +b (k ≠0)平行于直线且经过点,那么这条直线的解析式是______.15.如图,直线y =﹣x+7与两坐标轴分别交于A 、B 两点,点C 的坐标是(1,0),DE 分别是AB 、OA 上的动点,当△CDE 的周长最小时,点E 的坐标是 _____.16.如图,将正方形置于平面直角坐标系中,其中,,边在轴上,直线与正方形的边有两个交点、,当时,的取值范围是__.三、解答题(本大题共10题,共68分)17.(4分)判断三点A (3,1),B (0,-2),C (4,2)是否在同一条直线上.y kx =2x =-10y =()212a y a x b =++-()2021a b -=y kx b =+21y x =--12y x =()0,2ABCD (1,0)A (3,0)D -AD x :L y kx =ABCD O E 35OE <<k18.(4分)在平面直角坐标系中,一次函数的图像经过和.(1)求一次函数解析式.(2)当,求y 的取值范围.19.(6分)小明从A 地出发向B 地行走,同时晓阳从B 地出发向A 地行走,小明、晓阳离A 地的距离y (千米)与已用时间x (分钟)之间的函数关系分别如图中、所示.(1)小明与晓阳出发几分钟时相遇?(2)求晓阳到达A 地的时间.20.(6分)如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B(1,0)(0,2)23x -<≤1l 2l(0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.21.(8分)如图,直线与直线相交于点.(1)求a ,b 的值;(2)求△ADC 的面积;(3)根据图象,写出关于x 的不等式的解集.22.(8分)定义:在平面直角坐标系中,对于任意一点如果满足,我们就把点称作“和谐点”.(1)在直线上的“和谐点”为________;:AD y x b =-+1:12BC y x =+()2,B a 1012x b x <-+<+xOy ()P x y ,2||y x =()P x y ,6y =(2)求一次函数的图象上的“和谐点”坐标;(3)已知点,点的坐标分别为,,如果线段上始终存在“和谐点”,直接写出的取值范围是________.23.(6分)某校开展爱心义卖活动,同学们决定将销售获得的利润捐献给福利院.初二某班的同学们准备制作A 、B 两款挂件来进行销售.已知制作3个A 款挂件、5个B 款挂件所需成本为46元,制作5个A 款挂件、10个B 款挂件所需成本为85元.已知A 、B 两款挂件的售价如下表:手工制品A 款挂件B 款挂件售价(元/个)128(1)求制作一个A 款挂件、一个B 款挂件所需的成本分别为多少元?(2)若该班级共有40名学生.计划每位同学制作2个A 款挂件或3个B 款挂件,制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍.设安排m 人制作A 款挂件,请说明如何安排,使得总利润最大,最大利润是多少?2y x =-+P Q (2)P m ,(,5)Q m PQ m24.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图像解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式;25.(10分)如图,在平面直角坐标系中,两个全等的直角三角形的直角顶点及一条直角边重合,点在第二象限内,点、点在轴的负半轴上,,.(1)求点的坐标;(2)如图,将绕点按顺时针方向旋转到的位置,其中交直线于点,分别交直线、于点、,则除外,还有哪几对全等的三角形,请直接写出答案;(不再另外添加辅助线)(3)在(2)的基础上,将绕点按顺时针方向继续旋转,当的函数表达式.26.(10分)在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点是点的等和点,已知点.(1)在中,点的等和点有__________;(2)点在直线上,若点的等和点也是点的等和点,求点的坐标;(3)已知点和线段,点C 也在 x 轴上且满足,线段上总存在线段上每个点的等和点.若的最小值为5,直接写出的值.A B C x 30CAO ∠=︒4OA =C ACB △C 30°A CB ''V A C 'OA E A B ''OA CA F G A B C AOC ''≌△△A CB ''V C COE V CE xOy 11(,)P x y 22(,)Q x y 1212x x y y +=+Q P ()3,0P ()()()1230,31,421,,Q Q Q --,P A 5y x =-+P A A (,0)B b MN 1BC =MN PC MN b答案一、选择题1.D【解析】解:∵一次函数y=(a+1)x+a+2的图象过一、二、四象限,∴a+1<0,a+2>0解得-2<a <-1.故选:D .2.B【解析】∵一次函数中,∴随的增大而增大∴故选:B .3.A【解析】解:由题意,将点代入一次函数得:,解得,不等式表示的是一次函数的图像位于一次函数的图像上方,则由函数图像得:,1y x =+10k =>y x 32<m n<(),3P m -11y x =--13m --=-2m =13x ax -->-11y x =--23y ax =-2x <故选:A .4.B【解析】解:∵一次函数y=-3x+6,∴当y=0时,x=2,y 随x 的增大而减小,∴当函数值y <0时,自变量x 的取值范围为x >2,在数轴上表示为: ,故选:B .5.C【解析】解:由图2可得y 最小值∵△ABC 为等边三角形,分析图1可知,当P 点运动到DP ⊥AB 时,DP 长为最小值,∴此时DP ∵DP ⊥AB ,∴,∵△ABC 为等边三角形,∵∠B =60°,AB=BC=AC ,∴,∴BD=2BP ,根据勾股定理可知,,∴,∴或(舍去),,∵D 为BC 的中点,∴BC =4,∴AB=BC=AC=4,∴等边△ABC 的周长为12.故选:C .90DPB ∠=︒906030PDB ∠=︒-︒=︒222BD BP DP =+22212BD BD ⎛⎫=+ ⎪⎝⎭2BD =2BD =-6.B【解析】解:由题意可得A 、C 的坐标分别为(-1,b +2)、(2,b -4),又阴影部分为三个有一直角边都是1,另一直角边的长度和为A 点纵坐标与C 点纵坐标之差的三角形,所以阴影部分的面积为:,故选B .7.B【解析】∵kx+b −(x+3)<0的解集是x>−1∴P 点横坐标是−1,则纵坐标为2则P (−1,2),由图可知直线m 2与y 轴的交点坐标是(0,-1),把P (−1,2)和(0,−1)代入∴ ∴ 故选:B .8.C【解析】解:因为一次函数与一次函数的图象交于P (1,3),所以(1)方程ax+b=3的一个解是x=1,正确;(2)方程组的解是,错误;(3)不等式ax+b>kx 十4的解集是x>1,正确;(4)不等式4>kx 十4>ax+b 的解集是0<x<1,正确.()()112432b b ⎡⎤⨯⨯+--=⎣⎦y kx b =+21k b b -+=⎧⎨=-⎩31k b =-⎧⎨=-⎩13b k =-1y ax b =+24y kx =+4y ax b y kx =+⎧⎨=+⎩31x y =⎧⎨=⎩9.B【解析】解:由题意可知,当高度x=0时,y=20℃;当x=11时,y=20-11×6=-46℃,∴y=-6x+20()当时,y=-46根据一次函数的性质可知,只有B 选项的图像符合题意.故答案为:B .10.D【解析】解:作点A 关于x 轴的对称点,连接,如图所示:则PA+PB 的最小值即为的长,将点A (3,a )代入y=2x ,得a=2×3=6,∴点A 坐标为(3,6),将点A (3,6)代入y=x+b ,得3+b=6,解得b=3,∴点B 坐标为(0,3),根据轴对称的性质,可得点A'坐标为(3,-6)∴∴PA+PB 的最小值为故选:D .二、填空题011x ≤<1120x ≤≤A 'A B 'A B 'A B '==【解析】解:把,代入得:,∴.故答案为:.12.【解析】∵是正比例函数,∴,,,∴,,∴,故答案为:.13.8【解析】解∶ 直线向下平移了3个单位长度得到,∴k=-2,b=-4,∴.故答案为:8.14.【解析】解:根据题意得,将代入得b =2,直线解析式为,故答案为:.15.10【解析】解:如图,点C 关于OA 的对称点(-1,0),点C 关于直线AB 的对称点,∵直线AB 的解析式为y=-x+7,∴直线C 的解析式为y=x-1,由,得 2x =-10y =y kx =102k =-5k =-5-1-()212a y a x b =++-10a +≠21a =20b -=1a =2b =()2021121-=-1-21y x =--24y x =--(2)(4)8kb =-⨯-=122y x =+12k =()0,212y x b =+∴122y x =+122y x =+C 'C ''C ''71y x y x =-+⎧⎨=-⎩43x y =⎧⎨=⎩∴F (4,3),∵F 是C 中点,∴可得(7,6).连接与AO 交于点E ,与AB 交于点D ,此时△DEC 周长最小,△DEC 的周长=DE+EC+CD=E +ED+D ==10.故答案为10.16.且【解析】解:如图,设BC 与y 轴交于点M ,,,,∴E 点不在AD 边上,;①如果,那么点E 在AB 边或线段BM 上,当点E 在AB 边且时,由勾股定理得,,,,C ''C ''C 'C ''C 'C ''C 'C ''k >0k <43k ≠-13OA =< 3OD =3OE >0k ∴≠0k >3OE =222918AE OE OA =-=-=AE ∴=(1E ∴当直线经过点,时,,,当点E 在线段BM 上时,,②如果,那么点E 在CD 边或线段CM 上,当点E 在CD 边且时,E 与D 重合;当时,由勾股定理得,,,,此时E 与C 重合,当直线经过点时,.当点E 在线段CM 上时,,且,符合题意;综上,当时,的取值范围是且,故答案为:且.三、解答题17.解:设过A ,B 两点的直线的表达式为y =kx +b .由题意可知,解得 ∴过A ,B 两点的直线的表达式为y =x -2.∵当x =4时,y =4—2=2.∴点C (4,2)在直线y =x -2上.∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.18.(1)解:设一次函数解析式为∵一次函数的图像经过和y kx =(1k =22216117OB AB OA =+=+= 5OB ∴=<5OE OB <=<k ∴>0k <3OE =5OE =22225916DE OE OD =-=-=4DE ∴=(3,4)E ∴-y kx =()3,4-43k =-5OE OC <=0k ∴<43k ≠-35OE <<k k >0k <43k ≠-k >0k <43k ≠-1320k b b =+⎧⎨-=+⎩12k b =⎧⎨=-⎩(0)y kx b k =+≠(1,0)(0,2)解得:∴一次函数解析式为;(2)解:由(1)得:,一次函数的图像y 随x 的增大而减小,当时,,当时,,当时,.19.(1)解:设的解析式为:.∵函数的图象过,,即,,当时,,∴小明与晓阳出发12分钟时相遇.(2)解:∵晓阳的速度为(千米/分钟),∴晓阳到达A 地的时间为分钟.20.(1)解:(1)依题意得: 解得 ∴∵点C 在直线AB 上,C 的纵坐标为402k b b +=⎧∴⎨=⎩22k b =-⎧⎨=⎩22y x =-+20k =-<∴2x =-()2226y =-⨯-+=3x =2324y =-⨯+=-∴23x -<≤46y -≤<2l 11y k x =()30,41430k ∴=1215k =1215y x ∴=1 1.6y =12x =4 1.60.212-=4200.2==603k b b -+=⎧⎨=⎩123k b ⎧=⎪⎨⎪=⎩1,32k b ==点C 坐标为(2,4)(2)∵B (0,3),C 的纵坐标为4∴∴设点D 点坐标为,又点A (-6,0)∴ 解得 当时当时∴点D 坐标为(-4,1)或(-8,-1)21.(1)解∶∵直线经过点,∴,∴点B 的坐标为,∵直线经过点,∴,∴;(2)解:∵,∴直线AD 的解析式为,令,则,令,则,∴A (0,4),D (4,0),∴OA=OD=4,直线与x 轴交于点C ,令,则,∴C (-2,0),∴OC=2,∴CD=6,13422x x +==13232OBC S ∆=⨯⨯=3OAD S ∆=(),D D x y 162D OA y ⨯⨯=1D y =±1=D y 4D x =-1D y =-8D x =-112y x =+()2,B a 12122a =⨯+=22(,)y x b =-+()2,2B 22b =-+4b =4b =4y x =-+0x =4y =0y =4x = 112y x =+0y =2x -=∴;(3)解:点B 的坐标为,点D 的坐标为,∴根据图象可得:关于x 的不等式的解集为.22.(1)解:由题意得:,解得:x =3或x =-3,在直线上的“和谐点”为:(3,6)和(-3,6);(2)由“和谐点”的定义可知或,联立,解得:,联立,解得:,所以一次函数的图象上的“和谐点”坐标为(,)和(-2,4);(3)如图为的函数图象的简图,PQ y 轴,①当m >0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是;②当m <0时,令,解得:,令,解得:,由图可知,如果线段上始终存在“和谐点”,的取值范围是,综上,当或时,线段上始终存在“和谐点”.11641222ACD S CD OA =⋅=⨯⨯=V 22(,)40(,)1012x b x <-+<+24x <<26x =6y =2y x =2y x =-22y x y x =-+⎧⎨=⎩2343x y ⎧=⎪⎪⎨⎪=⎪⎩22y x y x =-+⎧⎨=-⎩24x y =-⎧⎨=⎩2y x =-+23432y x =∥22y x ==1x =25y x ==52x =PQ m 512m ≤≤22y x =-=1x =-25y x =-=52x =-PQ m 512m -≤≤-512m ≤≤512m -≤≤-PQ23.(1)由题意可设制作一个A 款挂件、一个B 款挂件所需的成本分别为x 、y 元,则,解得将①得6x+10y=92,再将①②得x=7,再将x=7回代②得y=5,解得,答:制作一个A 款挂件、一个B 款挂件所需的成本分别7元、5元;(2)由题意得设(40)人制作B 款挂件,总利润为w 元,则w=(12),∴w 随m 的增大而增大,∵制作的总成本不超过590元,且制作B 款挂件的数量不少于A 款挂件的2倍,∴,解得10∵m 为正整数,∴当m=17时,w 取得最大值,此时w=377,(40)=23,答:当安排17人制作A 款挂件,23人制作B 款挂件时,总利润最大,最大利润为377元.24.(1)根据图像信息:货车的速度(千米/时).∵轿车到达乙地的时间为货车出发后4.5小时,354651085x y x y +=⎧⎨+=⎩①②2⨯-75x y =⎧⎨=⎩m -7-2(85)3(40)360m m m ⨯+-⨯-=+7253(40)5903(40)22m m m m ⨯+⨯-≤⎧⎨-≥⨯⎩1177m ≤≤m -300605v ==货∴轿车到达乙地时,货车行驶的路程为:(千米).此时,货车距乙地的路程为:(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD 段函数解析式为()().∵,在其图像上,∴,解得.∴CD 段函数解析式:;25.(1)解:在中,,,所以,则;(2)解:或或(3)解:如图1,过点作于点.∵∴.∵在Rt △AOC 中,,IOC=2,∠ACO=90°,∴∴点A(-2,,设直线OA 的解析是为,则,∴,∴直线OA 的解析式为,令,解得x=,∴点的坐标为. 4.560270⨯=30027030-=y kx b =+0k≠ 2.5 4.5x ≤≤(2.5,80)C (4.5,300)D 2.5804.5300k b k b +=⎧⎨+=⎩110195k b =⎧⎨=-⎩(1101952.5 4.)5y x x =-≤≤Rt AOC V 4OA =30CAO ∠=︒122CO OA ==()2,0C -A EF AGF '≌△△B GC CEO '≌△△A GC AEC'≌△△E 1E M OC ⊥M 1112COE S CO E M =⋅=△1E M =4OA =AC ===y mx =()2m =⨯-m =y ==14-1E 14⎛- ⎝设直线的函数表达式为,,解得.∴.同理,如图2所示,点的坐标为.设直线的函数表达式为,则,解得 .∴综上所得或.26.(1)Q 1(0,3),则0+3=3+0,∴Q 1(0,3)是点P 的等和点;Q 2(1,4),则1+3=4+0,∴Q 2(1,4)是点P 的等和点;Q 3(-2,-1),则-2+3≠-1+0,∴Q 3(-2,-1)不是点P 的等和点;故答案为:Q 1,Q 2;(2)设点P (3,0)的等和点为(m ,n ),∴3+m=n ,有m-n=-3,1CE 11y k x b =+11112014k b k b -+=⎧⎪⎨-+=⎪⎩11k b ⎧=⎪⎪⎨⎪=⎪⎩y x =+2E 1,4⎛ ⎝2CE 22y k x b =+22222014k b k b -+=⎧⎪⎨+=⎪⎩22k b ⎧=⎪⎪⎨⎪=⎪⎩y x =y x =+y =∵A 在直线y=-x+5上,∴设A (t ,-t+5),则A 点的等和点为(m ,n ),∴t+m=-t+5+n ,由m-n=-2t+5,∴-3=-2t+5,解得t=4,∴A (4,1);(3)∵P (3,0),∴P 点的等和点在直线l :y=x+3上,∵B (b ,0),BC=1,且C 在x 轴上,∴C (b-1,0)或(b+1,0)∴C 点的等和点在直线l 1:y=x+b-1或y=x+b+1上,设直线l 1与y 轴交于C',直线l 与y 轴交于P',则C'(0,b-1)或(0,b+1),P'(0,3),①当点C 在点B 的左边时,如图1,直线CC'与直线l 交于N ,当M 与C'重合时,MN 最小为5,∵△MNP'是等腰直角三角形,∴∴,∴如图2,同理得∴3+(1-b )∴②当点C 在点B 的右边时,如图3,同理得:∴,∴如图4,同理得:,∴,∴综上,b 的值是2−或4−或.。

一次函数代数几何综合问题

一次函数代数几何综合问题

一次函数代几综合问题一.填空题(共6小题)1.如图,直线和x轴、y轴分别交于点A、B.若以线段AB为边作等边三角形ABC,则点C的坐标是.2.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC为等腰三角形,则这样的点C的坐标为.3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.4.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为.5.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为.6.如图,直线1:与x轴、y轴分别相交于点A、B,△AOB与△ACB关于直线l对称,则点C的坐标为.二.解答题(共24小题)7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y 轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.8.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.(1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式;(2)如图2,连接BF,设CG=a,△FBG的面积为S.①求S与a的函数关系式;②判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由;(3)如图3,连接GE,当GD平分∠CGE时,m的值为.9.认真阅读材料,然后回答问题:我们知道,在数轴上,x=1表示一个点.而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方方程2x﹣y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图1可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图2;y≧2x+1也表示一个平面区域,即直线y=2x+1以及它上方的部分,如图3.回答下列问题:请你自己作一个直角坐标系,并在直角坐标系中(1)用作图象的方法求出方程组的解.(2)用阴影表示,所围成的区域.10.如图,直线l1的解析表达式为:y=3x﹣3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求△ADC的面积;(2)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,则点P的坐标为;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,已知直线l1和l2相交于点A,它们的解析式分别为l1:y=x,l2:y=﹣x+.直线l2与两坐标轴分别相交于点B和点C,点P在线段OB上从点O出发.以每秒1个单位的速度向点B运动,同时点Q从点B出发以每秒4个单位的速度沿B→O→C→B的方向向点B运动,过点P作直线PM⊥OB分别交l1,l2于点M,N.连接MQ.设点P,Q运动的时间是t秒(t>0)(1)求点A的坐标;(2)点Q在OC上运动时,试求t为何值时,四边形MNCQ为平行四边形;(3)试探究是否存在某一时刻t,使MQ∥OB?若存在,求出t的值;若不存在,请说明理由.12.已知,将边长为5的正方形ABCO放置在如图所示的直角坐标系中,使点A在x轴上,点C在y轴上.点M(t,0)在x轴上运动,过A作直线MC的垂线交y轴于点N.(1)当t=1时,求直线MC的解析式;(2)设△AMN的面积为S,求S关于t的函数解析式并写出相应t的取值范围;(3)在该平面直角坐标系中,第一象限内取点P(2,y),是否存在以M、N、C、P为顶点的四边形是直角梯形?若存在,直接写出点P的坐标;若不存在,请说明理由.13.如图①,以四边形AOCD的顶点O为原点建立直角坐标系,点A、C、D的坐标分别为(0,2)、(2,0)、(2,2),点P(m,0)是x轴上一动点,m是大于0的常数,以AP为一边作正方形APQR(QR落在第一象限),连接CQ.(1)请判断四边形AOCD的形状,并说明理由:(2)连接RD,请判断△ARD的形状,并说明理由:(3)如图②,随着点P(m,0)的运动,正方形APQR的大小会发生改变,若设CQ所在直线的表达式为y=kx+b(k≠0),求k的值.14.如图,将边长为4的正方形纸片,置于平面直角坐标系内,顶点A在坐标原点,AB在x轴正方向上,E、F分别是AD、BC的中点,M在DC上,将△ADM沿折痕AM折叠,使点D折叠后恰好落在EF上的P点处.(1)求点M、P的坐标;(2)求折痕AM所在直线的解析式;(3)设点H为直线AM上的点,是否存在这样的点H,使得以H、A、P为顶点的三角形为等腰三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.15.如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(,);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.16.已知直线y=﹣x+4与x轴和y轴分别交与B、A两点,另一直线经过点B和点D(11,6).(1)求AB、BD的长度,并证明△ABD是直角三角形;(2)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标;(3)一动点P速度为1个单位/秒,沿A﹣﹣B﹣﹣D运动到D点停止,另有一动点Q从D点出发,以相同的速度沿D﹣﹣B﹣﹣A运动到A点停止,两点同时出发,PQ的长度为y(单位长),运动时间为t(秒),求y关于t的函数关系式.17.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是6;(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.18.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.19.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.已知,直线y=﹣x+1与x轴,y轴分别交于点A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90度.且点P(1,a)为坐标系中的一个动点.(1)求三角形ABC的面积S△ABC;(2)证明不论a取任何实数,三角形BOP的面积是一个常数;(3)要使得△ABC和△ABP的面积相等,求实数a的值.21.如图,在直角坐标系xoy中,一次函数的图象与x轴交于点A,与y轴交于点B.(1)已知OC⊥AB于C,求C点坐标;(2)在x轴上是否存在点P,使△PAB为等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图1,在正方形ABOC中,BD平分∠OBC,交OA于点D.(1)若正方形ABOC的边长为2,对角线BC与OA相交于点E.则:①BC的长为;②DE的长为;③根据已知及求得的线段OB、BC、DE的长,请找出它们的数量关系?(2)如图2,当直角∠BAC绕着其顶点A顺时针旋转时,角的两边分别与x轴正半轴、y轴正半轴交于点C1和B1,连接B1C1交OA于P.B1D平分∠OB1C1,交OA于点D,过点D作DE⊥B1C1,垂足为E,请猜想线段OB、B1C1、DE三者之间的数量关系,并证明你的猜想;(3)在(2)的条件下,当B1E=6,C1E=4时,求直线B1D的解析式.23.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x对称?若存在,求出的值;若不存在,请说明理由.24.一次函数的图象与x轴、y轴分别交于点A(8,0)和点B(0,6).(1)确定此一次函数的解析式.(2)求坐标原点O到直线AB的距离.(3)点P是线段AB上的一个动点,过点P作PM垂直于x轴于M,作PN垂直于y轴于N,记L=PM+PN,问L是否存在最大值和最小值?若存在,求出此时P点到原点O的距离,若不存在请说明理由.25.已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=2AO.求△ABP的面积.26.已知A(1,5),B(3,﹣1)两点,在x轴上取一点M,使AM﹣BM取得最大值时,则M的坐标为.27.如图,在平面直角坐标系中,直线分别交于x轴,y轴于B、A两点,D、E分别是OA、OB的中点,点P从点D出沿DE方向运动,过点P作PQ⊥AB于Q,过点Q作QR∥OA交OB于R,当点Q与B点重合时,点P停止运动.(1)求A、B两点的坐标;(2)求PQ的长度;(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的点R的坐标;若不存在,请说明理由.28.如图,直线y=﹣2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD.(1)填空:点C的坐标是(,),点D的坐标是(,);(2)设直线CD与AB交于点M,求线段BM的长;(3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.29.已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC,AB所在直线为x轴,y 轴建立直角坐标系(如图).(1)在BD所在直线上找出一点P,使四边形ABCP为平行四边形,画出这个平行四边形,并简要叙述其过程;(2)求直线BD的函数关系式;(3)直线BD上是否存在点M,使△AMC为等腰三角形?若存在,求点M的坐标;若不存在,说明理由.30.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。

北师大版八年级上册数学《一元一次函数综合题》练习题(含答案)

北师大版八年级上册数学《一元一次函数综合题》练习题(含答案)

一元一次函数综合题一 、选择题(本大题共2小题)1.已知一次函数(2)2y a x =-+的图象不经过第三象限,化简)A.1B.1-C.25a -D.52a -2.如图,直线AB :112y x =+分别与x 轴、y 轴交于点A 、点B ;直线CD :y x b=+分别与x 轴、y 轴交于点C ,点D 。

直线AB 与CD 相交于点P 。

已知4ABD S ∆=,则点P 的坐标是( )A.5(3)2,B.(85),C.(43),D.15()24,二 、解答题(本大题共9小题)3.已知正比例函数y x =。

(1)画出此函数的图象;(2)已知点A 在此函数图象上,其横坐标为2,求出点A 的坐标,并在图像上标出点A ;(3)在x 轴上是否存在一点P ,使AOP ∆是等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由。

4.已知关于x 、y 的方程组40y ax y x b -+=⎧⎨=-⎩的解为24x y =⎧⎨=⎩,解答下列问题:⑴分别求出两个方程所确定的函数图象与x 轴交点A 、B 的坐标; ⑵设两个图象交点为C ,求ABC ∆的面积5.我市某乡A 、B 两村生产柑橘,A 村有柑橘200吨,B 村有柑橘300吨。

现将这些柑橘运到C 、D 两个冷藏仓库,已知C 仓库可存储240吨,D 仓库可存储260吨;从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元。

设从A 村运往C仓库的柑橘质量为x 吨,A 、B 两村运往两仓库的柑橘运输费用的分别为A y 元和A y 元 ⑴请求出A y 、B y 与x 之间的函数关系式; ⑵试讨论A 、B 两村中,哪个村的运费较少⑶考虑到B 村的经济承受能力,B 村的柑橘运费不得超过4830元,在这种情况下,请问怎么样调运,才能使两村运费之和最小?求出这个最小值?6.如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 为坐标原点)。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

一次函数专项练习题

一次函数专项练习题

一次函数专项练习题一、选择题1. 一次函数的图象是一条()。

A. 折线B. 曲线C. 直线D. 折线和曲线2. 下列函数中,是一次函数的是()。

A. y = 2x^2 + 1B. y = 3x + 5C. y = x^3D. y = √x3. 一次函数y = kx + b中,当k > 0时,函数图象在()。

A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 一次函数y = kx + b的图象与y轴的交点为()。

A. (0, k)B. (0, b)C. (k, 0)D. (b, 0)5. 一次函数y = 2x + 3的图象经过()。

A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限二、填空题1. 一次函数的图象是一条______。

2. 一次函数的一般形式为______。

3. 一次函数y = kx + b中,当k > 0时,函数图象经过______象限。

4. 一次函数y = kx + b的图象与x轴的交点为______。

5. 若一次函数y = 3x 2的图象经过点(1, a),则a的值为______。

三、解答题1. 已知一次函数y = kx + b的图象经过点(2, 5)和(4, 9),求该一次函数的解析式。

2. 一次函数y = 2x + 3与y = x + 5的图象相交于点A,求点A的坐标。

3. 在一次函数y = kx + b的图象上,任意取两点P(a, ka + b)和Q(c, kc + b),若|PQ| = 5,求k的值。

4. 已知一次函数y = kx + 1的图象与两坐标轴围成的三角形面积为2,求该一次函数的解析式。

5. 一次函数y = kx + b的图象经过点(0, 3)和(3, 0),求该一次函数的解析式。

四、判断题1. 一次函数的图象一定经过原点。

()2. 一次函数的斜率k决定了函数图象的倾斜方向,k越大,图象越陡峭。

()3. 一次函数的截距b表示函数图象与y轴的交点的横坐标。

一次函数精选20题(附答案)

一次函数精选20题(附答案)

24.(本题满分10分)工业园区某消毒液工厂,今年四月份以前,每天的产量与销售量均为500箱.进入四月份后,每天的产量保持不变,市场需求量不断增加.如图是四月前后一段时期库存量y (箱)与生产时间t (月份)之间的函数图象.(1)四月份的平均日销售量为多少箱?(2)该厂什么时候开始出现供不应求的现象,此时日销售量为多少箱?(3)为满足市场需求,该厂打算在投资不超过135万元的情况下,购买5台新设备,使扩大生产规模后的日产量不低于四月份的平均日销售量.现有A 、B 两种型号的设备可供选择,其价格与两种设备的日产量如下表:请问:有哪几种购买设备的方案?若为了使日产量最大,应选择哪种方案?24.小张骑自行车匀速从甲地到乙地,在途中休息了一段时间后,仍按原速行驶.他距乙地的距离与时间的关系如图中折线所示,小李骑摩托车匀速从乙地到甲地,比小张晚出发一段时间,他距乙地的距离与时间的关系如图中线段AB所示.(1)小李到达甲地后,再经过___小时小张到达乙地;小张骑自行车的速度是___千米/小时.(2)小张出发几小时与小李相距15千米?(3)若小李想在小张休息期间与他相遇,则他出发的时间x 应在什么范围?(直接写出答案)23.(10分)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x (套)与每套的售价1y (万元)之间满足关系式x y 21701-=,月产量x (套)与生产总成本2y (万元)存在如图所示的函数关系.(1)直接写出....2y 与x 之间的函数关系式;(2)求月产量x 的范围;(3)当月产量x (套)为多少时,这种设备的利润W (万元)最大?最大利润是多少?20.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)30 40 t /天 60 y 日销售量/万件 O 图10 20 40 t /天60 y 销售利润/(元/件) O 图1122.(本题满分10分)甲、乙两人骑自行车前往A 地,他们距A 地的路程(km)s 与行驶时间(h)t 之间的关系如图13所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(4分)(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个).(3分)(3)在什么时间段内乙比甲离A 地更近?(3分)23.(2011福建龙岩,23, 12分) 周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

一次函数练习题(大题30道)

一次函数练习题(大题30道)

1.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.2.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.3.一次函数的图象经过点(2,1)和(-1,-3)(1)求此一次函数表达式;(2)求此一次函数与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形的面积。

4.知一次函数y=kx+b的图象经过点(-1, -5),且与正比例函数y= x的图象相交于点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形面积.5.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B•在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,•求正比例函数和一次函数的解析式.6.如图,一束光线从y轴上的点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),求光线从A点到B点经过的路线的长.7.由方程│x-1│+│y-1│=1确定的曲线围成的图形是什么图形,其面积是多少?8.在直角坐标系x0y中,一次函数y=3的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.9.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.10.已知直线y=43x+4与x 轴、y 轴的交点分别为A 、B .又P 、Q 两点的坐标分别为P (•0,-1),Q (0,k ),其中0<k<4,再以Q 点为圆心,PQ 长为半径作圆,则当k 取何值时,⊙Q•与直线AB 相切?11.(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地收割小麦,其中30•台派往A 地,20台派往B 地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A 地x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y (元),请用x 表示y ,并注明x 的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.12.已知写文章、出版图书所获得稿费的纳税计算方法是f (x )=(800)20%(130%),400(120%)20%(130%),400x x x x --≤⎧⎨-->⎩ 其中f (x )表示稿费为x 元应缴纳的税额.假如张三取得一笔稿费,缴纳个人所得税后,得到7104元,•问张三的这笔稿费是多少元?13.某中学预计用1500元购买甲商品x 个,乙商品y 个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.•又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元. (1)求x 、y 的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x ,y 的值.14. 已知直线1l :45y x =-+和直线2l :142y x =-,求两条直线1l 和2l的交点坐标,并判断该交点落在平面直角坐标系的哪一个象限上.15. 已知正比例函数y =kx 经过点P (1,2),如图所示.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图像向右平移4个单位,写出在这个平移下,点P 、原点O 的像P '、O '的坐标,并求出平移后的直线的解析式.16. 如图,在直角坐标系中,已知矩形OABC 的两个顶点坐标(30)A ,,(32)B ,,对角线AC 所在直线为l ,求直线l 对应的函数解析式.17. “一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.18. 某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式.(3)种植时间为多少天时,总用水量达到7000米3?19. 武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)请直接写出冲锋舟从A 地到C 地所用的时间.(2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?物资种类 食品 药品 生活用品 每辆汽车运载量(吨) 6 5 4 每吨所需运费(元/吨) 120 160 100x天)x (分)20. 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是每分钟米,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲?此时乙距A地的高度为多少米?21. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10>)收吨的部分,按每吨b元(b a 费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元?x>时,y与x之间的函数关系式;(2)求b的值,并写出当10(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?22. 我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.23. 某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?24. 五月份,某品牌衬衣正式上市销售,5月1日的销售量为10件,5月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到5月31日销售量为0.设该品牌衬衣的日销售量为P (件),销售日期为n (日),P 与n 之间的关系如图所示.(1)写出P 关于n 的函数关系式P = (注明n 的取值范围);(2)经研究表明,该品牌衬衣的日销售量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天? (3)该品牌衬衣本月共销售了 件.25. 某市为了节约用水,规定:每户每月用水量不超过最低限量am 3时,只付基本费8元和定额损耗费c 元(c ≤5);若用水量超过am 3时,除了付同上的基本费和损耗费外,超过部分每1m 3付b 元的超额费.某市一家庭今年一月份、二月份和三月份的用水量和支付费用如下表所示:根据上表的表格中的数据,求a 、b 、c .26 .A 市、B 市和C 市有某种机器10台、10台、8台,•现在决定把这些机器支援给D 市18台,E 市10.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B•市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值27了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.28.小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x (小时)之间关系的函数图象.(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发两个半小时离家多远?(3)•求小明出发多长时间距家12千米?29.(宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30•台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,•说明有多少种分派方案,并将各种方案写出.30. 某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答数关系式.(2)如果装运每辆土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.。

一次函数综合题(难度较大)带答案

一次函数综合题(难度较大)带答案

一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数综合
1.在直角坐标系中,O 是坐标原点,点A (3,-2)在一次 函数24y x =-+图象上,图象与y 轴的交点为B ,那么AOB ∆ 面积为 .
2.如图所示的平面直角坐标系中,点A 的坐标是(—4,4)、 点B 的坐标是(2,5),在x 轴上有一动点P ,要使PA+PB 的 距离最短,则点P 的坐标是 .
3下图表示甲、乙两名选手在一次自行车越野赛中,路程y (千 米)随时间x (分)变化的图象.下面几个结论:
①比赛开始24分钟时,两人第一次相遇. ②这次比赛全程是10千米.
③比赛开始38分钟时,两人第二次相遇. 正确的结论为 .
4.如图是一次函数32
3
+-
=x y 的图象,当33<<-y 时, x 的取值范围是
A .4>x
B .20<<x
C .40<<x
D .42<<x
5.一次函数b kx y +=的图象如右图所示,
则k 、b 的值为( ) A .k >0, b >0 B .k >0, b <0 C .k <0, b >0 D .k <0, b <0
(2题图)
x
y
o
x 分
y 千米
B
A C D
5
33 O
6 7
15
43 48 (3题图)
第10题图
y
x
A
C
B
O
6、如图,直线1l 过点A (0,4),点D (4,0),直线2l :12
1
+=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。

(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。

7.如图,直线OC 、BC 的函数关系式分别是x y =1和622+-=x y ,直线BC 与x 轴交于点B ,直线BA 与直线OC 相交于点A ,求: (1)当x 取何值时1y >2y ?
(2)当直线BA 平分△BOC 的面积时,求点A 的坐标.
8.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y (km ),出租车离甲地的距离为2y (km ),客车行驶时间为x (h ),1y ,2y 与x 的函数关系图象如图12所示:
(1)根据图象,求出1y ,2y 关于x 的函数关系式。

(2)若设两车间的距离为S (km ),请写出S 关于x 的函数关系式。

(3)甲、乙两地间有A 、B 两个加油站,相距200km ,若客车进入A 站加油时,出租
车恰好进入B 站加油。

求A 加油站到甲地的距离。

(6题图)
A
B
C
O
D
x
y
1
l 2
l
9.(本小题12分)如图,l 1表示某商场一天的手提电脑销售额与销售量的关系,
l 2表示该商场一天的销售成本与手提电脑销售量的关系. (1)当销售量x =2时, 销售额 = 万元,
销售成本 = 万元,
利润(收入-成本)= 万元.(3分) (2)一天销售 台时,销售额等于销售成本.(1分) (3)当销售量 时,该商场赢利(收入大于成本),(1分)
当销售量 时,该商场亏损(收入小于成本).(1分) (4)l 1对应的函数表达式是 .(3分) (5)写出利润与销售额之间的函数表达式.(3分)
10.(本题10分)如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数22
y x =-+的图象.
(1)求A 、B 、P 三点的坐标;
(2)求四边形PQOB 的面积;
l 2
S (千米)
t (时)
O 10
22.5
7.5
0.5 3
1.5
l B
l A
11、(8′)如图,l A l B 分别表示A 步行与B 骑车在同一路上行驶的
路程S 与时间t 的关系。

(1)B 出发时与A 相距 千米。

(2)B 走了一段路后,自行车发生故障,进行
修理,所用的时间是 小时。

(3)B 出发后 小时与A 相遇。

(4)若B 的自行车不发生故障,保持出发时的速度前进,
小时与A 相遇,相遇点离B 的出发点 千米。

在图中表示出这个相遇点C 。

(5)求出A 行走的路程S 与时间t 的函数关系式。

(写出过程)
23. 如图所示,A 、B 分别是x 轴上位于原点左、右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S △AOP =6 (1)求S △COP 的面积
(2)求点A 的坐标及p 的值;
(3)若S △BOP =S △DOP ,求直线BD 的函数表达式。

相关文档
最新文档