苏州市2019年中考数学一模(解答题)压轴题汇编

合集下载

2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】

2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】

2019学年江苏省苏州市、相城、吴江区中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 化简|-2|的结果是()A.一2 B.2 C. D.±22. 下列腾讯QQ表情中,不是轴对称图形的是()3. 下列运算正确的是()A.x3+x3=2x6 B.(-x5)4=x20 C.xm•xn=xmn D.x8÷x2=x44. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17° B.34° C.56° D.68°5. 在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x-1 C.y=x+1 D.y=-x+16. 我国古代问题:以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?(注:绳儿折即把绳平均分成几等分.)()A.36,8 B.28,6 C.28,8 D.13,37. 设函数y=x+5与y=的图象的两个交点的横坐标为a、b,则的值是()A.- B. C.- D.8. 在△ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB上,使得△ADE为等腰直角三角形,∠ADE=90°,则BE的长为()A.4-2 B.2- C.-1 D.(-1)9. 在平面直角坐标系中,一次函数y=x的图象、反比例函数y=图象以及二次函数y=x2-6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,则该3点恰能作为一个三角形的三个顶点的概率是()A. B. C. D.10. 定义一个新的运算:a⊕b=,则运算x⊕2的最小值为()A.-3 B.-2 C.2 D.3二、填空题11. 已知1nm等于0.000001mm,则0.000001用科学记数法可表示为.12. 班30位女生所穿鞋子的尺码.数据如下(单位:码):13. 码号3334353637人数761511td14. “两直线平行,内错角相等”的逆命题是.15. 分解因式:2x2+x-6= .16. 如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,且AC=OC,若⊙O的半径为5,则图中阴影部分的面积是.17. 若二次函数y=ax2+bx+c(a<0)的对称轴为直线x=-1,图象经过点(1,0),有下列结论:①abc<0;②2a-b=0;③a+b+c>0;④b2>5ac,则以上结论一定正确的个数是。

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题附解析

2019年江苏省苏州市中考数学一模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,AB 切⊙O 于 B ,割线 ACD 经过圆心0,若∠BCD=70°,则∠A 的度数为( ) A .20°B .50°C .40°D .80°2.若tan (α+10°)=3,则锐角α的度数是( ) A .20° B .30° C .35° D .50° 3.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23−C . 23±D .32± 4.如图,点D ,E ,F 分别是△ABC 三边的中点,且S △DEF =3,则△ABC 的面积等于( )A .6B .9C .12D .155. 已知 2 是关于y 的方程23202y a −=的一个解,则21a −的值是( ) A . 3B . 4C . 5D . 66.直线443y x =−−与两坐标轴围成的三角形面积是( ) A .3 B . 4 C . 6 D . 12 7.已知某样本的方差是4,则这个样本的标准差是( )A .2B .4C .8D .168.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个9.有下列计算 :①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯−=−;④(36)(9)4−÷−=−. 其中正确的有( ) A . 1个B . 2个C .3个D .4个二、填空题10.在 Rt △ABC 中,∠C= Rt ∠,AB=5 cm ,BC= 3 cm ,以 A 为圆心,4 cm 长为半径作圆,则:(1) 直线 BC 与⊙A 的位置关系是 ; (2)直线 AC 与⊙A 的位置关系是 .(3)以 C 为圆心,半径为 cm 的圆与直线 AB 相切.11.若y 是关于x 的反比例函数,当x=-3 时,y=4,则y 关于x 的函数解析式为 . 12.当a 时,二次根式3a −−−有意义. 13.二次根式14x −中,字母x 的取值范围是 .14.填空: (1)21122818323−+−= ; (2)2211()0.339+−= ; (3) 482375+− ; (4)3111212233−−= . 15.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为4cm,则其腰上的高为 .16.多项式24ax a −与多项式244x x −+的公因式是 .17.如图是一个个五叶风车示意图,它可以看做是由“基本图案” 绕着点O 通过 次旋转得到的.18.已知a 2-ab=15,ab-b 2= -10,则代数式a 2-b 2= .三、解答题19.已知二次函数y =x 2+ax +a -2,证明:不论a 取何值,抛物线的顶点总在x 轴的下方. Δ=(a-2)2+4>0,抛物线与x 轴有两个交点,又抛物线的开口向上,所以抛物线的顶点总在x 轴的下方.20.二次函数 y=ax 2+c(a,c 为已知常数),当x 取值x 1,x 2时(x 1≠x 2),函数值相等,求当x =x 1+x 2时函数的值21.某人骑自行车以10km/h 的速度由 A 地到B 地,路上用了 6 h.(1)如果以 v(km/h)的速度行驶,那么需t(h)到达,写出 t 与 v 之间的函数关系式; (2)如果返回时以 12 km/h 的速度行进,求路上所需的时间? (3)如果要求在 4 h 内到达,那么速度至少要多少?22.用反证法证明:在一个三角形中,如果两条边不等,那么它们所对的角也不等.23.解下列方程:(1)0252=−−x x ; (2)0)52(4)32(922=−−+x x (3)3)76(2)76(222=−−−x x x x24.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台4325.如图,已知等腰直角三角形ABC中,∠BAC=90°,∠ABC的平分线交AC于D,过C 作BD的垂线交BD的延长线于E,交BA的延长线于F,请说明:(1)△BCF是等腰三角形;(2)△ABD≌△ACF;(3)BD=2CE.26.如图,在等边△ABC所在平面内求一点,使△PAB、△PBC、△PAC都是等腰三角形,你能找到这样的点吗?27.如图,地面上的电线杆 AB、CD 都与地面垂直,那么电线杆AB 和 CD 平行吗?为什么?28.⑴分析图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.⑵如图,由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.29.球的体积公式为343r π,求地球的体积.(地球的半径6371 km ,结果保留2个有效数字)30.求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5 (4)132−与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.C6.C7.A8.B9.B二、填空题10.(1)相切;(2)相交;(3)12 511.12y x=−12. 3≤−13. 4x >14.(12)0. 3;(34) 15..2x − 17.△0AB ,418.5三、解答题 19. 20.ax 12+c =ax 22+c ,则x 1+x 2=0,所以y =c .21.(1)设 t 与 v 之间的函数关系式为st v =,其中 s 为A 地、B 地间距离. ∵当 t=6 时,v= 10,∴s =60,∴60t v=(2)v= 12 时,60512t ==,∴路上要用 5 h . (3)t=4 时,60154v ==,∴速度至少要 15 km/h . 22.略23.⑴2335,233521+=−=x x ;⑵219,10121−==x x ; ⑶61,1,31,234321==−==x x x x . 24.(1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.25.(1)利用△CBE≌△FBE来说明;(2)利用ASA说明;(3)利用CF=2CE而CF=BD来说明26.共有10个,等边三角形共有三条对称轴,每条对称轴上有4个点,有3个点重合27.AB∥CD(同位角相等,两直线平行)28.略.29.1.O8×lO12km330.(1)5.2 (2)124(3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。

2019年江苏省苏州市相城区中考数学一模试卷及参考答案

2019年江苏省苏州市相城区中考数学一模试卷及参考答案

2 的度数为(
A.26°
B.28°
C.34°
D.36°
6.(3 分)已知反比例函数 y= (k 为常数),当 x<0 时,y 随 x 的增大而减小,k 的取
值范围是( )
A.k<0
B.k>0
C.k<3
D.k>3
7.(3 分)如图,△ABC 内接于圆 O,∠OAC=25°,则∠ABC 的度数为( )
A.110°
A.7
B.8
C.9
D.10
3.(3 分)有一组数据:1,2,2,5,6,8,这组数据的中位数是( )
A.2
B.2.5
C.3.5
D.5
4.(3 分)下列运算结果正确的是( )
A.(a2)3=a5
B.(a﹣b)2=a2﹣b2
C.﹣3a2b﹣2a2b=﹣5a2b
D.﹣a2b+a2=﹣b
5.(3 分)如图,△ABC 是等边三角形,点 C 在直线 b 上,若直线 a∥b,∠1=34°,则∠
,m=

(2)扇形统计图中学生到校方式是“步行”所对应扇形的圆心角的度数是

(3)若该校共有 1500 名学生,请根据统计结果估计该校到校方式为“乘车”的学生人
数;
(4)现从四名采取不同到校方式的学生中抽取两名学生进行问卷调查,请你用列表或画
树状图的方法,求出正好选到到校方式为“骑车”和“步行”的两名学生的概率.
24.(8 分)如图,在平行四边形 ABCD 中,AC⊥DE,AE=AD,AE 交 BC 于 O. (1)求证:∠BCA=∠EAC; (2)若 CE=3,AC=4,求△COE 的周长.
25.(8 分)如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y= 在第一象限的图象经过点 D,交 BC 于 E.

2019年江苏省苏州市中考数学一模试卷(含答案解析)

2019年江苏省苏州市中考数学一模试卷(含答案解析)
【第6题】 【答案】 D 【 解析 】 解:∵ 四边形 ABCD 内接于⊙O,∠ C=130°, ∴ ∠ A=50°, ∵ DO=AO, ∴ ∠ ADO=∠ A=50°, ∴ ∠ AOD=80°, ∵ BC∥ OD, ∴ ∠ AOD=∠ B=80°. 故选:D. 直接利用圆内接四边形的性质得出∠ A=50°,进而利用等腰三角形的性质和平行线的性质分析得 出答案. 此题主要考查了圆内接四边形的性质以及等腰三角形的性质和平行线的性质,正确得出∠ A 的度 数是解题关键.
°
°
°
°
8、(3 分) 如图,一架无人机航拍过程中在 C 处测得地面上 A,B 两个目标点的俯角分别为 30°和 60°.若 A,B 两个目标点之间的距离是 120 米,则此时无人机与目标点 A 之间的距离(即 AC 的 长)为( )


B.


D. 米
9、(3 分) 已知,在 Rt△ ABC 中,∠ ACB=90°,点 D,E 分别是 AB,BC 的中点,延长 AC 到 F,使 得 CF= AC,连接 EF.若 EF=4,则 AB 的长为( )

27、(10 分) 如图 1,在平面直角坐标系中,一次函数 y=- x+8 的图象与 y 轴交于点 A,与 x 轴交 于点 B,点 C 是 x 轴正半轴上的一点,以 OA,OC 为边作矩形 AOCD,直线 AB 交 OD 于点 E,交 直线 DC 于点 F. (1)如图 2,若四边形 AOCD 是正方形. ①求证:△ AOE≌ △ COE; ②过点 C 作 CG⊥CE,交直线 AB 于点 G.求证:CG=FG. (2)是否存在点 C,使得△ CEF 是等腰三角形若存在,求该三角形的腰长;若不存在,请说明 理由.
!

2019年江苏省苏州市吴江市中考数学一模试卷

2019年江苏省苏州市吴江市中考数学一模试卷


16.(3 分)如图,AB 是半圆 O 的直径,点 C,D 是半圆 O 的三等分点,若弦 CD=6,则
图中阴影部分的面积为

17.(3 分)在一次综合社会实践活动中,小东同学从 A 处出发,要到 A 地北偏东 60°方向
第 2页(共 23页)
的 C 处,他先沿正东方向走了 2 千米到达 B 处,再沿北偏东 15°方向走,恰能到达目的
且 x1<1<x2,则 a 的取值范围是( )
A.﹣ <a<﹣ B.﹣ <a<0
C.0<a<
D. <a<
【解答】解:由已知得:a≠0 且△=(a+2)2﹣16a2>0
解得:
,且 a≠0,
∵x1<1<x2,
∴(x1﹣1)(x2﹣1)<0,
∴x1x2﹣(x1+x2)+1<0,


解得:

综合以上可得,

A.15
B.5
C.20
D.10
10.(3 分)若二次函数 y=ax2+(a+2)x+4a 的图象与 x 轴有两个交点(x1,0),(x2,0),
且 x1<1<x2,则 a 的取值范围是( )
A.﹣ <a<﹣ B.﹣ <a<0
C.0<a<
D. <a<
二、填空题(本大题共 8 小题,每小题 3 分,共 24 分,把答案直接填在答题卡相对应的位 置上)
24.(8 分)如图,在平行四边形 ABCD 中,AC⊥DE,AE=AD,AE 交 BC 于 O. (1)求证:∠BCA=∠EAC; (2)若 CE=3,AC=4,求△COE 的周长.
25.(8 分)如图,边长为 2 的正方形 ABCD 的顶点 A,B 在 x 轴正半轴上,反比例函数 y= 在第一象限的图象经过点 D,交 BC 于 E.

2019年江苏省苏州市昆山市中考数学一模试卷(解析版)

2019年江苏省苏州市昆山市中考数学一模试卷(解析版)

2019年江苏省苏州市昆山市中考数学一模试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.-12的倒数是()A. 12B. 2 C. −12D. −22.计算−√(−2)2的结果是()A. 2B. −2C. −4D. 43.下列计算正确的是()A. 2a+3b=5abB. (−2a2b)3=−6a6b3C. √8+√2=3√2D. (a+b)2=a2+b24.化简x2x−1+11−x的结果是()A. x+1B. 1x+1C. x−1 D. xx−15.若2x-3y2=3,则1-x+32y2的值是()A. −2B. −12C. 32D. 46.如图,D是△ABC的边AB的延长线上一点,DE∥BC,若∠A=32°,∠D=56°.则∠C的度数是()A. 16∘B. 20∘C. 24∘D. 28∘7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D,E,连接AD,若△ABD的周长C△ABD=16cm,AB=5cm,则线段BC的长度等于()A. 8cmB. 9 cmC. 10 cmD. 11 cm8.对于二次函数y=-14x2+x-4,下列说法正确的是()A. 当x>0时,y随x的增大而增大B. 当x=2时,y有最大值−3C. 图象的顶点坐标为(−2,−7)D. 图象与x轴有两个交点9.如图所示,直线y=kx+b经过点(-2,0),则关于x的不等式kx-b<0的解集为()A. x >−1B. x <−2C. x <1D. x <210. 如图,将边长为10的等边三角形OAB 位于平面直角坐标系第一象限中,OA 落在x 轴正半轴上,C 是AB 边上的动点(不与端点A 、B 重合),作CD ⊥OB 于点D ,若点C 、D 都在双曲线y =kx (k >0,x >0)上,则k 的值为( )A. 9√3B. 18C. 25√3D. 9二、填空题(本大题共8小题,共24.0分) 11. 因式分解:2x 2-8=______. 12. 函数y =√2−3x x中,自变量x 的取值范围是______.13. 若1<a <2,化简|a -2|+|1-a |的结果是______.14. 已知关于x 的一元二次方程ax 2+x +a 2-2a =0的一个根是x =0,则系数a =______. 15. 已知,点P (a ,b )为直线y =x -3与双曲线y =-2x 的交点,则1b -1a 的值等于______. 16. 如图,已知△ABC 中,AB =AC ,∠CAB 的角平分线与外角∠CBD 的角平分线交于点M ,且∠AMB =35°,则∠CAB =______.17. 如图,已知抛物线y =ax 2+bx +4与x 轴、y 轴正半轴分别交于点A 、B 、D ,且点B 的坐标为 (4,0),点C 在抛物线上,且与点D 的纵坐标相等,点E 在x 轴上,且BE =AB ,连接CE ,取CE 的中点F ,则BF 的长为______.18. 如图,平面直角坐标系中,已知直线y =kx (k ≠0)经过点P (2,1),点A 在y 轴的正半轴上,连接PA ,将线段PA 绕点P 顺时针旋转90°至线段PB ,过点B 作直线MN ⊥x 轴,垂足为N ,交直线y =kx (k ≠0)于点M (点M 在点B 的上方),且BN =3BM ,连接AB ,直线AB 与直线y =kx (k ≠0)交于点Q ,则点Q 的坐标为______.三、计算题(本大题共2小题,共12.0分)19. 解不等式组,并写出该不等式组的所有整数解.{5x +2≥3(x −1)1−x −26>12x20. 先化简再求值:a 2+a a 2+2a+1÷(a a−1-3a−1a 2−1),其中a =√3+1.四、解答题(本大题共8小题,共64.0分) 21. 计算:(1)(√3-1)0-|-√2|+√8(2)22+(1-√2)2-√12tan30° 22. 解方程:2(x+1)x−1-x−1x+1=123. 某学校为了了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生“一分钟跳绳”测试的成绩按A ,B ,C ,D 四个等级进行了统计,并绘制了如下两幅不完整的统计图(1)本次随机调查抽样的样本容量为______;(2)D等级所对扇形的圆心角为______°,并将条形统计图补充完整;(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级“一分钟跳绳”测试成绩为A等级的学生有______人;(4)现有测试成绩为A等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率.24.已知关于x的一元二次方程x2+(2m-1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12-x22=0时,求m的值.25.已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.(1)求证:△BDF≌△ADC;(2)若BD=4,DC=3,求线段BE的长度.26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)当轿车刚到乙地时,此时货车距离乙地______千米;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当轿车与货车相距20千米时,求x的值.27.如图,在平面直角坐标系中,直线AB与x轴交于点A(-2,0),交y轴于点C,(x>0)在第一象限内的图象交于点B(2,n),连接BO,且S△AOB=4.与反比例函数y=kx(1)求该反比例函数y=k(x>0)的解析式和直线AB的解析式;x个单位,与y轴的交点为D,交反比例函数图象于点(2)若将直线AB向下平移73E,连接BE,CE,求△BCE的面积S△BCE.28.如图,抛物线y=ax2-3ax+c(a≠0)与x轴交于A,B两点,交y轴于点C,其中A(-1,0),C(0,3).(1)求抛物线的解析式;(2)点P是线段BC上方抛物线上一动点(不与B,C重合),过点P作PD⊥x轴,垂足为D,交BC于点E,作PF⊥直线BC于点F,设点P的横坐标为x,△PEF的周长记为l,求l关于x的函数关系式,并求出l的最大值及此时点P的坐标;(3)点H是直线AC上一点,该抛物线的对称轴上一动点G,连接OG,GH,则两线段OG,GH的长度之和的最小值等于______,此时点G的坐标为______(直接写出答案.)答案和解析1.【答案】D【解析】解:∵-×(-2)=1,∴-的倒数是-2,故选:D.根据乘积为1的两个数互为倒数,直接解答即可.本题主要考查倒数的定义,解决此类题目时,只要找到一个数与这个数的积为1,那么此数就是这个数的倒数,特别要注意:正数的倒数也一定是正数,负数的倒数也一定是负数.2.【答案】B【解析】解:原式=-|-2|=-2.故选:B.根据=|a|得到原式=-|-2|,然后利用绝对值的意义去绝对值即可.本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.3.【答案】C【解析】解:A、2a+3b无法计算,故此选项错误;B、(-2a2b)3=-8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.直接利用二次根式加减运算法则以及完全平方公式和积的乘方运算法则分别化简求出答案.此题主要考查了二次根式加减运算以及完全平方公式和积的乘方运算等知识,正确把握相关运算法则是解题关键.4.【答案】A【解析】解:原式=-===x+1.故选:A.原式变形后,利用同分母分式的减法法则计算即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:∵2x-3y2=3,∴x-y2=,则原式=1-(x-y2)=1-=-,故选:B.将已知等式变形为x-y2=,再代入到原式=1-(x-y2)计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.6.【答案】C【解析】解:∵DE∥BC,∠D=56°,∴∠DBC=56°,∵∠A=32°,∴∠C=56°-32°=24°,故选:C.根据平行线的性质求出∠DBC,根据三角形外角性质得出即可.本题考查了三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键.7.【答案】D【解析】解:∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+B,∵C△ABD=16cm,AB=5cm,∴BC=11cm,故选:D.根据线段垂直平分线性质求出AD=DC,得出△ABD周长=AB+BC即可.本题考查了线段垂直平分线性质的应用,关键是根据线段垂直平分线上的点到线段两个端点的距离相等解答.8.【答案】B【解析】解:∵二次函数y=-+x-4可化为y=-(x-2)2-3,又∵a=-<0∴当x=2时,二次函数y=-x2+x-4的最大值为-3.故选:B.先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.【答案】B【解析】解:由图象可得:当x<-2时,kx+b<0,所以关于x的不等式kx+b<0的解集是x<-2,故选:B.观察函数图象得到即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.【答案】A【解析】解:过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示.可得:∠ODE=30∠BCD=30°,设OE=a,则OD=2a,DE=a,∴BD=OB-OD=10-2a,BC=2BD=20-4a,AC=AB-BC=4a-10,∴AF=AC=2a-5,CF=AF=(2a-5),OF=OA-AF=15-2a,∴点D(a,a),点C[15-2a,(2a-5)].∵点C、D都在双曲线y=(k>0,x>0)上,∴a•a=(15-2a)×(2a-5),解得:a=3或a=5.当a=5时,DO=OB,AC=AB,点C、D与点B重合,不符合题意,∴a=5舍去.∴点D(3,3),∴k=3×3=9.故选:A.根据等边三角形的性质表示出D,C点坐标,进而利用反比例函数图象上点的坐标特征得出答案.本题考查了反比例函数图象上点的坐标特征以及等边三角形的性质,解题的关键是找出点D、C的坐标.11.【答案】2(x+2)(x-2)【解析】解:2x2-8=2(x+2)(x-2).观察原式,找到公因式2,提出即可得出答案.本题考查提公因式法和公式法分解因式,是基础题.12.【答案】x≤2且x≠03【解析】解:由题意得,2-3x≥0且x≠0,解得,x≤且x≠0.故答案为:x≤且x≠0.根据被开方数大于等于0,分母不等于0列式求解即可.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.【答案】1【解析】解:∵1<a<2,∴a-2<0,1-a<0,∴|a-2|+|1-a|=-a+2-1+a=1,故答案为:1.判断a-2、1-a是正数还是负数,然后利用绝对值的概念进行化简即可.本题考查了绝对值的概念,解题的关键是根据得出a-2、1-a是正数还是负数.14.【答案】2【解析】解:把x=0代入一元二次方程ax2+x+a2-2a=0得a2-2a=0,解得a1=0,a2=2,而a≠0,所以a的值为2.故答案为2.把x=0代入一元二次方程ax2+x+a2-2a=0得a2-2a=0,解得a1=0,a2=2,然后根据一元二次方程的定义确定a的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.【答案】-32【解析】解:∵点P(a,b)为直线y=x-3与双曲线y=-的交点,∴b=a-3,b=-,∴a-b=3,ab=-2.∴-===-.故答案是:-.将点P分别代入两函数解析式得到:b=a-3,b=-,进而得到a-b=3,ab=-2.将其代入求值即可.本题考查了反比例函数与一次函数的交点,难度适中,关键是得到a-b=3,ab=-2.16.【答案】40°【解析】解:∵△ABC中,AB=AC,AM是∠CAB的角平分线,∴AM⊥BC,∴∠MOB=90°,∵∠AMB=35°,∴∠CBM=55°,∵BM是∠CBD的角平分线,∴∠CBD=110°,∴∠CBA=70°,∵AB=AC,∴∠CAB=180°-70°-70°=40°,故答案为:40°.根据等腰三角形的性质得出AM⊥CB,进而利用角平分线的定义和三角形的内角和解答即可.本题考查了等腰三角形的性质,角平分线定义,求出∠CBM=55°以及∠CBA=70°是解题的关键.17.【答案】2√2【解析】解:∵点C在抛物线上,且与点D的纵坐标相等,D(0,4),∴把y=4代入y=ax2+bx+4得,ax2+bx+4=4,解得:,∴点C的坐标为,∵抛物线y=ax2+bx+4与x轴正半轴交于点A、B两点,∴ax2+bx+4=0两根为x A,x B,且,∴,点A的坐标为,∴,连AC,BE=AB,CE的中点是F,∴.故答案为:.根据题意表示点C的坐标为,点A的坐标为,连结AC,由中位线定理得AC=2BF,求出AC长即可得解.本题考查二次函数图象上点的坐标特征及中位线定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.18.【答案】(7,7)2【解析】解:∵直线y=kx(k≠0)经过点P(2,1),∴k=,∴直线OM的解析式为:y=x,过P作EF∥x轴交y轴于E交MN于F,∵MN⊥x轴,∴MN∥AO,∴四边形OEFN是矩形,∵P(2,1),∴OE=FN=1,PE=2,∴∠OEF=∠EFN=90°,∴∠AEF=∠BFE=90°,∵∠APB=90°,∴∠EAP+∠APE=∠APE+∠BPF=90°,∴∠EAP=∠BPF,在△AEP与△PFB中,∴△AEP ≌△PFB (AAS ), ∴AE=PF ,PE=BF=2, ∴BN=3, ∵BN=3BM , ∴BM=1, ∴MN=4,∴点M 的纵坐标为4, ∴M (8,4), ∴PF=AE=6,∴A (0,7),B (8,3),设直线AB 的解析式为:y=kx+b , ∴, ∴,∴直线AB 的解析式为:y=-x+7,由得,∴点Q 的坐标为(7,). 故答案为:(7,).根据已知条件得到直线OM 的解析式为:y=x ,过P 作EF ∥x 轴交y 轴于E 交MN 于F ,推出四边形OEFN 是矩形,根据全等三角形的性质得到AE=PF ,PE=BF=2,求得A (0,7),B (8,3),列方程组即可得到结论.本题考查一次函数的应用、待定系数法、全等三角形的判定和性质、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数,利用方程组求交点坐标,属于中考填空题中的压轴题.19.【答案】解:解不等式5x +2≥3(x -1),得:x ≥-52,解不等式1-x−26>12x ,得:x <2,∴不等式组的解集为-52≤x <2,则不等式组的整数解为-2,-1,0,1. 【解析】分别求出每一个不等式的解集,根据口诀“大小小大中间找”确定不等式组的解集,再在解集内确定其整数解即可.本题主要考查解一元一次不等式组和不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:原式=a(a+1)(a+1)2÷[a 2+a(a+1)(a−1)-3a−1(a+1)(a−1)] =aa+1÷(a−1)2(a+1)(a−1)=a a+1•a+1a−1 =aa−1, 当a =√3+1时,原式=√3+1√3=3+√33. 【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.【答案】解:(1)原式=1-√2+2√2=1+√2;(2)原式=3√24+1-2√2+2-2√3×√33=3√24+3-2√2-2=1-5√24.【解析】(1)根据零指数幂和绝对值的意义计算;(2)根据完全平方公式和特殊角的三角函数值计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.22.【答案】解:2(x+1)2-(x-1)2=x2-16x=-2x=−1,3是原方程的根,经检验,x=-13.所以原方程的解为:x=-13【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.【答案】80 18 120【解析】解:(1)本次随机调查抽样的样本容量为20÷25%=80,故答案为:80;(2)D等级所对扇形的圆心角为360°×=18°,B等级的人数为80×40%=32,补全图形如下:故答案为:18;(3)根据以上样本估计全校九年级“一分钟跳绳”测试成绩为A等级的学生有400×=120(人),故答案为:120; (4)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况, ∴选出的2人恰好是1男1女的概率为=.(1)由C 等级人数及其对应的百分比可得样本容量;(2)用360°乘以样本中D 等级人数所占比例,再用总人数乘以B 等级百分比可得其人数,从而补全图形;(3)总人数乘以样本中A 等级人数所占比例即可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好是1男1女的情况,再利用概率公式求解即可求得答案. 此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比. 24.【答案】解:(1)由题意有△=(2m -1)2-4m 2≥0,解得m ≤14,∴实数m 的取值范围是m ≤14;(2)由两根关系,得根x 1+x 2=-(2m -1),x 1•x 2=m 2, 由x 12-x 22=0得(x 1+x 2)(x 1-x 2)=0, 若x 1+x 2=0,即-(2m -1)=0,解得m =12, ∵12>14,∴m =12不合题意,舍去, 若x 1-x 2=0,即x 1=x 2∴△=0,由(1)知m =14,故当x 12-x 22=0时,m =14. 【解析】(1)若一元二次方程有两实数根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围;(2)由x 12-x 22=0得x 1+x 2=0或x 1-x 2=0;当x 1+x 2=0时,运用两根关系可以得到-2m-1=0或方程有两个相等的实根,据此即可求得m 的值.本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.25.【答案】证明:(1)∵AD ⊥BC ,∠ABC =45° ∴∠ABC =∠BAD =45°,∴AD =BD ,∵DA ⊥BC ,BE ⊥AC∴∠C +∠DAC =90°,∠C +∠CBE =90°∴∠CBE =∠DAC ,且AD =BD ,∠ADC =∠ADB =90°∴△BDF ≌△ADC (ASA ) (2)∵△BDF ≌△ADC∴AD =BD =4,CD =DF =3,BF =AC ∴BF =√BD 2+DF 2=5 ∴AC =5,∵S △ABC =12×BC ×AD =12×AC ×BE ∴7×4=5×BE ∴BE =285 【解析】(1)由题意可得AD=BD ,由余角的性质可得∠CBE=∠DAC ,由“ASA”可证△BDF ≌△ADC ;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC ,由三角形的面积公式可求BE 的长度.本题考查了全等三角形的判定和性质,等腰三角形的性质,利用三角形面积公式可求BE 的长度. 26.【答案】30【解析】解:(1)根据图象信息:货车的速度V货=,∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300-270=30(千米).所以轿车到达乙地后,货车距乙地30千米.故答案为:30;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,,解得,∴CD段函数解析式:y=110x-195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴当x=3.9时,轿车与货车相遇;(3)当x=2.5时,y货=150,两车相距=150-80=70>20,由题意60x-(110x-195)=20或110x-195-60x=20,解得x=3.5或4.3小时.答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300-270=30千米;(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;(3)分两种情形列出方程即可解决问题.本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.27.【答案】解:(1)∵S△AOB═12AO⋅y B=4,A(-2,0),∴n=4,即B(2,4),∴k=2n=8,即反比例函数的解析式为y=8x;设直线AB:y=mx+n,则{2m+n=4−2m+n=0,∴{n=2m=1,∴直线AB:y=x+2;(2)连接BD,CD,由题可知BC∥DE,CD=73,∴S△BCE=S△BCD,又∵B(2,4),∴S△BCD=12CD⋅x B=73,∴S△BCE=73.【解析】(1)先求出点B的坐标,即可得出反比例函数y=(x>0)的解析式,再运用待定系数法求直线AB的解析式;(2)连接BD,CD,根据题意可知S△BCE=S△BCD,据此解答即可.此题考查了反比例函数与一次函数的交点问题,涉及的知识有:勾股定理,待定系数法求函数的解析式,三角形的面积,以及三角函数的定义,用待定系数法确定函数的解析式,是常用的一种解题方法,同学们要熟练掌握这种方法.28.【答案】65√10(32,12)【解析】解:(1)将A、C代入解析式,可得c=3,a=∴抛物线的解析式为y=-x2+x+3(2)设P(m,-m2+m+3)直线BC的解析式为y=x+3点E(m,m+3)∴PE=-m2+m+3+m-3=-m2+3m∵△OBC∽△PEF∴=∴l=-m2+m当m=2时L的最大值为点P坐标为(2,)(3)如图,作点O关于对称轴的对称点Q(3,0),作QH⊥AC交对称轴于G∵△AOC∽△ABH∴=∴=∴QH=∵△GMQ∽△ACO∴=∴=∴GM=∴G(,)(1)将点A、C代入求得解析式;(2)设出点P和点E的坐标,表示出线段PE的长度表达式,由△PEF∽△BOC,通过相似比等于周长之比,也等于对应线段之比,求出△PEF的周长表达式,从而求出最大值和点P坐标;(3)线段之和求极值的类型,将点O关于抛物线的对称轴对称,得到点Q,过点Q作QH⊥AC,交对称轴于一点G,则QH即为OG+GH长度之和的最小值.本题考查了周长极值,线段极值,(2)要注意△OBC与△PEF之间的相似关系,运用相似之比获得周长表示式会更快些,(3)要了解点与线之间垂线段最短,本题是一道很好的压轴题.。

江苏省苏州市2019年中考数学一模(解答题)压轴题汇编(含答案)

江苏省苏州市2019年中考数学一模(解答题)压轴题汇编(含答案)

苏州市2019年中考数学一模(解答题)压轴题汇编昆山市一模 27.(本题满分9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点A (-2,0),交y 轴于点C ,与反比例函数(0)ky x x=>在第一象限内的图像交于点B (2,n ),连接BO ,且S △AOB =4.(1)求该反比例函数(0)ky x x =>的解析式和直线AB 的解析式; (2)若将直线AB 向下平移73个单位,与y 轴的交点为D ,交反比例函数图像于点E ,连接BE ,CE ,求△BCE 的面积S △BCE28.(本题满分10分)如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。

)苏州市吴中、吴江、相城一模27.(本题满分10分)如图,抛物线234(0)y ax ax a a =--<与x 轴交于,A B 两点,直线 1122y x =+经过点A ,与抛物线的另一个交点为点C ,点C 的横坐标为3,线段PQ 在线段AB 上移动,PQ =1,分别过点,P Q 作x 轴的垂线,交抛物线于,E F ,交直线于,D G . (1)求抛物线的解析式;(2)当四边形DEFG 为平行四边形时,求出此时点P ,Q 的坐标;(3)在线段PQ 的移动过程中,以D ,E ,F ,G 为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.28.(本题满分10分)如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着E B CAQ=, 速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,10∆的面积为y,点p运动的时间为t秒,y与t的函数关系如图②所示.设PAQ(1)图①中AB= ,BC= ,图②中m= .(2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由:(3)点p在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A'落在矩形的一边上.苏州市高新区27.(本题满分10分)如图1,矩形ABCD 中,BC =12cm ,点P 从A 点出发,以2cm/s 的速度沿A B C --匀速运动,运动到C 点时停止;点Q 从B 点出发,以a cm/s 的速度沿B C D A ---匀速运动,运动到A 点时停止.若,P Q 两点同时出发,设点P 运动的时间为t (s), PBQ ∆的面积为S (cm 2),S 与t 之间的函数关系由图2中的曲线段OEF 、线段,FG GH 表示.(1) a = ,AB = ;(2)求图2中曲线段OEF 对应的函数表达式以及这个函数的最大值; (3)当02t ≤≤,若PDQ ∆为直角三角形,求t 的值.28.(本题满分10分)如图1,抛物线21:34C y x x =--+与x 轴交于,A B 两点(点A 在点B 的右侧),与B 轴的正半轴相交于C 点. (1)如图1,求:抛物线1C 顶点D 的坐标;(2)如图2,把抛物线1C 以1个单位长度砂的速度向右平移得到抛物线2C ,同时ABC ∆以2个单位长度/秒的速度向上平移得到A B C '''∆,当抛物线2C 的顶点D '落在A B C '''∆之内 时,设平移的时间为t 秒. ①求t 的取值范围;②若抛物线2C 与y 轴相交于E 点,是否存在这样的t ,使得90A EB ''∠=︒,若存在,求出t 的值;若不存在,请说明理由.苏州工业园区27.(本题满分10分)如图,以ABC ∆的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .(1)求证:DE 是⊙O 的切线:(2)设CDE ∆的面积为1S ,四边形ABED 的面积为2S .若215S S =,求tan BAC ∠的值;(3)在(2)的条件下,若AE =O 的半径长.28.(本题满分10分)如图①,在矩形ABCD 中,动点P 从点A 出发,以1 cm/s 的速度沿AD 向终点D 移动,设移动时间为t (s).连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF .设PCD ∆的面积为y (cm 2). y 与t 之间的函数关系如图②所示.(1) AB = cm ,AD = cm;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值; (3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.苏州市区中学一模27.(本题满分10分)如图1,在平面直角坐标系中,一次函数483y x=-+的图像与y轴交于点A,与x轴交于点B点C是x轴正半轴上的一点,以,OA OC为边作矩形AOCD,直线AB交OD于点E,交直线DC于点F.(1)如图2,若四边形AOCD是正方形.①求证: AOE COE ∆≅∆;②过点C 作CG CE ⊥,交直线AB 于点G .求证: CG FG =.(2)是否存在点C ,使得CEF ∆是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(本题满分10分)如图,在平面直角坐标系中,一次函数3y x =-的图像与x 轴交于点A , 与y 轴交于点B ,点B 关于x 轴的对称点是C ,二次函数2y x bx c =-++的图像经过点A 和点C .(1)求二次函数的表达式;(2)如图1,平移线段AC ,点A 的对应点D 落在二次函数在第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标;(3)如图2,在(2)的条件下,连接CD ,交CD 轴于点M ,点P 为直线AC 上方抛物线上一动点,过点P 作PF AC ⊥,垂足为点F ,连接PC ,是否存在点P ,使得以点,,P C F 为顶点的三角形与COM ∆相似?若存在,求点P 的横坐标:若不存在,请说明理由.常熟市模拟27.(本题满分10分)如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG ∆是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由28.(本题满分10分)如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C -.(1)求二次函数的表达式及点A 、点B 的坐标;(2)若点D 在二次函数图像上,且45DBC ABC S S ∆∆=,求点D 的横坐标; (3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作//ME y 轴,与直线BC 交于点E ,过N 作//NF y 轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.太仓市模拟27.(本题满分10分)如图,己知Rt ABC ∆中,90C ∠=︒,8,6AC BC ==,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A B C →→方向运动,它们到C 点后都停止运动,设点,P Q 运动的时间为t 秒.(1)当 2.5t =时,PQ = ;(2)经过t 秒的运动,求ABC ∆被直线PQ 扫过的面积S 与时间t 的函数关系式;(3),P Q 两点在运动过程中,是否存在时间t ,使得PQC ∆为等腰三角形?若存在,求出此时t 的值;若不存在,请说明理由.28.(本题满分11分)如图,在平面直角坐标系xOy 中,直线//l x 轴,且直线l 与抛物线24y x x =-+和y 轴分别交于点,,A B C ,点D 为抛物线的顶点.若点E 的坐标为(1,1),点A 的横坐标为1.(1)线段AB 的长度等于 ;(2)点P 为线段AB 上方抛物线上的一点,过点P 作AB 的垂线交AB 于点H ,点F 为y轴上一点,当PBE ∆的面积最大时,求2PH HF FO ++的最小值; (3)在(2)的条件下,删除抛物线24y x x =-+在直线PH 左侧部分图象并将右侧部分图象沿直线PH 翻折,与抛物线在直线PH 右侧部分图象组成新的函数M 的图象.现有平行于FH 的直线1l :y mx t =+,若直线1l 与函数M 的图象有且只有2个交点,求t 的取值范围(请直接写出t 的取值范围,无需解答过程).。

2019年苏州市工业园区中考数学一模试卷含答案解析

2019年苏州市工业园区中考数学一模试卷含答案解析

2019年江苏省苏州市工业园区中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算(﹣2)×3的结果是()A.﹣6 B.6 C.﹣5 D.52.已知∠α和∠β互为余角.若∠α=40°,则∠β等于()A.40°B.50°C.60°D.140°3.若式子在实数范围内有意义,则x的取值范围是()A.x≠1 B.x>1 C.x≥1 D.x≤14.太阳的半径约为696 300km.696 300这个数用科学记数法可表示为()A.0.696 3×106B.6.963×105C.69.63×104D.696.3×1035.如图,一个正六边形转盘被分成6个全等的正三角形.任意旋转这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.6.某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图.根据图中信息,可以估算出该校喜爱体育节目的学生共有()A.300名B.250名C.200名D.150名7.二次函数y=x2﹣2x﹣1的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC9.如图,PA切⊙于点A,OP交⊙O于点B,且点B为OP的中点,弦AC∥OP.若OP=2,则图中阴影部分的面积为()A. B. C. D.10.如图,已知△ABC,∠C=90°,∠A=30°,AC=,动点D在边AC上,以BD 为边作等边△BDE(点E、A在BD的同侧),在点D从点A移动至点C的过程中,点E移动的路线为()A.B.2 C.D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.计算:(﹣2x)2=.12.有一组数据:3,5,7,6,5,这组数据的中位数是.13.如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=°.14.方程的解是x=.15.若a2﹣3a+2=0,则1+6a﹣2a2=.16.将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为.17.如图,小岛A在港口P的南偏东45°方向、距离港口81海里处.甲船从A 出发,沿AP方向以9海里/h的速度驶向港口;乙船从港口P出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为h.(结果保留根号)18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:|﹣3|+20﹣.20.解不等式组:.21.先化简,再求值:,其中x=+1.22.购买6件A商品和5件B商品共需270元,购买3件A商品和4件B商品共需180元.问:购买1件A商品和1件B商品共需多少元?23.如图,已知△ABC中,∠C=90°,AC<BC.D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)若∠B=38°,求∠CAD的度数.24.从1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求恰好是2名女生的概率.(用树状图或列表法求解)25.如图,一次函数y=kx+b与反比例函数Y=的图象交开A(﹣2,1),B(1,a)两点.(1)分别求出反比例函数与一次函数的关系式;(2)观察图象,直接写出关于x,y的方程组的解.26.如图,己知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE•EF的值最大?最大值是多少?27.如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s 的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.28.如图,已知二次函数y=m2x2﹣2mx﹣3(m是常数,m>0)的图象与x轴分别相交于点A、B(点A位于点B的左侧),与y轴交于点C,对称轴为直线l.点C关于l的对称点为D,连接AD.点E为该函数图象上一点,AB平分∠DAE.(1)①线段AB的长为.②求点E的坐标;(①、②中的结论均用含m的代数式表示)(2)设M是该函数图象上一点,点N在l上.探索:是否存在点M.使得以A、E、M、N为顶点的四边形是矩形?如果存在,求出点M坐标;如果不存在,说明理由.2019年江苏省苏州市工业园区中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算(﹣2)×3的结果是()A.﹣6 B.6 C.﹣5 D.5【考点】有理数的乘法.【分析】根据异号两数相乘的乘法运算法则解答.【解答】解:(﹣2)×3=﹣6.故选A.2.已知∠α和∠β互为余角.若∠α=40°,则∠β等于()A.40°B.50°C.60°D.140°【考点】余角和补角.【分析】根据余角的意义,即若两个角的和为90°,则这两个角互余.【解答】解:∵∠α,∠β互为余角,且∠α=40°,∴∠α+∠β=90°,∴∠β=90°﹣40°=50°,故选B.3.若式子在实数范围内有意义,则x的取值范围是()A.x≠1 B.x>1 C.x≥1 D.x≤1【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:由在实数范围内有意义,得x﹣1≥0,解得x≥1,故答案为:x≥1.4.太阳的半径约为696 300km.696 300这个数用科学记数法可表示为()A.0.696 3×106B.6.963×105C.69.63×104D.696.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:696 300用科学记数法表示应为:6.963×105,故选:B.5.如图,一个正六边形转盘被分成6个全等的正三角形.任意旋转这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是()A.B.C.D.【考点】几何概率.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.【解答】解:∵圆被等分成6份,其中阴影部分占1份,∴落在阴影区域的概率=.故选D.6.某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图.根据图中信息,可以估算出该校喜爱体育节目的学生共有()A.300名B.250名C.200名D.150名【考点】扇形统计图;用样本估计总体.【分析】先根据扇形统计图求出喜欢体育节目人数占总人数的百分比,进而可得出结论.【解答】解:∵由图可知,喜欢体育节目人数占总人数的百分比=1﹣30%﹣40%﹣10%=20%,∴该校喜爱体育节目的学生=1000×20%=200(名).故选C.7.二次函数y=x2﹣2x﹣1的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据二次函数的性质解题.【解答】解:将二次函数进行配方为y=(x﹣1)2﹣2,∴顶点坐标为(1,﹣2),∴在第四象限.故选D.8.如图,D、E、F分别是△ABC的边AB、BC、AC的中点.若四边形ADEF是菱形,则△ABC必须满足的条件是()A.AB⊥AC B.AB=AC C.AB=BC D.AC=BC【考点】菱形的判定;等腰三角形的性质;三角形中位线定理.【分析】根据等腰三角形性质和三角形的中位线求出AE⊥DF,根据三角形的中位线求出DE∥AC,EF∥AB,得出四边形ADEF是平行四边形,再根据菱形的判定推出即可.【解答】解:AB=AC,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,∵D、F分别为AB和AC的中点,∴DF∥BC,∴AE⊥DF,∵D、E、F分别是△ABC的边AB、BC、AC的中点,∴EF∥AD,DE∥AF,∴四边形ADEF是平行四边形,∵AE⊥DF,∴四边形ADEF是菱形,即只有选项B的条件能推出四边形ADEF是菱形,选项A、C、D的条件都不能推出四边形ADEF是菱形,故选B.9.如图,PA切⊙于点A,OP交⊙O于点B,且点B为OP的中点,弦AC∥OP.若OP=2,则图中阴影部分的面积为()A. B. C. D.【考点】切线的性质;扇形面积的计算.【分析】连结OA、OC,如图,由切线的性质得∠OAP=90°,再利用三角函数的定义求出∠POA=60°,接着判断△OAC为等边三角形得到∠AOC=60°,然后根据等边三角形面积公式和扇形面积公式,利用图中阴影部分的面积=S扇形AOC ﹣S△AOC进行计算即可.【解答】解:连结OA、OC,如图,∵PA切⊙于点A,∴OA⊥PA,∴∠OAP=90°,∵点B为OP的中点,∴OB=PB,∴OA=OP=1,∴∠P=30°,∠POA=60°,∵AC∥OP,∴∠OAC=∠POA=60°,而OA=OC,∴△OAC为等边三角形,∴∠AOC=60°,∴图中阴影部分的面积=S扇形AOC ﹣S△AOC=﹣•12=﹣.故选C.10.如图,已知△ABC,∠C=90°,∠A=30°,AC=,动点D在边AC上,以BD 为边作等边△BDE(点E、A在BD的同侧),在点D从点A移动至点C的过程中,点E移动的路线为()A.B.2 C.D.【考点】轨迹;等边三角形的性质.【分析】作EF⊥AB垂足为F,连接CF,由△EBF≌△DBC,推出点E在AB的垂直平分线上,在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,由此即可解决问题.【解答】解:如图,作EF⊥AB垂足为F,连接CF.∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵△EBD是等边三角形,∴BE=BD,∠EBD=60°,∴∠EBD=∠ABC,∴∠EBF=∠DBC,在△EBF和△DBC中,,∴△EBF≌△DBC,∴BF=BC,EF=CD,∵∠FBC=60°,∴△BFC是等边三角形,∴CF=BF=BC,∵BC=AB=,∴BF=AB,∴AF=FB,∴点E在AB的垂直平分线上,∴在点D从点A移动至点C的过程中,点E移动的路线和点D运动的路线相等,∴在点D从点A移动至点C的过程中,点E移动的路线为.故选A.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.计算:(﹣2x)2=4x2.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2x)2=4x2.故答案为:4x2.12.有一组数据:3,5,7,6,5,这组数据的中位数是5.【考点】中位数.【分析】根据中位数的定义进行解答即可.【解答】解:把这些数据从小到大排列为:3,5,5,6,7,最中间的数是5,则组数据的中位数是5;故答案为:5.13.如图,直线a、b被直线c所截,且a∥b.若∠1=35°,则∠2=145°.【考点】平行线的性质.【分析】根据平行线的性质求出∠3的度数,即可求出∠2的度数.【解答】解:∵a∥b,∴∠1=∠3,∵∠1=35°,∴∠3=35°,∴∠2=180°﹣∠3=145°,故答案为:145.14.方程的解是x=6.【考点】解分式方程.【分析】本题的最简公分母是x(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘x(x﹣2),得3(x﹣2)=2x,解得x=6.检验:当x=6时,x(x﹣2)≠0.∴x=6是原方程的解.15.若a2﹣3a+2=0,则1+6a﹣2a2=5.【考点】代数式求值.【分析】先根据a2﹣3a+2=0得出a2﹣3a=﹣2,再代入代数式进行计算即可.【解答】解:∵a2﹣3a+2=0,∴a2﹣3a=﹣2,∴原式=﹣2(a2﹣3a)+1=4+1=5.故答案为:5.16.将边长为2的正方形OABC如图放置,O为原点.若∠α=15°,则点B的坐标为(﹣,).【考点】正方形的性质;坐标与图形性质;勾股定理;解直角三角形.【分析】连接OB,过B作BE⊥x轴于E,则∠BEO=90°,根据正方形性质得出AB=OA=2,∠A=90°,∠BOA=45°,根据勾股定理求出OB,解直角三角形求出OE、BE,即可得出答案.【解答】解:连接OB,过B作BE⊥x轴于E,则∠BEO=90°,∵四边形OABC是正方形,∴AB=OA=2,∠A=90°,∠BOA=45°,由勾股定理得:OB==2,∵∠α=15°,∠BOA=45°,∴∠BOE=45°+15°=60°,在Rt△BOE中,BE=OB×sin60°=2×=,OE=OB×cos60°=,∴B的坐标为(﹣,).故答案为:17.如图,小岛A在港口P的南偏东45°方向、距离港口81海里处.甲船从A 出发,沿AP方向以9海里/h的速度驶向港口;乙船从港口P出发,沿南偏西60°方向,以18海里/h的速度驶离港口.现两船同时出发,当甲船在乙船的正东方向时,行驶的时间为9(﹣1)h.(结果保留根号)【考点】解直角三角形的应用﹣方向角问题.【分析】连接AB在P正南方向取点Q,则PQ⊥BA于Q,根据PQ是直角三角形PQB和PQA的公共边,可用时间表示出PB和PA的长,然后根据PQ在不同直角三角形中不同的表达式,来求出时间.【解答】解:设出发t小时后甲船在乙船的正东方向,连接AB在P正南方向取点Q,则PQ⊥BA于Q,在Rt△PQC中,∠CPB=60°,∴PQ=PBcos60°=×18t=9t,在Rt△PQB中,∠APQ=45°,∴PQ=APcos45°=(81﹣9t)则(81﹣9t)=9t,解得:t==9(﹣1),答:当甲船在乙船的正东方向时,行驶的时间为9(﹣1)h.故答案为:9(﹣1).18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为﹣2.【考点】圆的综合题.【分析】如图,连接BO′、BC.在点D移动的过程中,点E在以AC为直径的圆上运动,当O′、E、B共线时,BE的值最小,最小值为O′B﹣O′E,利用勾股定理求出BO′即可解决问题.【解答】解:如图,连接BO′、BC.∵CE⊥AD,∴∠AEC=90°,∴在点D移动的过程中,点E在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AC=4,AB=5,∴BC===3,在Rt△BCO′中,BO′===,∵O′E+BE≥O′B,∴当O′、E、B共线时,BE的值最小,最小值为O′B﹣O′E=﹣2,故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:|﹣3|+20﹣.【考点】实数的运算;零指数幂.【分析】原式利用绝对值的代数意义,零指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=3+1﹣2=2.20.解不等式组:.【考点】解一元一次不等式组.【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x>1;由②式得x≤4,所以不等式组的解为1<x≤4.21.先化简,再求值:,其中x=+1.【考点】分式的化简求值.【分析】根据分式混合运算的法则先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=÷=•=,当x=+1时,原式=.22.购买6件A商品和5件B商品共需270元,购买3件A商品和4件B商品共需180元.问:购买1件A商品和1件B商品共需多少元?【考点】二元一次方程组的应用.【分析】设购买1件A商品需x元,1件B商品需y元,根据购买6件A商品和5件B商品共需270元,购买3件A商品和4件B商品共需180元列出方程组解答即可.【解答】解:设购买1件A商品需x元,1件B商品需y元,可得:,解得:,答:购买1件A商品需20元,1件B商品需30元,20+30=50元,答:购买1件A商品和1件B商品共需50元.23.如图,已知△ABC中,∠C=90°,AC<BC.D为BC上一点,且到A、B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)若∠B=38°,求∠CAD的度数.【考点】作图—基本作图;线段垂直平分线的性质.【分析】(1)作出线段AB的垂直平分线与线段BC的交点即为所求的点D.(2)求出∠CAB,∠DAB,根据∠CAD=∠CAB﹣∠DAB,即可解决问题.【解答】解:(1)如图点D就是所求的点.(2)∵∠C=90°,∠B=38°,∴∠CAB=90°﹣38°=52°,∵DA=DB,∴∠DAB=∠B=38°,∴∠CAD=∠CAB﹣∠DAB=52°﹣38°=14°.24.从1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求恰好是2名女生的概率.(用树状图或列表法求解)【考点】列表法与树状图法.【分析】(1)由1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是2名女生的情况,再利用概率公式即可求得答案.【解答】解:(1)∵1名男生和3名女生中随机抽取参加“我爱苏州”演讲比赛,∴抽取1名,恰好是男生的概率为:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好是2名女生的有6种情况,∴恰好是2名女生的概率为:=.25.如图,一次函数y=kx+b与反比例函数Y=的图象交开A(﹣2,1),B(1,a)两点.(1)分别求出反比例函数与一次函数的关系式;(2)观察图象,直接写出关于x,y的方程组的解.【考点】反比例函数与一次函数的交点问题.【分析】(1)先将点A代入y=,求出m,再将点B代入求得a,最后把点A,B代入即可得出答案;(2)一次函数和反比例函数的交点坐标即为方程组的解.【解答】解:(1)∵点A(﹣2,1)在反比例函数上,∴1=,∴m=﹣2,∴反比例函数的解析式为y=﹣.∵点B在反比例函数上,∴a==﹣2,∴A(﹣2,1),B(1,﹣2)在一次函数上,∴,解得k=﹣1,b=﹣1,∴一次函数的解析式为y=﹣x﹣1;(2)关于x,y的方程组的解为(﹣2,1)(1,﹣2).26.如图,己知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A不重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE•EF的值最大?最大值是多少?【考点】圆的综合题.【分析】(1)首先连接OE,由=,OD∥BF,易得∠OBE=∠OEB=∠BOE=60°,又由CF⊥AB,即可求得∠F的度数;(2)连接OE,过O作OM⊥BE于M,由等腰三角形的性质得到BE=2BM,根据平行线的性质得到∠COD=∠B,根据全等三角形的性质得到BM=OC,等量代换即可得到结论.(3)根据相似三角形的性质得到,求得BF=,于是得到EF=BF﹣BE=,推出BE•EF=﹣4x2+12x=﹣4(x﹣)2+9,即可得到结论.【解答】解:(1)如图1,连接OE.∵=,∴∠BOE=∠EOD,∵OD∥BF,∴∠DOE=∠BEO,∵OB=OE,∴∠OBE=∠OEB,∴∠OBE=∠OEB=∠BOE=60°,∵CF⊥AB,∴∠FCB=90°,∴∠F=30°;(2)连接OE,过O作OM⊥BE于M,∵OB=OE,∴BE=2BM,∵OD∥BF,∴∠COD=∠B,在△OBM与△ODC中,∴△OBM≌△ODC,∴BM=OC,∴BE=2OC;(3)∵OD∥BF,∴△COD∽△CBF,∴,∵AC=x,AB=4,∴OA=OB=OD=2,∴OC=2﹣x,BE=2OC=4﹣2x,∴,∴BF=,∴EF=BF﹣BE=,∴BE•EF=•2(2﹣x)=﹣4x2+12x=﹣4(x﹣)2+9,∴当时,最大值=9.27.如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s 的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.【考点】四边形综合题.【分析】(1)由运动得出BP=BQ,求出t,即可;(2)由PM∥AD,得出,表示出PM,从而求出t,即可;(3)先判断出△AEP≌△FEG,表示出BH,HQ,CQ,再由勾股定理计算即可.【解答】解:(1)当BP=BQ时,60﹣3t=20t,∴t=,(2)如图1,过P作PM∥AD,∴,∴,∴PM=90﹣t,∵PN=NQ,PM=BQ,∴90﹣t=20t,∴t=,(3)如图2,作GH⊥BQ,∴PB=PF=60﹣3t,∵AE=EF,∠AEP=∠FEG,∠A=∠F,∴△AEP≌△FEG,∴PE=EG,FG=AP,∴AG=PF=60﹣3t=BH,∴HQ=BQ﹣BH=20t﹣(60﹣3t)=23t﹣60,GQ=FQ﹣FG=BQ﹣AP=17t,根据勾股定理得,602=(17t)2﹣(23t﹣60)2∴t1=4,t2=7.5(舍),∴t=4∴存在t=4,使AE=EF.28.如图,已知二次函数y=m2x2﹣2mx﹣3(m是常数,m>0)的图象与x轴分别相交于点A、B(点A位于点B的左侧),与y轴交于点C,对称轴为直线l.点C关于l的对称点为D,连接AD.点E为该函数图象上一点,AB平分∠DAE.(1)①线段AB的长为.②求点E的坐标;(①、②中的结论均用含m的代数式表示)(2)设M是该函数图象上一点,点N在l上.探索:是否存在点M.使得以A、E、M、N为顶点的四边形是矩形?如果存在,求出点M坐标;如果不存在,说明理由.【考点】二次函数综合题.【分析】(1)①令y=0,求出抛物线与x轴的交点坐标;②根据抛物线解析式确定出对称轴,和y轴交点坐标;(2)先设出M点的坐标,分两种情况计算,利用矩形的对角线互相平分来确定出点M的坐标,再用勾股定理计算即可.【解答】解:(1)①令y=0,则(mx﹣3)(mx+1)=0,∴x=﹣或x=,∴A(﹣,0),B(,0),∴AB=,故答案为;②∵二次函数y=m2x2﹣2mx﹣3,∴C(0,﹣3),对称轴l:x=,∴D(,﹣3)∵AB平分∠DAE,∴点D关于x轴的对称点Q(,3)在直线AE上,∴直线AE的解析式为y=mx+1,∵点E是抛物线和直线AE的交点,∴E(,5).(2)设M(x,m2x2﹣2mx﹣3),N(,a)∵A(﹣,0),E(,5).以A、E、M、N为顶点的四边形是矩形,①以AE,MN为对角线时,AE,MN的中点重合,∴﹣+=x+,∴x=,∴M(,﹣3),∵MA2+ME2=AE2,∴+9++64=+25,∴m=﹣(舍),或m=,∴M(4,﹣3),②以AN,ME为对角线时,AN,ME的中点重合,∴﹣+=x+,∴x=﹣,∴M(﹣,21),∵AE2+AM2=ME2,∴+25++441=+256,∴m=﹣(舍)或m=∴,即:存在,M(4,﹣3)或.2019年3月10日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2019年中考数学一模(解答题)压轴题汇编昆山市一模 27.(本题满分9分)如图,在平面直角坐标系中,直线AB 与x 轴交于点A (-2,0),交y 轴于点C ,与反比例函数(0)ky x x=>在第一象限内的图像交于点B (2,n ),连接BO ,且S △AOB =4.(1)求该反比例函数(0)ky x x =>的解析式和直线AB 的解析式; (2)若将直线AB 向下平移73个单位,与y 轴的交点为D ,交反比例函数图像于点E ,连接BE ,CE ,求△BCE 的面积S △BCE28.(本题满分10分)如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。

)苏州市吴中、吴江、相城一模27.(本题满分10分)如图,抛物线234(0)y ax ax a a =--<与x 轴交于,A B 两点,直线 1122y x =+经过点A ,与抛物线的另一个交点为点C ,点C 的横坐标为3,线段PQ 在线段AB 上移动,PQ =1,分别过点,P Q 作x 轴的垂线,交抛物线于,E F ,交直线于,D G . (1)求抛物线的解析式;(2)当四边形DEFG 为平行四边形时,求出此时点P ,Q 的坐标;(3)在线段PQ 的移动过程中,以D ,E ,F ,G 为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.28.(本题满分10分)如图①,在矩形ABCD中,点P从AB边的中点E出发,沿着E B CAQ=, 速运动,速度为每秒2个单位长度,到达点C后停止运动,点Q是AD上的点,10∆的面积为y,点p运动的时间为t秒,y与t的函数关系如图②所示.设PAQ(1)图①中AB= ,BC= ,图②中m= .(2)当t=1秒时,试判断以PQ为直径的圆是否与BC边相切?请说明理由:(3)点p在运动过程中,将矩形沿PQ所在直线折叠,则t为何值时,折叠后顶点A的对应点A'落在矩形的一边上.苏州市高新区27.(本题满分10分)如图1,矩形ABCD 中,BC =12cm ,点P 从A 点出发,以2cm/s 的速度沿A B C --匀速运动,运动到C 点时停止;点Q 从B 点出发,以a cm/s 的速度沿B C D A ---匀速运动,运动到A 点时停止.若,P Q 两点同时出发,设点P 运动的时间为t (s), PBQ ∆的面积为S (cm 2),S 与t 之间的函数关系由图2中的曲线段OEF 、线段,FG GH 表示.(1) a = ,AB = ;(2)求图2中曲线段OEF 对应的函数表达式以及这个函数的最大值; (3)当02t ≤≤,若PDQ ∆为直角三角形,求t 的值.28.(本题满分10分)如图1,抛物线21:34C y x x =--+与x 轴交于,A B 两点(点A 在点B 的右侧),与B 轴的正半轴相交于C 点. (1)如图1,求:抛物线1C 顶点D 的坐标;(2)如图2,把抛物线1C 以1个单位长度砂的速度向右平移得到抛物线2C ,同时ABC ∆以2个单位长度/秒的速度向上平移得到A B C '''∆,当抛物线2C 的顶点D '落在A B C '''∆之内 时,设平移的时间为t 秒. ①求t 的取值范围;②若抛物线2C 与y 轴相交于E 点,是否存在这样的t ,使得90A EB ''∠=︒,若存在,求出t 的值;若不存在,请说明理由.苏州工业园区27.(本题满分10分)如图,以ABC ∆的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .(1)求证:DE 是⊙O 的切线:(2)设CDE ∆的面积为1S ,四边形ABED 的面积为2S .若215S S =,求tan BAC ∠的值;(3)在(2)的条件下,若AE =O 的半径长.28.(本题满分10分)如图①,在矩形ABCD 中,动点P 从点A 出发,以1 cm/s 的速度沿AD 向终点D 移动,设移动时间为t (s).连接PC ,以PC 为一边作正方形PCEF ,连接DE 、DF .设PCD ∆的面积为y (cm 2). y 与t 之间的函数关系如图②所示.(1) AB = cm ,AD = cm;(2)当t 为何值时,DEF ∆的面积最小?请求出这个最小值; (3)当t 为何值时,DEF ∆为等腰三角形?请简要说明理由.苏州市区中学一模27.(本题满分10分)如图1,在平面直角坐标系中,一次函数483y x =-+的图像与y 轴交于点A ,与x 轴交于点B 点C 是x 轴正半轴上的一点,以,OA OC 为边作矩形AOCD ,直线AB 交OD 于点E ,交直线DC 于点F . (1)如图2,若四边形AOCD 是正方形. ①求证: AOE COE ∆≅∆;②过点C 作CG CE ⊥,交直线AB 于点G .求证: CG FG =.(2)是否存在点C ,使得CEF ∆是等腰三角形?若存在,求该三角形的腰长;若不存在,请说明理由.28.(本题满分10分)如图,在平面直角坐标系中,一次函数3y x =-的图像与x 轴交于点A , 与y 轴交于点B ,点B 关于x 轴的对称点是C ,二次函数2y x bx c =-++的图像经过点A 和点C .(1)求二次函数的表达式;(2)如图1,平移线段AC ,点A 的对应点D 落在二次函数在第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标;(3)如图2,在(2)的条件下,连接CD ,交CD 轴于点M ,点P 为直线AC 上方抛物线上一动点,过点P 作PF AC ⊥,垂足为点F ,连接PC ,是否存在点P ,使得以点,,P C F 为顶点的三角形与COM ∆相似?若存在,求点P 的横坐标:若不存在,请说明理由.苏州平江中学一模常熟市模拟27.(本题满分10分)如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示. (1)求图②中y 与x 的函数表达式; (2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG ∆是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由28.(本题满分10分)如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C -. (1)求二次函数的表达式及点A 、点B 的坐标; (2)若点D 在二次函数图像上,且45DBC ABC S S ∆∆=,求点D 的横坐标; (3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作//ME y 轴,与直线BC 交于点E ,过N 作//NF y 轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.张家港市模拟26.(本题满分10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE 的下半圆弧的中点,连接AD交线段EO于点F.AB=BF,CF=4,DF=10.(1)求证:AB 是⊙O 的切线; (2)求⊙O 的半径r.(3)设点P 是BA 延长线上的一个动点,连接DP 交CF 于点M,交弧AC 于点N(N 与A 、C 不重合).试问DN DM ⋅是否为定值?如果是,求出该定值:如果不是.请说明理由。

27.(本题满分10分)如图,在四边形ABCD 中,AB// DC,CB ⊥AB.AB=16cm ,BC=6cm ,CD=8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s 。

点P 和点Q 同时出发,设运动的时间为t(s),0<t<5. (1)用含t 的代数式表示AP;(2)当以点A.P,Q 为顶点的三角形与△ABD 相似时,求t 的值; (3)当QP ⊥BD 时,求t 的值28.(本题满分10分)如图1,抛物线ax x y C -=21:与bx x y C +-=22:相交于点O 、C,1C 与2C 分别交x 轴于点B 、A,且B 为线段AO 的中点.(1)点A 的坐标为(____,____),点B 的坐标为(____,____),ba的值为____; (2)若OC ⊥AC,求△OAC 的面积;(3)在(2)的条件下,设抛物线2C 的对称轴为l ,顶点为M(如图2),点E 在抛物线2C 上点O 与点M 之间运动,四边形OBCE 的面积是否存在最大值?若存在,求出面积的最大值和点E 的坐标;若不存在,请说明理由.太仓市模拟27.(本题满分10分)如图,己知Rt ABC ∆中,90C ∠=︒,8,6AC BC ==,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从A B C →→方向运动,它们到C 点后都停止运动,设点,P Q 运动的时间为t 秒. (1)当 2.5t =时,PQ = ;(2)经过t 秒的运动,求ABC ∆被直线PQ 扫过的面积S 与时间t 的函数关系式;(3),P Q 两点在运动过程中,是否存在时间t ,使得PQC ∆为等腰三角形?若存在,求出此时t 的值;若不存在,请说明理由.28.(本题满分11分)如图,在平面直角坐标系xOy 中,直线//l x 轴,且直线l 与抛物线24y x x =-+和y 轴分别交于点,,A B C ,点D 为抛物线的顶点.若点E 的坐标为(1,1),点A 的横坐标为1. (1)线段AB 的长度等于 ; (2)点P 为线段AB 上方抛物线上的一点,过点P 作AB 的垂线交AB 于点H ,点F 为y轴上一点,当PBE ∆的面积最大时,求2PH HF FO ++的最小值; (3)在(2)的条件下,删除抛物线24y x x =-+在直线PH 左侧部分图象并将右侧部分图象沿直线PH 翻折,与抛物线在直线PH 右侧部分图象组成新的函数M 的图象.现有平行于FH 的直线1l :y mx t =+,若直线1l 与函数M 的图象有且只有2个交点,求t 的取值范围(请直接写出t 的取值范围,无需解答过程).。

相关文档
最新文档