学年八年级下册数学期末考试试卷解析版

合集下载

_山东省潍坊市青州市2019-2020学年八年级下学期期末数学试卷 解析版

_山东省潍坊市青州市2019-2020学年八年级下学期期末数学试卷  解析版

一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.若x>y,且(a﹣3)x<(a﹣3)y,则a的值可能是()A.5B.4C.3D.04.若最简二次根式是同类二次根式,则x的值为()A.B.C.x=1D.x=﹣15.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高等于()A.2B.C.2D.6.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b<0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.37.已知A(1,﹣3),B(2,2),现将线段AB平移至CD,如果点A的对应点C的坐标为(﹣3,﹣1),点B的对应点D的坐标为(c,d),那么d c等于()A.﹣16B.C.16D.08.小明要从甲地到乙地,两地相距2千米.已知小明步行的平均速度为100米/分,跑步的平均速度为200米/分,若要在不超过15分钟的时间内到达乙地,至少需要跑步多少分钟?设小明需要跑步x分钟,根据题意可列不等式为()A.200x+100(15﹣x)≥2000B.200x+100(15﹣x)≤2000C.200x+100(15﹣x)≥2D.100x+200(15﹣x)≥29.甲、乙两人按相同路线前往距离10km的培训中心参加学习,图中l1、l2分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为千米/小时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个10.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C',设点A的坐标为(﹣2,3),则点A'的坐标为()A.(2,﹣3)B.(﹣1,2)C.(2,﹣2)D.(2,﹣1)11.设直线y=kx+6与y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为S k(k=1,2,3,…),则S5的值等于()A.B.C.1D.312.如图是一个无理数生成器的工作流程图,根据该流程图,下列说法:①当输出值y为时,输入值x为5或25;②当输入值为64时,输出值y为;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的有()A.4个B.3个C.2个D.1个.二、填空题13.如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=.14.一次函数y=(m+1)x+2m﹣1的图象不经过第二象限,则m的取值范围是.15.如图,△OAB绕点O顺时针旋转42°得到△ODC,点D恰好落在AB上,且∠AOC=108°,则∠B度数是.16.已知,则代数式的值等于.17.已知关于x的不等式组的整数解共有5个,则a的取值范围是.18.已知线段EF两个端点的坐标为E(x1,y1),F(x2,y2),若点M(x0,y0)是线段EF的中点,则有x0=.在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P(0,2)关于点A的对称点记为P1,P1关于点B的对称点记为P2,P2关于点C的对称点记为P3,…,按此规律继续以A、B、C三点为对称中心,重复前面的操作,依次得到点P4,P5,P6,…,则点P2020的坐标是.三、解答题19.(10分)(1)解不等式2(x+8)>3(x﹣2)+1,并把它的解集在数轴上表示出来;(2)解不等式组:.20.(8分)计算(1);(2).21.(8分)如图,在每个小正方形边长为1的方格纸中,A点和B点的坐标分别为(2,﹣4)和(﹣2,2),连接AB、BC和CA得到△ABC.(1)请在图中画出坐标轴建立直角坐标系;(2)写出点C的坐标为;(3)在y轴上有点D满足S△DBC=S△ABC,则点D的坐标为;(4)作图:在图中作出△ABC关于点E(﹣1,﹣1)成中心对称的图形(保留作图痕迹,不写作法).22.(8分)如图,在四边形ABCD中,BD是对角线,已知∠ADB=∠CBD,AB =x+3,BD=8,BC=6,CD=10,AD=13﹣x.求证:四边形ABCD是平行四边形.23.(10分)预防新型冠状病毒期间,某种消毒液A地需要8吨,B地需要10吨,正好甲仓库储备有12吨,乙仓库储备有6吨.市预防新型冠状病毒领导小组决定将这18吨消毒液调往A地和B地,消毒液的运费价格如表(单位:元/吨),设从甲仓库调运x吨到A地.终点起点A地B地甲仓库150160乙仓库4080(1)求调运18吨消毒液的总运费y关于x的函数表达式并求出x的取值范围;(2)求出总运费最低的调运方案,最低运费为多少?24.(10分)如图,△AOB是边长为4的等边三角形,过点A的直线与x轴交于点C.(1)求点A的坐标;(2)求直线AC的函数表达式;(3)若点P(m,n)是线段AC上的动点(不与A、C重合),设△ABP的面积为S,求S关于m的函数表达式及m的取值范围.25.(12分)如图①,四边形ABCD是边长为4的正方形,M是正方形对角线BD(不含B、D两个端点)上任意一点,将△BAM绕点B逆时针旋转60°得到△BEN,连接EA、MN;P是AD的中点,连接PM.(1)AM+PM的最小值等于;(2)求证:△BNM是等边三角形;(3)如图②,以B为坐标原点建立平面直角坐标系,若点M使得AM+BM+CM 的值最小,求M点的坐标.2019-2020学年山东省潍坊市青州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,满分36分.多选、不选、错选均记零分.)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.【解答】解:A.既是轴对称图形,也是中心对称图形,故本选项符合题意;B.不是轴对称图形,是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.2.下列计算正确的是()A.B.C.D.【分析】A.直接利用二次根式的性质化简得出答案;B.直接利用立方根化简得出答案;C.直接利用二次根式的加减运算法则化简得出答案;D.直接利用二次根式的加减运算法则化简得出答案.【解答】解:A.=2,故此选项不合题意;B.+=3+,故此选项不合题意;C.3﹣=2,故此选项不合题意;D.﹣=2﹣=,故此选项符合题意.故选:D.3.若x>y,且(a﹣3)x<(a﹣3)y,则a的值可能是()A.5B.4C.3D.0【分析】不等式两边都除以(a﹣3),不等号的方向发生了改变,说明a﹣3是负数,列出不等式求出a的范围,即可作出判断.【解答】解:∵不等式两边都除以(a﹣3),不等号的方向发生了改变,∴a﹣3<0,∴a<3,故选:D.4.若最简二次根式是同类二次根式,则x的值为()A.B.C.x=1D.x=﹣1【分析】根据同类二次根式的被开方数相同,即可求出结果.【解答】解:由题意得:1+x=4﹣2x,解得:x=1.故选:C.5.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高等于()A.2B.C.2D.【分析】根据勾股定理和三角形的面积公式即可得到结论.【解答】解:∵BC==2,∵S△ABC=4×6﹣×2×4﹣×2×4﹣×2×6=10,∴△ABC中BC边上的高==,故选:B.6.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b<0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3【分析】根据一次函数的图象和性质可得a>0;b>0;当x>﹣2时,直线y =3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b>ax﹣2的解集.【解答】解:由图象可知,a>0,故①正确;b>0,故②错误;当x>﹣2是直线y=3x+b在直线y=ax﹣2的上方,即x>﹣2是不等式3x+b >ax﹣2,故③正确.故选:C.7.已知A(1,﹣3),B(2,2),现将线段AB平移至CD,如果点A的对应点C的坐标为(﹣3,﹣1),点B的对应点D的坐标为(c,d),那么d c等于()A.﹣16B.C.16D.0【分析】先根据点A及其对应点C的坐标得出线段AB先向左平移4个单位,再向上平移2个单位得到线段CD,据此得到点B的对应点D的坐标,从而知c、d的值,代入计算即可.【解答】解:由题意知点A(1,﹣3)的对应点C的坐标为(﹣3,﹣1),∴线段AB先向左平移4个单位,再向上平移2个单位得到线段CD,∴点B(2,2)的对应点D的坐标为(﹣2,4),即c=﹣2,d=4,则d c=4﹣2==,故选:B.8.小明要从甲地到乙地,两地相距2千米.已知小明步行的平均速度为100米/分,跑步的平均速度为200米/分,若要在不超过15分钟的时间内到达乙地,至少需要跑步多少分钟?设小明需要跑步x分钟,根据题意可列不等式为()A.200x+100(15﹣x)≥2000B.200x+100(15﹣x)≤2000C.200x+100(15﹣x)≥2D.100x+200(15﹣x)≥2【分析】根据“跑步的路程+步行的路程≥2000米”可得不等式.【解答】解:设小明需要跑步x分钟,根据题意可列不等式为200x+100(15﹣x)≥2000,故选:A.9.甲、乙两人按相同路线前往距离10km的培训中心参加学习,图中l1、l2分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为千米/小时;③甲乙相遇时,乙走了6千米;④乙出发6分钟后追上甲.其中正确的有()A.4个B.3个C.2个D.1个【分析】根据题意和函数图象中的数据可以判断各个说法中的结论是否正确,从而可以解答本题.【解答】解;由图可得,乙比甲提前:40﹣28=12分钟到达,故①错误,甲的平均速度为:10÷=15(千米/小时),故②错误,乙的速度为:10÷=60(千米/小时),设甲、乙相遇时,甲走了x分钟,15×=60×,解得,x=24,则甲、乙相遇时,乙走了60×=6(千米),故③正确,乙出发24﹣18=6分钟追上甲,故④正确,故选:C.10.如图,将△ABC绕点C(0,1)旋转180°得到△A'B'C',设点A的坐标为(﹣2,3),则点A'的坐标为()A.(2,﹣3)B.(﹣1,2)C.(2,﹣2)D.(2,﹣1)【分析】设A′(m,n),利用确定坐标公式,构建方程求解即可.【解答】解:设A′(m,n),∵AC=CA′,A(﹣2,3),C(0,1),∴=0,=1,∴m=2,n=﹣1,∴A′(2,﹣1),故选:D.11.设直线y=kx+6与y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为S k(k=1,2,3,…),则S5的值等于()A.B.C.1D.3【分析】利用一次函数图象上点的坐标特征,可分别求出直线y=5x+6、y=6x+6与两坐标轴的交点坐标,再利用三角形的面积公式即可求出结论.【解答】解:当x=0时,y=5×0+6=6,∴直线y=5x+6与y轴的交点A的坐标为(0,6);当y=0时,5x+6=0,解得:x=﹣,∴直线y=5x+6与x轴的交点B的坐标为(﹣,0);当x=0时,y=6×0+6=6,∴直线y=6x+6与y轴的交点C的坐标为(0,6);当y=0时,6x+6=0,解得:x=﹣1,∴直线y=6x+6与x轴的交点D的坐标为(﹣1,0).∴S5=BD•OA=×|﹣1﹣(﹣)|×6=.故选:A.12.如图是一个无理数生成器的工作流程图,根据该流程图,下列说法:①当输出值y为时,输入值x为5或25;②当输入值为64时,输出值y为;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的有()A.4个B.3个C.2个D.1个.【分析】根据运算规则以及无理数的定义即可求解.【解答】解:①当输出值y为时,x=5或x=25或625等,故①说法错误;②输入值x为64时,,,即y=,故②说法错误;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①②③,共3个.故选:B.二、填空题(本题共6小题,将每小题的最后结果填写在横线上.每小题3分,满分18分)13.如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=17.【分析】根据勾股定理即可得到结论.【解答】解:∵∠ACB=90°,S1=5,S2=12,∴AC2=5,BC2=12,∴AB2=AC2+BC2=5+12=17,∴S3=17,故答案为:17.14.一次函数y=(m+1)x+2m﹣1的图象不经过第二象限,则m的取值范围是﹣1<m≤.【分析】由一次函数y=(m+1)x+2m﹣1的图象不经过第二象限,可得k>0,b≤0,列不等式组求解即可.【解答】解:一次函数y=(m+1)x+2m﹣1的图象是直线且不经过第二象限,因此一次函数过一三象限,或一三四象限,有:,解得,﹣1<m ≤,故答案为:﹣1<m ≤.15.如图,△OAB 绕点O 顺时针旋转42°得到△ODC ,点D 恰好落在AB 上,且∠AOC =108°,则∠B 度数是 45° .【分析】由旋转性质可知∠AOD =∠BOC =42°,结合∠AOC =108°可推出∠BOD =24°,从而∠AOB =66°.又AO =DO ,由等腰三角形性质可得∠A =69°,最后利用三角形内角和公式可得∠B 的度数.【解答】解:由旋转性质可知,∠AOD =∠BOC =42°, 又∵∠AOC =108°,∴∠BOD =108°﹣∠AOD ﹣∠BOC =108°﹣42°﹣42°=24°, ∴∠AOB =∠AOD +∠BOD =42°+24°=66°, ∵AO =DO ,∵∠A =∠ADO =(180°﹣42°)÷2=69°,∴∠B =180°﹣∠A ﹣∠AOB =180°﹣69°﹣66°=45°, 故答案为:45°. 16.已知,则代数式的值等于5 .【分析】根据完全平方公式把原式变形,吧ax 的值代入计算即可. 【解答】解:x 2+2x +4 =x 2+2x +3+1 =(x +)2+1,当x =2﹣时,原式=(2﹣+)2+1=4+1=5, 故答案为:5.17.已知关于x 的不等式组的整数解共有5个,则a 的取值范围是 ﹣3<a ≤﹣2 .【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a 的不等式组,解不等式组即可求解. 【解答】解:,解①得:x ≥a ,解②得:x <3,则不等式组的解集是:a ≤x <3,不等式组有5个整数解,则﹣3<a ≤﹣2, 故答案是:﹣3<a ≤﹣2.18.已知线段EF 两个端点的坐标为E (x 1,y 1),F (x 2,y 2),若点M (x 0,y 0)是线段EF 的中点,则有x 0=.在平面直角坐标系中有三个点A (1,﹣1)、B (﹣1,﹣1)、C (0,1),点P (0,2)关于点A 的对称点记为P 1,P 1关于点B 的对称点记为P 2,P 2关于点C 的对称点记为P 3,…,按此规律继续以A 、B 、C 三点为对称中心,重复前面的操作,依次得到点P 4,P 5,P 6,…,则点P 2020的坐标是 (﹣2,﹣2) .【分析】根据题意可得前6个点的坐标,即可发现规律每6个点一组为一个循环,根据2020÷6=336…4,进而可得点P 2020的坐标. 【解答】解:∵A (1,﹣1),B (﹣1,﹣1),C (0,1), 点P (0,2)关于点A 的对称点P 1, ∴1=,﹣1=,解得x =2,y =﹣4, 所以点P 1 (2,﹣4); 同理:P1关于点B的对称点P2,所以P2(﹣4,2)P2关于点C的对称点P3,所以P3(4,0),P4(﹣2,﹣2),P5(0,0),P6(0,2),…,发现规律:每6个点一组为一个循环,∴2020÷6=336…4,所以P2020与P4重合,所以点P2020的坐标是(﹣2,﹣2).故答案为:(﹣2,﹣2).三、解答题(本题共7小题,共66分.解答应写出文字说明、证明过程或推演步骤.)19.(10分)(1)解不等式2(x+8)>3(x﹣2)+1,并把它的解集在数轴上表示出来;(2)解不等式组:.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)去括号,得:2x+16>3x﹣6+1,移项,得:2x﹣3x>﹣6+1﹣16,合并同类项,得:﹣x>﹣21,系数化为1,得:x<21,表示在数轴上如下:(2)解不等式①得:x≤2,解不等式②得:x>﹣1,则不等式组的解集为﹣1<x≤2.20.(8分)计算(1);(2).【分析】(1)直接利用立方根以及二次根式的乘法运算法则、负整数指数幂的性质、二次根式的性质分别化简得出答案;(2)直接利用二次根式的乘法运算法则计算得出答案.【解答】解:(1)原式=﹣4+15﹣3﹣4+2=6;(2)原式=×2+×5﹣5×2﹣5×5=6+10﹣10﹣25=﹣19.21.(8分)如图,在每个小正方形边长为1的方格纸中,A点和B点的坐标分别为(2,﹣4)和(﹣2,2),连接AB、BC和CA得到△ABC.(1)请在图中画出坐标轴建立直角坐标系;(2)写出点C的坐标为(3,2);(3)在y轴上有点D满足S△DBC=S△ABC,则点D的坐标为(0,﹣4)或(0,8);(4)作图:在图中作出△ABC关于点E(﹣1,﹣1)成中心对称的图形(保留作图痕迹,不写作法).【分析】(1)根据A,B两点坐标确定平面直角坐标系即可.(2)根据点C的位置写出坐标即可.(3)设D(0,m),则有×5×|2﹣m|×5=×5×6,求出m即可.(3)根据中心对称的性质作出图形即可.【解答】解:(1)平面直角坐标系如图所示.(2)C(3,2),故答案为:(3,2).(3)设D(0,m),则有×5×|2﹣m|×5=×5×6,解得m=﹣4或8,∴满足条件的点D的坐标为(0,﹣4)或(0,8),故答案为:(0,﹣4)或(0,8).(4)如图,△A′B′C′即为所求.22.(8分)如图,在四边形ABCD中,BD是对角线,已知∠ADB=∠CBD,AB =x+3,BD=8,BC=6,CD=10,AD=13﹣x.求证:四边形ABCD是平行四边形.【分析】由勾股定理的逆定理证出△BCD是直角三角形,∠CBD=90°,再由∠ADB=∠CBD,得AD∥BC,∠ADB=90°,然后由勾股定理得(13﹣x)2+82=(x+3)2,解得x=7,则AD=6,即可得出结论.【解答】证明:∵BD=8,BC=6,CD=10,∴BD2+BC2=CD2,∴△BCD是直角三角形,∠CBD=90°,∵∠ADB=∠CBD,∴AD∥BC,∠ADB=90°,∴AD2+BD2=AB2,即(13﹣x)2+82=(x+3)2,解得:x=7,∴AD=6,∴AD=BC,又∵AD∥BC,∴四边形ABCD是平行四边形.23.(10分)预防新型冠状病毒期间,某种消毒液A地需要8吨,B地需要10吨,正好甲仓库储备有12吨,乙仓库储备有6吨.市预防新型冠状病毒领导小组决定将这18吨消毒液调往A地和B地,消毒液的运费价格如表(单位:元/吨),设从甲仓库调运x吨到A地.终点起点A地B地甲仓库150160乙仓库4080(1)求调运18吨消毒液的总运费y关于x的函数表达式并求出x的取值范围;(2)求出总运费最低的调运方案,最低运费为多少?【分析】(1)设从甲仓库调运x吨到A地,则从甲仓库调运(12﹣x)吨到B 地,从乙仓库调运(8﹣x)吨到A地,从乙仓库调运10﹣(12﹣x)=(x﹣2)吨到B地,根据总运费=每吨的运费×运输重量,即可得出y关于x的函数关系式;(2)根据题意,可以得到x的取值范围,再根据一次函数的性质,即可得到总运费最低的调运方案,然后计算出最低运费.【解答】解:(1)设从甲仓库调运x吨到A地,则从甲仓库调运(12﹣x)吨到B地,从乙仓库调运(8﹣x)吨到A地,从乙仓库调运10﹣(12﹣x)=(x ﹣2)吨到B地,由题意可得y=150x+160 (12﹣x)+40(8﹣x)+80(x﹣2)=30x+2080 (2≤x≤8);(2)由(1)的函数可知,k=30>0,因此函数的值随x的增大而增大,当x=2时,有最小值y=30×2+2080=2140(元),因此当从甲仓库调运2吨到A地时,运费最低,最低运费为2140元.24.(10分)如图,△AOB是边长为4的等边三角形,过点A的直线与x轴交于点C.(1)求点A的坐标;(2)求直线AC的函数表达式;(3)若点P(m,n)是线段AC上的动点(不与A、C重合),设△ABP的面积为S,求S关于m的函数表达式及m的取值范围.【分析】(1)根据等边三角形三线合一可以求出A点的横坐标为OB长度的一半,再根据勾股定理可求出等边三角形OB边上的高,即A的纵坐标.(2)将第(1)问中求出的A点坐标代入即可求出直线AC的表达式.(3)先通过一次函数解析式求出C点坐标,以及P点坐标中m,n的关系,再通过△ABP的面积=△ABC的面积﹣△PBC的面积,即可求出S与m的关系,最后根据P与A、C不重合即可求出m的取值范围.【解答】解:(1)∵等边△AOB的边长为4,∴点A的横坐标=OB=2,设点A的纵坐标为a,即△AOB的底边OB边上的高为a,∴由勾股定理得,,∴点A的坐标为(2,).(2)将A(2,)代入直线=中,得,解得k=,∴.(3)将y=0代入中,解得x=8,∴点C的坐标为(8,0),∴OC=8,BC=OC﹣OB=4,S△ABC=,∵P在直线AC上,∴,即△BPC的高=n=,∴S△BPC==,∴S=S△ABC﹣S△BPC=,又∵P不与A、C重合,∴2<m<8.25.(12分)如图①,四边形ABCD是边长为4的正方形,M是正方形对角线BD(不含B、D两个端点)上任意一点,将△BAM绕点B逆时针旋转60°得到△BEN,连接EA、MN;P是AD的中点,连接PM.(1)AM+PM的最小值等于2;(2)求证:△BNM是等边三角形;(3)如图②,以B为坐标原点建立平面直角坐标系,若点M使得AM+BM+CM 的值最小,求M点的坐标.【分析】(1)如图①中,连接PC.利用勾股定理求出PC,再证明AM=MC,推出AM+PM=PM+CM≥PC,由此可得结论.(2)根据有一个角是60°的等腰三角形是等边三角形证明即可.(3)首先说明E,N,M,C共线时,AM+BM+CM的值最小,此时点M在EC 与BD的交点处,求出直线EC,BD的解析式,构建方程组可得结论.【解答】(1)解:如图①中,连接PC.∵四边形ABCD是正方形,∴AB=BC=AD=CD=4,∠CDP=90°,∠ABM=∠CBM=45°,∵P是AD的中点,∴P A=PD=2,∴PC===2,∵BA=BC,∠ABM=∠CBM,BM=BM,∴△ABM≌△CBM(SAS),∴AM=CM,∴AM+PM=CM+PM,∵PM+CM≥PC,∴AM+PM≥2,∴AM+PM的最小值为2.故答案为:2.(2)证明:由旋转的性质可知BM=BN,∵∠MBN=60°,∴△BMN是等边三角形.(3)解:如图②中,过点E作EP⊥x轴于P,连接EC.由性质可知,AM=EN,∵△BMN是等边三角形,∴BM=MN,∴AM+BM+CM=EN+NM+MC,∵EN+NM+MC≥EC,∴E,N,M,C共线时,AM+BM+CM的值最小,此时点M在EC与BD的交点处,∵AB=BE=4,∠ABE=60°,∴∠EBP=90°﹣60°=30°,∴EP=BE=2,PB=PE=2,∴E(﹣2,2),∵C(4,0),D(4,4),设直线EC速度解析式为y=kx+b,则有,解得,∴y=(﹣2)x+8﹣4,同法可得直线BD的解析式为y=x,由,解得,∴M(,).。

2020-2021学年山东省烟台市经开区八年级(下)期末数学试卷(五四学制)(解析版)

2020-2021学年山东省烟台市经开区八年级(下)期末数学试卷(五四学制)(解析版)

2020-2021学年山东省烟台市经开区八年级(下)期末数学试卷(五四学制)一、选择题(共12个小题,每小题3分,满分36分).1.下列二次根式中,最简二次根式是()A.B.C.D.2.关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1B.m≥1C.m≤1D.m>13.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是()A.3B.﹣3C.1D.﹣14.在下列二次根式中,与是同类二次根式的是()A.3B.C.2D.65.下列计算中,正确的是()A.=2B.﹣=C.=x+y D.6.如果x:y=2:3,则下列各式不一定成立的是()A.=B.=C.=D.=7.已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是()A.2023B.2021C.2020D.20198.在△ABC中,点D、E、F分别在AB、BC、AC上,且DE∥AC,EF∥AB,若BD=2AD,则的值为()A.B.C.D.9.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.510.扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×3011.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.412.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH等于()A.1:1B.1:2C.2:1D.3:2二、填空题(本题共6个小题,每小题3分,共计18分)13.若在实数范围有意义,则x的取值范围.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,a的取值范围是.15.如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD=.16.如图所示的点阵中,相邻的四个点构成正方形,正方形的边长为1,则阴影部分的面积为.17.如图,两个正方形Ⅰ,Ⅱ和两个矩形Ⅲ,Ⅳ拼成一个大正方形,已知正方形Ⅰ,Ⅱ的面积分别为6和3,那么大正方形的面积是.18.正方形ABCD的边长为4,AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积的最大值与最小值的和为.三、解答题(本题共7个题,满分66分)19.计算:(+1)2﹣+(﹣2)220.(1)(x﹣1)2+2x(x﹣1)=0;(2)(x﹣1)(x+2)=70.21.已知关于x的方程x2﹣(m+3)x+m+1=0.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.22.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E,F分别从B,C两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA向终点A运动速度为5cm/s,一个点到达终点时另一个点也随之停止.设它们运动的时间为x (s),请求出x为何值时,△EFC和△ACD相似.23.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H 在对角线AC上.若四边形EGFH是菱形,求AE的长.24.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为30元的小商品进行直播销售,如果按每件40元销售,每月可卖出600件,通过市场调查发现,每件小商品售价每上涨1元,销售件数减少10件.为了实现平均每月10000元的销售利润,每件商品售价应定为多少元?这时电商每月能售出商品多少件?25.【问题呈现】如图1,是有公共顶点的两个菱形ABCD和AEFG,∠BAD=∠EAG,连接BE和DG,则线段BE和DG之间存在的关系为.【类比探究】如图2,若ABCD和AEFG是两个正方形,连接BE和DG,则线段BE和DG之间存在的关系为.【拓展延伸】如图3,若ABCD和AEFG是两个矩形,AB=6,AD=4,AG=2,AE=3,连接BE和DG,探究线段BE和DG之间存在的关系,并写出详细的过程.参考答案一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的1.下列二次根式中,最简二次根式是()A.B.C.D.解:A.是三次根式,不是最简二次根式,故本选项不符合题意;B.的被开方数不是整数,不是最简二次根式,故本选项不符合题意;C.是最简二次根式,故本选项符合题意;D.的被开方数中含有能开得尽方的因式,不是最简二次根式,故本选项不符合题意;故选:C.2.关于x的一元二次方程x2﹣2x+m=0无实数根,则实数m的取值范围是()A.m<1B.m≥1C.m≤1D.m>1解:根据题意得△=(﹣2)2﹣4m<0,解得m>1.故选:D.3.已知x=3是关于x的一元二次方程x2﹣2x﹣m=0的根,则该方程的另一个根是()A.3B.﹣3C.1D.﹣1解:设方程的另一个根为x1,根据题意得:x1+3=2,解得:x1=﹣1.故选:D.4.在下列二次根式中,与是同类二次根式的是()A.3B.C.2D.6解:A.与不是同类二次根式,此选项不符合题意;B.,与不是同类二次根式,此选项不符合题意;C.,与是同类二次根式,此选项符合题意;D.,与不是同类二次根式,此选项不符合题意;故选:C.5.下列计算中,正确的是()A.=2B.﹣=C.=x+y D.解:A.=,故此选项不合题意;B.﹣=3﹣2=,故此选项符合题意;C.无法化简,故此选项不合题意;D.=﹣2,故此选项不合题意;故选:B.6.如果x:y=2:3,则下列各式不一定成立的是()A.=B.=C.=D.=解:A.设x=2k,y=3k,则==,故本选项成立,不合题意;B.设x=2k,y=3k,则==,故本选项成立,不合题意;C.设x=2k,y=3k,则==,故本选项成立,不合题意;D.设x=2k,y=3k,则=≠,故本选项不成立,符合题意;故选:D.7.已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是()A.2023B.2021C.2020D.2019解:a,b是方程x2+x﹣3=0的两个实数根,∴b=3﹣b2,a+b=﹣1,ab=﹣3,∴a2﹣b+2019=a2﹣3+b2+2019=(a+b)2﹣2ab+2016=1+6+2016=2023;故选:A.8.在△ABC中,点D、E、F分别在AB、BC、AC上,且DE∥AC,EF∥AB,若BD=2AD,则的值为()A.B.C.D.解:∵DE∥AC,EF∥AB,BD=2AD,∴,故选:A.9.如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5解:∵四边形ABCD为菱形,∴CD=BC==5,且O为BD的中点,∵E为CD的中点,∴OE为△BCD的中位线,∴OE=CB=2.5,故选:A.10.扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.11.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.4解:∵∠ADE=∠ACB,∠A=∠A,∴△ADE∽△ACB,∴=,即=,解得,AE=3,故选:C.12.如图,DE是△ABC的中位线,F是DE的中点,BF的延长线交AC于点H,则HE:AH等于()A.1:1B.1:2C.2:1D.3:2解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC,AE=EC,∵F是DE的中点,∴EF=DE=BC,∴,∴,∴.故选B.或:过D作DG平行于AC交BF于G,∵△DGF≌△EHF,∴DG=HE.而D为AB中点,∴DG=AH.于是HE:AH=1:2.二、填空题(本题共6个小题,每小题3分,共计18分)13.若在实数范围有意义,则x的取值范围x≥0且x≠4.解:由题意可知:,∴x≥0且x≠4,故答案为:x≥0且x≠414.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,a的取值范围是a<2且a≠1.解:∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴Δ>0且a﹣1≠0,即(﹣2)2﹣4(a﹣1)>0且a﹣1≠0,解得a<2且a≠1,∴a的取值范围是a<2且a≠1.15.如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD=3.解:如图,延长BC、AD相交于点F,∵CE⊥BC,∴∠BCE=∠FCE=90°,∵∠BEC=∠DEC,CE=CE,∴△EBC≌△EFC(ASA),∴BC=CF,∵AB∥DC,∴AD=DF,∴DC=.故答案为:3.16.如图所示的点阵中,相邻的四个点构成正方形,正方形的边长为1,则阴影部分的面积为.解:如下图所示,连接图中的点,∠H=∠A=90°,∵HN∥AD,∴∠HNM=∠AFE,∴△HMN∽△AEF,∴==,不妨设AF=3x,AE=2x,则GF=AG﹣AF=2﹣3x,∵AE∥NG,∴△AEF∽△GNF,∴=,即=2﹣3x,解得x=,∴AF=,AE=,∴S阴影部分=S正方形ABCD﹣S△AEF=1﹣××=.故答案为:.17.如图,两个正方形Ⅰ,Ⅱ和两个矩形Ⅲ,Ⅳ拼成一个大正方形,已知正方形Ⅰ,Ⅱ的面积分别为6和3,那么大正方形的面积是.解:∵正方形Ⅰ的面积为6,∴正方形Ⅰ的边长为,∵正方形Ⅱ的面积为3,∴正方形Ⅱ的边长为,∴大正方形的边长为+,∴大正方形的面积为()2=9+6,故答案为:9+6.18.正方形ABCD的边长为4,AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.在点E从点A移动到点B的过程中,矩形ECFG的面积的最大值与最小值的和为32.解:连接DE,∵S△CDE=S四边形ECFG,S△CDE=S正方形ABCD,∴矩形ECFG与正方形ABCD的面积相等,∵正方形ABCD的边长为4,∴S正方形ABCD=4×4=16,∴矩形ECFG的面积是定值16,∴矩形ECFG的面积的最大值与最小值的和为32,故答案为32.三、解答题(本题共7个题,满分66分)19.计算:(+1)2﹣+(﹣2)2解:原式=2+2+1﹣2+4=7.20.(1)(x﹣1)2+2x(x﹣1)=0;(2)(x﹣1)(x+2)=70.解:(1)(x﹣1)[(x﹣1)+2x]=0,(x﹣1)(3x﹣1)=0,x﹣1=0或3x﹣1=0,所以x1=1,x2=;(2)x2+x﹣2=70,x2+x﹣72=0,(x+9)(x﹣8)=0,x+9=0或x﹣8=0,所以x1=﹣9,x2=8.21.已知关于x的方程x2﹣(m+3)x+m+1=0.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.解:(1)由题意可知:△=(m+3)2﹣4(m+1)=m2+2m+5=m2+2m+1+4=(m+1)2+4,∵(m+1)2≥0,∴Δ>0,∴不论m为何值,方程都有两个不相等的实数根.(2)当x=4代入x2﹣(m+3)x+m+1=0,∴m=,∴原方程化为:3x2﹣14x+8=0,x=4或x=∴该三角形的周长为4+4+=22.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E,F分别从B,C两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA向终点A运动速度为5cm/s,一个点到达终点时另一个点也随之停止.设它们运动的时间为x (s),请求出x为何值时,△EFC和△ACD相似.解:(1)如图1中,点F在AC上,点E在BD上时,①当时,△CFE∽△CDA,∴,∴t=,②当时,即,∴t=2,当点F在AB上,点E在CD上时,不存在△EFC和△ACD相似,综上所述,t=s或2s时,△EFC和△ACD相似.23.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H 在对角线AC上.若四边形EGFH是菱形,求AE的长.【解答】解;连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AEO(AAS),∴AO=CO,∵AC==4,∴AO=AC=2,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=5.24.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为30元的小商品进行直播销售,如果按每件40元销售,每月可卖出600件,通过市场调查发现,每件小商品售价每上涨1元,销售件数减少10件.为了实现平均每月10000元的销售利润,每件商品售价应定为多少元?这时电商每月能售出商品多少件?解:设每件商品售价应定为x元,则每件商品的销售利润为(x﹣30)元,每月的销售量为600﹣10(x﹣40)=(1000﹣10x)件,依题意得:(x﹣30)(1000﹣10x)=10000,整理得:x2﹣130x+4000=0,解得:x1=50,x2=80.当x=50时,1000﹣10x=1000﹣10×50=500;当x=80时,1000﹣10x=1000﹣10×80=200.答:当每件商品售价定为50元时,这时电商每月能售出商品500件;当每件商品售价定为80元时,这时电商每月能售出商品200件.25.【问题呈现】如图1,是有公共顶点的两个菱形ABCD和AEFG,∠BAD=∠EAG,连接BE和DG,则线段BE和DG之间存在的关系为BE=DG.【类比探究】如图2,若ABCD和AEFG是两个正方形,连接BE和DG,则线段BE和DG之间存在的关系为BE=DG,BE⊥DG.【拓展延伸】如图3,若ABCD和AEFG是两个矩形,AB=6,AD=4,AG=2,AE=3,连接BE和DG,探究线段BE和DG之间存在的关系,并写出详细的过程.解:【问题呈现】∵四边形ABCD,四边形AEFG都是菱形,∴AB=AD,AE=AG,∵∠BAD=∠EAG,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,故答案为:BE=DG;【类比探究】BE=DG,BE⊥DG,∵正方形ABCD和正方形AEFG有公共顶点A,∴AG=AE,AD=AB,∠EAG=∠BAD=90°,∴∠GAD=∠EAB,∴△ABE≌△ADG(SAS),∴BE=DG,∠ABE=∠ADG,又∵∠BMA=∠DME,∴∠BAM=∠DNM=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;【拓展延伸】∵AB=6,AD=4,AG=2,AE=3,∴,∴∵四边形ABCD和AEFG是矩形,∴∠BAD=∠EAG=90°,∴∠BAD+∠DAE=∠ACD+∠DAE.即∠BAE=∠DAG.∴△BAE∽△DAG,∴,∠ABE=∠ADG,设AD与BE交于点P,BE与DG交于点O,∵∠DPE=∠APB,∠ABE+∠APB=90°,∴∠ADG+∠DPE=90°.∴∠DOB=90°.∴BE⊥DG,综上,,BE⊥DG,。

八年级数学第二学期期末试卷及答案解析

八年级数学第二学期期末试卷及答案解析

八年级数学第二学期期末试卷及答案解析一字一句,淡淡的墨香,深深的底蕴,一段一落,轻轻的几句,高高的内涵,一行一页,浅浅的道理,大大的智慧,下面是为您推举八年级数学第二学期期末试卷及答案解析。

有关八年级数学下期末试卷一、选择题〔本大题共6小题,共18.0分〕1.以下函数中,一次函数是〔〕A. B. C. D.2.以下推断中,错误的选项是〔〕A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是〔〕A. B. C. D.4.以下事件中,必定事件是〔〕A. "奉贤人都爱吃鼎丰腐乳'B. "2021年上海中考,小明数学考试成果是总分150分'C. "10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只'D. "在一副扑克牌中任意抽10张牌,其中有5张A'5.以下命题中,真命题是〔〕A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线相互平分D. 梯形的对角线相互垂直二、填空题〔本大题共12小题,共24.0分〕6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,假如设=y,那么原方程化成以"y'为元的方程是______11.化简:〔〕-〔〕=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.假如n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点OAOB=60,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题〔本大题共8小题,共64.0分〕18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,假如从布袋中随机摸出一个球,恰好是红球的概率是.〔1〕试写出y与x的函数关系式;〔2〕当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.〔1〕写出与相反的向量______;〔2〕填空:++=______;〔3〕求作:+〔保存作图痕迹,不要求写作法〕.22.中国的高铁技术已经然走在了世界前列,2021年的"复兴号'高铁列车较"和谐号'速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,假如选择"复兴号'高铁,全程可以少用1小时,求上海火车站到北京火车站的"复兴号'运行时间.23.已知:如图,在△ABC中,ACB=90,点D是斜边AB 的中点,DE∥BC,且CE=CD.〔1〕求证:B=DEC;〔2〕求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD〔点D落在第四象限〕.〔1〕求点A,B,D的坐标;〔2〕联结OC,设正方形的边CD与x相交于点E,点M 在x轴上,假如△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,ABC=90,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.〔1〕若AM平分BMD,求BM的长;〔2〕过点A作AEDM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx〔k0〕,故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;应选:A.利用一般地,形如y=kx+b〔k0,k、b是常数〕的函数,叫做一次函数,进而推断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x〔x-1〕=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,应选:D.利用各自方程的定义推断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,娴熟把握各自的定义是解此题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,△=4+4m0,解得:m-1.应选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0〔a0〕的根与△=b2-4ac有如下关系:①当△0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、"奉贤人都爱吃鼎丰腐乳',是随机事件,故此选项错误;B、"2021年上海中考,小明数学考试成果是总分150分',是随机事件,故此选项错误;C、"10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只'是必定事件,故此选项正确;D、"在一副扑克牌中任意抽10张牌,其中有5张A',是不行能事件.应选:C.直接利用随机事件以及必定事件、不行能事件的定义分别分析得出答案.此题主要考查了随机事件以及必定事件、不行能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A. 平行四边形的对角线平分,错误;B. 菱形的对角线平分对角,错误;C. 菱形的对角线相互平分,正确;D. 等腰梯形的对角线相互垂直,错误;应选:C.依据菱形、平行四边形、矩形、等腰梯形的性质分别推断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,娴熟把握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,依据一次函数的图象与系数的关系即可得出结论.此题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=2,故答案为2.移项,系数化成1,再开方即可.此题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=〔1+x〕2,x2=9,解得:x=3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.此题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,k0.故答案为:k0,先推断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.此题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答此题留意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.此题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:〔〕-〔〕=--+=〔+〕-〔+〕=-=.故答案为:.由去括号的法则可得:〔〕-〔〕=--+,然后由加法的交换律与结合律可得:〔+〕-〔+〕,继而求得答案.此题考查了平面向量的学问.此题难度不大,留意把握三角形法则的应用.12.【答案】100〔1+x〕2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100〔1+x〕2=179.故答案为:100〔1+x〕2=179.设平均每次涨价的百分比为x,依据原价为100元,表示出第一次涨价后的价钱为100〔1+x〕元,然后再依据价钱为100〔1+x〕元,表示出第二次涨价的价钱为100〔1+x〕2元,依据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般状况下,假设基数为a,平均增长率为x,增长的次数为n〔一般状况下为2〕,增长后的量为b,则有表达式a〔1+x〕n=b,类似的还有平均降低率问题,留意区分"增'与"减'.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180,解得:x=45,边数=36045=8.故答案为:8.依据正多边形的内角与外角是邻补角求出每一个外角的度数,再依据多边形的边数等于360除以每一个外角的度数列式计算即可得到边数.此题考查了多边形的内角与外角,娴熟把握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形〔答案不唯一〕【解析】解:矩形〔答案不唯一〕.依据轴对称图形与中心对称图形的概念,写一个则可.把握中心对称图形与轴对称图形的概念.轴对称图形的关键是查找对称轴,图形两部分折叠后可重合;中心对称图形是要查找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分BAD,BAO=DAO,在△BAO与△DAO中,,△BAO≌△DAO〔SAS〕,BOA=DOA,ACBD,∵AC=8,S四边形ABCD=16,BD=1628=4.故答案为:4.依据角平分线的定义可得BAO=DAO,依据SAS可证△BAO ≌△DAO,再依据全等三角形的性质可得BOA=DOA,可得ACBD,再依据对角线相互垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是依据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分BAD,BAE=AEB=45,AB=BE=2,当EC=3BE时,EC=6,BC=8.②如图2中,当BE=3EC时,EC=,BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;此题考查矩形的性质、等腰直角三角形的判定和性质等学问,解题的关键是学会用分类商量的思想思索问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵AOB=EOA=60,EOD=60,∵OB=OE=OD,△EOD是等边三角形,EDO=AOB=60,DE∥AC,S△ADE=S△EOD=22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出EDO=AOB=60,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等学问.此题难度适中,解题的关键是精确作出帮助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以〔x+2〕〔x-2〕得:〔x-1〕〔x+2〕-4=2〔x+2〕〔x-2〕,即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,〔x+2〕〔x-2〕0,所以x=-1是原方程的解,当x=2时,〔x+2〕〔x-2〕=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.此题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:〔4+y〕2-2y2=〔4+y〕y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.此题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:〔1〕因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x〔2〕把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】〔1〕让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.〔2〕让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的学问点为:概率=所求状况数与总状况数之比.21.【答案】,【解析】解:〔1〕与相反的向量有,,故答案为有,.〔2〕∵+=,+=,++=故答案为.〔3〕如图,作平行四边形OBEC,连接AE,即为所求;〔1〕依据相反的向量的定义即可解决问题;〔2〕利用三角形加法法则计算即可;〔3〕如图,作平行四边形OBEC,连接AE,即为所求;此题考查平面向量、作图-冗杂作图、矩形的性质等学问,解题的关键是娴熟把握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时〔x+1〕小时,依据题意得:=70+,解得:x=4或x=-5〔舍去〕答:上海火车站到北京火车站的"复兴号'运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时〔x+1〕小时,然后根据"复兴号'高铁列车较"和谐号'速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要留意检验.23.【答案】〔1〕证明:在△ABC中,∵ACB=90,点D是斜边AB的中点,CD=DB,B=DCB,∵DE∥BC,DCB=CDE,∵CD=CE,CDE=CED,B=CED.〔2〕证明:∵DE∥BC,ADE=B,∵B=DEC,ADE=DEC,AD∥EC,∵EC=CD=AD,四边形ADCE是平行四边形,∵CD=CE,四边形ADCE是菱形.【解析】〔1〕利用等腰三角形的性质、直角三角形斜边中线定理证明即可;〔2〕首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再依据CD=CE可得四边形是菱形;此题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等学问,解题的关键是敏捷运用所学学问解决问题,属于中考常考题型.24.【答案】解:〔1〕∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,A〔-2,0〕,B〔0,4〕,OA=2,OB=4,如图1,过点D作DFx轴于F,DAF+ADF=90,∵四边形ABCD是正方形,AD=AB,BAD=90,DAF+BAO=90,ADF=BAO,在△ADF和△BAO中,,△ADF≌△BAO〔AAS〕,DF=OA=2,AF=OB=4,OF=AF-OA=2,∵点D落在第四象限,D〔2,-2〕;〔2〕如图2,过点C作CGy轴于G,连接OC,作CMOC交x轴于M,同〔1〕求点D的方法得,C〔4,2〕,OC==2,∵A〔-2,0〕,B〔0,4〕,AB=2,∵四边形ABCD是正方形,AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,△ADE≌△OCM,OM=AE,∵OM=OE+EM,AE=OE+OA,EM=OA=2,∵C〔4,2〕,D〔2,-2〕,直线CD的解析式为y=2x-6,令y=0,2x-6=0,x=3,E〔3,0〕,OM=5,M〔5,0〕.【解析】〔1〕先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;〔2〕先求出点C坐标,进而求出OC,推断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解此题的关键.25.【答案】解:〔1〕如图1中,作DHBC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分DMB时,易证AMB=AMD=DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,MH===4,BM=BH-MH=1,当AM平分BMD时,同法可证:DA=DM,HM=4,BM=BH+HM=9.综上所述,满足条件的BM的值为1或9.〔2〕①如图2中,作MHAD于H.在Rt△DMH中,DM==,∵S△ADM=ADMH=DMAE,53=yy=.②如图3中,当AB=AE时,y=3,此时53=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AEDM,DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】〔1〕如图1中,作DHBC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;〔2〕①如图2中,作MHAD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时53=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;此题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等学问,解题的关键是学会添加常用帮助线,构造直角三角形解决问题,学会用分类商量的思想思索问题,属于中考压轴题.。

上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)

上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)

2019-2020学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2019-2020学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD 中,AB=3,点E 在AB 的延长线上,且AE=AC ,联结CE ,取CE 的中点F ,联结BF 、DF .(1)求证:DF ⊥BF ;(2)设AC=x ,DF=y ,求y 与x 之间的函数关系式,并写出定义域;(3)当DF=2BF 时,求BC 的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.。

最新八年级下学期期末数学试卷 (解析版)

最新八年级下学期期末数学试卷  (解析版)

一.选择题(每小题3分,计24分)下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填入下表中相应题号下的空格内. 1.(3分)下列曲线中表示y是x的函数的为()A.B.C.D.2.(3分)化简的结果是()A.2 B.4 C.D.±3.(3分)如图,四边形OABC是平行四边形,已知点A(2,4),点C(4,0),则点B的坐标为()A.(2,4)B.(4,6)C.(6,4)D.(4,4)4.(3分)一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分79 80 ■81 81 ■80那么被盖住的两个数依次是()A.79,0.8 B.79,1 C.80,0.8 D.80,1 5.(3分)菱形的边长是5cm,一条对角线的长是8cm,则另一条对角线的长为()A.10cm B.8cm C.6cm D.5cm 6.(3分)下面各点中,在函数y=2x+1的图象上的是()A.(2,1)B.(﹣,0)C.(,1)D.(﹣2,0)7.(3分)如图,已知∠AOB,以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D,再分别以C,D为圆心,以大于CD 长为半径画弧,两弧交于点F,作射线OF,点P为OF上一点,PE⊥OB,垂足为点E,若PE=5,则点P到OA的距离为()A.5 B.4 C.3 D.8.(3分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>0 B.x>3 C.x<0 D.x<3二.填空题(每小题3分,计24分)9.(3分)在函数y=中,自变量x的取值范围是.10.(3分)某校八年级(1)班第一小组5名学生的身高(单位:cm):158,162,159,165,162.则这5名同学身高的众数是.11.(3分)将直线y=2x向上平移3个单位所得的直线解析式是.12.(3分)一列火车以100km/h的速度匀速前进.则它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式为.13.(3分)某公司欲招聘职员,对应聘者进行三项测试:语言、创新、综合知识,并按测试得分1:3:2的比例确定测试总分,已知某位应聘者三项得分(单位:分)分别为86,72,50,则这位应聘者的测试总分为.14.(3分)如图,矩形OABC的顶点B的坐标为(3,2),则对角线AC=.15.(3分)如图,在▱ABCD中,∠ABC=60°,E,F分别在AD,BA的延长线上,CE∥BD,EF⊥AB,BC=1,则EF的长为.16.(3分)如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B 的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的有.(只填序号)三.解答题(17题4分,18题6分,计10分)17.(4分)计算:(2﹣1)(2+1).18.(6分)如图,在正方形ABCD的外侧,作等边三角形DCE,连接BE,求∠DEB的度数.四.解答题(每题6分,计12分)19.(6分)如图,一次函数y=kx+b的图象经过A(2,4),B(﹣2,﹣2)两点,与y轴交于点C.(1)求k,b的值,并写出一次函数的解析式;(2)求点C的坐标.20.(6分)某校200名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量(单位:棵),如表所示:3 4 5 6植树量(单位:棵)人数 5 9 5 1(1)这20名学生每人植树量的众数为,中位数为;(2)求这20名学生每人植树量的平均数(结果取整数),并估计这200名学生共植树多少棵.五.解答题(21题5分,22题6分,计11分)21.(5分)已知一次函数y=3x+3的图象与x轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3的图象.22.(6分)如图,矩形ABCD的对角线AC,BD相交于点O,将△ODC沿CD翻折,点O落在点E处.求证:四边形OCED是菱形.六.解答题(每题6分,计12分)23.(6分)如图,小明家、文具店、书店在同一条直线上,小明从家去文具店买笔,接着去书店看书,然后回家,折线图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)的对应关系,根据图象解答下列问题:(1)由纵坐标看出,小明家离文具店km,由横坐标看出,小明从家到文具店用min,小明在书店看书用了min;(2)求小明从书店回家的平均速度.24.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,E是CD延长线的点,且CD=DE,连接AE.(1)判断OD与AE的数量关系为;(2)求证:四边形ABDE是平行四边形.七.解答题(本题7分)25.(7分)如图,一次函数y=kx+1与y=2x﹣2的图象分别交坐标轴于A,B,C,D四点,直线AB,CD交于E,已知点E的横坐标为.(1)求点E的纵坐标及k值;(2)证明:△OAB≌△OCD;(3)计算△BCE的面积.2019-2020学年辽宁省铁岭市西丰县八年级(下)期末数学试卷参考答案与试题解析一.选择题(每小题3分,计24分)下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填入下表中相应题号下的空格内. 1.(3分)下列曲线中表示y是x的函数的为()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,根据函数的定义解答即可.【解答】解:A、对于x的每一个取值,y可能有多个值与之对应,不符合题意;B、对于x的每一个取值,y都有唯一确定的值与之对应,符合题意;C、对于x的每一个取值,y可能有两个值与之对应,不符合题意;D、对于x的每一个取值,y可能有两个值与之对应,不符合题意;故选:B.【点评】主要考查了函数的定义,在一个变化过程中有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x 的函数,x叫自变量.2.(3分)化简的结果是()A.2 B.4 C.D.±【分析】利用二次根式的乘法法则,对二次根式化简.【解答】解:==2.故选:C.【点评】主要考查了二次根式的化简.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备(缺一不可)的二次根式叫最简二次根式.3.(3分)如图,四边形OABC是平行四边形,已知点A(2,4),点C(4,0),则点B的坐标为()A.(2,4)B.(4,6)C.(6,4)D.(4,4)【分析】根据平行四边形的性质和坐标特点解答即可.【解答】解:∵四边形OABC是平行四边形,点A(2,4),点C (4,0),∴B(6,4),故选:C.【点评】此题考查平行四边形的性质,关键是根据平行四边形的对边相等解答.4.(3分)一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分79 80 ■81 81 ■80那么被盖住的两个数依次是()A.79,0.8 B.79,1 C.80,0.8 D.80,1 【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得.【解答】解:丙的成绩为5×80﹣(79+80+81+81)=79,所以这五名学生成绩的方差为×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8,故选:A.【点评】本题主要考查方差,解题的关键是掌握算术平均数和方差的定义.5.(3分)菱形的边长是5cm,一条对角线的长是8cm,则另一条对角线的长为()A.10cm B.8cm C.6cm D.5cm 【分析】根据菱形性质得出OA=OC=4cm,OB=OD,AC⊥BD,由勾股定理求出OB,即可得出答案.【解答】解:如图所示:∵四边形ABCD是菱形,∴AB=5cm,OA=OC=AC=4cm,AC⊥BD,∴∠AOB=90°,由勾股定理得:OB===3(cm),∴BD=2OB=6cm,故选:C.【点评】本题考查了菱形的性质和勾股定理,熟练掌握菱形的对角线互相垂直平分是解题的关键.6.(3分)下面各点中,在函数y=2x+1的图象上的是()A.(2,1)B.(﹣,0)C.(,1)D.(﹣2,0)【分析】把点的坐标代入函数的解析式,看看左边和右边是否相等即可.【解答】解:A.把(2,1)代入y=2x+1得:左边≠右边,即点(2,1)不在函数y=2x+1的图象上,故本选项不符合题意;B.把(﹣,0)代入y=2x+1得:左边=右边,即点(﹣,0)在函数y=2x+1的图象上,故本选项符合题意;C.把(,1)代入y=2x+1得:左边≠右边,即点(,1)不在函数y=2x+1的图象上,故本选项不符合题意;D.把(﹣2,0)代入y=2x+1得:左边≠右边,即点(﹣2,0)不在函数y=2x+1的图象上,故本选项不符合题意;故选:B.【点评】本题考查了一次函数图象上点的坐标特征,能理解函数图象上点的坐标特点是解此题的关键.7.(3分)如图,已知∠AOB,以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D,再分别以C,D为圆心,以大于CD 长为半径画弧,两弧交于点F,作射线OF,点P为OF上一点,PE⊥OB,垂足为点E,若PE=5,则点P到OA的距离为()A.5 B.4 C.3 D.【分析】过点P作PT⊥OA于T.利用角平分线的性质定理证明PT=PE即可.【解答】解:过点P作PT⊥OA于T.由作图可知,OF平分∠AOB,∵PT⊥OA,PE⊥OB,∴PT=PE=5,故选:A.【点评】本题考查作图﹣基本作图,角平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.8.(3分)一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>0 B.x>3 C.x<0 D.x<3 【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(3,0),并且函数值y 随x的增大而减小,所以当x<3时,函数值大于0,即关于x的不等式kx+b>0的解集是x<3.故选:D.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二.填空题(每小题3分,计24分)9.(3分)在函数y=中,自变量x的取值范围是x≥1 .【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】此题主要考查函数自变量的取值范围,解决本题的关键是当函数表达式是二次根式时,被开方数为非负数.10.(3分)某校八年级(1)班第一小组5名学生的身高(单位:cm):158,162,159,165,162.则这5名同学身高的众数是162cm .【分析】一组数据中出现次数最多的数据叫做众数,结合表格信息即可得出答案.【解答】解:身高162的人数最多,故该小组5名同学身高的众数是162cm.故答案为:162cm.【点评】本题考查了众数的知识,掌握众数的定义是解题的关键.11.(3分)将直线y=2x向上平移3个单位所得的直线解析式是y =2x+3 .【分析】根据“上加下减”的原则进行解答即可.【解答】解:直线y=2x向上平移3个单位所得的直线解析式是y =2x+3.故答案为y=2x+3.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.12.(3分)一列火车以100km/h的速度匀速前进.则它的行驶路程s(单位:km)关于行驶时间t(单位:h)的函数解析式为s =100t .【分析】利用路程=速度×时间,用t表示出路程s即可.【解答】解:根据题意得s=100t.故答案为s=100t.【点评】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.13.(3分)某公司欲招聘职员,对应聘者进行三项测试:语言、创新、综合知识,并按测试得分1:3:2的比例确定测试总分,已知某位应聘者三项得分(单位:分)分别为86,72,50,则这位应聘者的测试总分为67分.【分析】根据题目中的数据和加权平均数的计算方法,可以计算出这位应聘者的测试总分.【解答】解:=67(分),即这位应聘者的测试总分为67分,故答案为:67分.【点评】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.14.(3分)如图,矩形OABC的顶点B的坐标为(3,2),则对角线AC=.【分析】连接AC,BO,依据点B的坐标为(3,2),即可得到OB=,再根据四边形ABCO是矩形,即可得出对角线AC的长.【解答】解:如图,连接AC,BO,∵点B的坐标为(3,2),∴OB==,∵四边形ABCO是矩形,∴AC=BO=,故答案为:.【点评】本题考查的是矩形的性质,熟知矩形的对角线相等是解答此题的关键.15.(3分)如图,在▱ABCD中,∠ABC=60°,E,F分别在AD,BA的延长线上,CE∥BD,EF⊥AB,BC=1,则EF的长为.【分析】根据平行四边形性质推出AD=BC,BC∥AD,得出平行四边形BCED,推出DE=BC=AD,求出AE的长,进而根据勾股定理即可求出EF的长.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,BC∥AD,∵CE∥BD,∴四边形BCED是平行四边形,∴DE=BC=AD=1,即D为AE中点,∴AE=2,∵EF⊥AB,∴∠EFA=90°,∵AD∥BC,∴∠EAF=∠ABC=60°,∠AEF=30°,∴AF=AE=1,∴EF===,故答案为:.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理的运用,解题的关键是求出AE的长.16.(3分)如图,直线y=ax+1与y=﹣x+4交于点E,点A,B,C,D分别是两条直线与坐标轴的交点.则结论:①a>0;②点B 的坐标是(0,1);③S△BDE=3;④当x>2时,ax+1<﹣x+4中,正确的有①②③.(只填序号)【分析】根据一次函数的图象以及两条直线的交点坐标,再进行分析判断即可.【解答】解:由函数y=ax+1的图象可知,y随x的增大而增大,∴a>0,故①正确;在直线y=ax+1中,令x=0,则y=1,∴直线y=ax+1与y轴的交点B为(0,1),故②正确;由函数y=﹣x+4可知,D的坐标为(0,4),∴BD=3,∵E的横坐标为2,∴S△BDE==3,故③正确;由图象可知,当x>2时,函数y=ax+1在函数y=﹣x+4的上方,∴ax+1>﹣x+4,故④错误,故答案为①②③.【点评】本题考查了一元一次函数与一元一次不等式的关系,两条直线的相交问题,熟练掌握一次函数的性质以及数形结合是解题的关键.三.解答题(17题4分,18题6分,计10分)17.(4分)计算:(2﹣1)(2+1).【分析】利用平方差公式计算.【解答】解:原式=(2)2﹣12=12﹣1=11.【点评】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(6分)如图,在正方形ABCD的外侧,作等边三角形DCE,连接BE,求∠DEB的度数.【分析】由正方形的性质可得BC=CD,∠BCD=90°,由等边三角形的性质可得BC=CE,∠DCE=∠DEC=60°,由等腰三角形的性质可求∠BEC=15°,即可求解.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∵△DCE是等边三角形,∴BC=CE,∠DCE=∠DEC=60°,∴BC=CE,∠BCE=150°,∴∠BEC=∠EBC=(180°﹣∠BCE)=15°,∴∠DEB=∠DEC﹣∠BEC=60°﹣15°=45°.【点评】本题考查了正方形的性质,等边三角形的性质,掌握正方形的性质是本题的关键.四.解答题(每题6分,计12分)19.(6分)如图,一次函数y=kx+b的图象经过A(2,4),B(﹣2,﹣2)两点,与y轴交于点C.(1)求k,b的值,并写出一次函数的解析式;(2)求点C的坐标.【分析】(1)利用待定系数法求一次函数的解析式;(2)令x=0代入解析式可得C的坐标.【解答】解:(1)把A(2,4),B(﹣2,﹣2)代入y=kx+b得:,解得,∴一次函数的解析式为:y=x+1;(2)把x=0代入y=x+1中得:y=1,∴C(0,1).【点评】本题考查了用待定系数法求出一次函数的解析式,一次函数图象上点的坐标特征,解此题的关键是熟练掌握待定系数法.20.(6分)某校200名学生参加植树活动,要求每人植树3~6棵,活动结束后随机抽查了20名学生每人的植树量(单位:棵),如表所示:植树量(单位:3 4 5 6棵)人数 5 9 5 1(1)这20名学生每人植树量的众数为4棵,中位数为4棵;(2)求这20名学生每人植树量的平均数(结果取整数),并估计这200名学生共植树多少棵.【分析】(1)根据众数及中位数的定义分别写出答案即可;(2)利用样本的平均数估计总体的平均数即可.【解答】解:(1)植树4棵的有9人,最多,所以众数为4棵;共20人,植树的中位数为第10和第11人的平均数,即中位数为=4棵,故答案为:4棵,4棵;(2)平均数是:(3×5+4×9+5×5+6×1)≈4棵,所以200名学生共植树200×4=800棵.【点评】此题考查了众数、中位数以及加权平均数的知识.注意一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.五.解答题(21题5分,22题6分,计11分)21.(5分)已知一次函数y=3x+3的图象与x轴交于点A,与y轴交于点B.(1)求A,B两点的坐标;(2)在给定的直角坐标系中,画出一次函数y=3x+3的图象.【分析】(1)分别令y=0,x=0求解即可;(2)根据两点确定一条直线作出函数图象即可.【解答】解:(1)在y=3x+3中,令y=0,则x=﹣1;令x=0,则y=3,所以,点A的坐标为(﹣1,0),点B的坐标为(0,3);(2)如图:.【点评】本题考查了一次函数图象上点的坐标特征,一次函数图象,熟练掌握一次函数与坐标轴的交点坐标的求解方法是解题的关键.22.(6分)如图,矩形ABCD的对角线AC,BD相交于点O,将△ODC沿CD翻折,点O落在点E处.求证:四边形OCED是菱形.【分析】依据矩形的性质以及折叠的性质,即可得到OD=ED=OC=EC,进而得出四边形OCED是菱形.【解答】证明:∵四边形ABCD是矩形,∴DO=CO,由折叠可得,OD=ED,OC=EC,∴OD=ED=OC=EC,∴四边形OCED是菱形.【点评】本题主要考查了菱形的判定,四条边都相等的四边形是菱形.六.解答题(每题6分,计12分)23.(6分)如图,小明家、文具店、书店在同一条直线上,小明从家去文具店买笔,接着去书店看书,然后回家,折线图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)的对应关系,根据图象解答下列问题:(1)由纵坐标看出,小明家离文具店0.7 km,由横坐标看出,小明从家到文具店用10 min,小明在书店看书用了60 min;(2)求小明从书店回家的平均速度.【分析】(1)根据函数图象中的数据,可以解答本题;(2)根据函数图象中的数据,可以计算出小明从书店回家的平均速度.【解答】解:(1)由纵坐标看出,小明家离文具店0.7km,由横坐标看出,小明从家到文具店用10min,小明在书店看书用了90﹣30=60(min),故答案为:0.7,10,60;(2)0.9÷(105﹣90)=0.06(km/min),即小明从书店回家的平均速度是0.06km/min.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,E是CD延长线的点,且CD=DE,连接AE.(1)判断OD与AE的数量关系为AE=2OD ;(2)求证:四边形ABDE是平行四边形.【分析】(1)由平行四边形的性质得AB∥CD,AB=CD,OB=OD,证出四边形ABDE是平行四边形,得出AE=BD,即可得出AE=2OD;(2)由平行四边形的性质得AB∥CD,AB=CD,OB=OD,证出AB=DE,AB∥DE,即可得出四边形ABDE是平行四边形.【解答】(1)解:AE=2OD,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OB=OD,∵CD=DE,∴AB=DE,AB∥DE,∴四边形ABDE是平行四边形,∴AE=BD,∴AE=2OD;故答案为:AE=2OD;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OB=OD,∵CD=DE,∴AB=DE,AB∥DE,∴四边形ABDE是平行四边形.【点评】本题考查了平行四边形的判定与性质;证明四边形ABDE 为平行四边形是解题的关键.七.解答题(本题7分)25.(7分)如图,一次函数y=kx+1与y=2x﹣2的图象分别交坐标轴于A,B,C,D四点,直线AB,CD交于E,已知点E的横坐标为.(1)求点E的纵坐标及k值;(2)证明:△OAB≌△OCD;(3)计算△BCE的面积.【分析】(1)由点E的横坐标,利用一次函数图象上点的坐标特征可求出点E的坐标,由点E在一次函数y=kx+1的图象上,利用一次函数图象上点的坐标特征可求出k值;(2)利用一次函数图象上点的坐标特征可求出点A,B,C,D的坐标,进而可得出OA,OB,OC,OD的长,再结合∠AOB=∠COD=90°,利用全等三角形的判定定理SAS可证出△OAB≌△OCD;(3)过点E作EF⊥y轴于点F,则EF=,由点B,C的坐标可得出BC的长,再利用三角形的面积公式即可求出△BCE的面积.【解答】(1)解:当x=时,y=2×﹣2=,∴点E的坐标为(,).∵点E在一次函数y=kx+1的图象上,∴=k+1,∴k=﹣.(2)证明:当y=0时,﹣x+1=0,解得:x=2,∴点A的坐标为(2,0),OA=2;当x=0时,y=﹣×0+1=1,∴点B的坐标为(0,1),OB=1;当x=0时,y=2×0﹣2=﹣2,∴点C的坐标为(0,﹣2),OC=2;当y=0时,2x﹣2=0,解得:x=1,∴点D的坐标为(1,0),OD=1.在△OAB和△OCD中,,∴△OAB≌△OCD(SAS).(3)解:过点E作EF⊥y轴于点F,则EF=,如图所示.∵点B的坐标为(0,1),点C的坐标为(0,﹣2),∴BC=1﹣(﹣2)=3,∴S△BCE=BC•EF=×3×=.【点评】本题考查了一次函数图象上点的坐标特征、全等三角形的判定以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点E的坐标及k值;(2)利用全等三角形的判定定理SAS,证出△OAB≌△OCD;(3)利用三角形的面积公式,求出△BCE的面积.。

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。

A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。

有意义,则x 的取值范围是( )。

A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。

A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。

A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。

A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。

A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。

A.24B.16C.4错误!未找到引用源。

D.2错误!未找到引用源。

8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。

B.2错误!未找到引用源。

C.3错误!未找到引用源。

D.4错误!未找到引用源。

9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。

2019-2020学年河南省洛阳市八年级(下)期末数学试卷 (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷  (解析版)

2019-2020学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤12.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.43.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.56.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>09.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.810.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是.13.(3分)方程组的解为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD 三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.2019-2020学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.2.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.4【分析】根据合并同类二次根式法则、二次根式的性质和平方差公式依此计算可得.【解答】解:①与不是同类二次根式,不能合并,此式计算错误;②()2=2,此式计算正确;③5﹣=4,此式计算错误;④(+)(﹣)=2﹣3=﹣1,此式计算正确;故选:B.3.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定【分析】根据方差的定义,方差越小数据越稳定即可判断.【解答】解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选:C.4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°【分析】根据正方形的性质,可以得到∠ACB和∠CAB的度数,再根据AC=AE,可以得到∠ACE和∠AEC的度数,然后即可得到∠BCE的度数.【解答】解:∵AC是正方形ABCD的对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠CAE=180°,∴∠ACE=∠AEC=67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°,故选:D.5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.5【分析】根据众数和算术平均数的定义列式计算可得.【解答】解:将这组数据重新排列为7,7,7,8,8,9,9,10,11,14,所以这组数据的众数为7,平均数为=9,故选:B.6.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分【分析】根据加权平均数的计算公式进行计算,即可得出答案.【解答】解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选:D.7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定【分析】根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=AC,即可求解.【解答】解:∵D、E分别是△ABC各边的中点,∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=AC=6cm.故选:B.8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>0【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故选:B.9.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.8【分析】由菱形的性质得出OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD 中,由含30°角的直角三角形的性质求出CD=2OD=2,由勾股定理求出OC,得出AC,由菱形的面积公式即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.10.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4【分析】连接MB交AC于N,此时DN+MN最小,先证明这个最小值就是线段BM的长,利用勾股定理就是即可解决问题.【解答】解:如图,连接MB交AC于N,此时DN+MN最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴DN=BN,∴DN+MN=BN+NM=BM,在Rt△BMC中,∵∠BCM=90°,BC=16,CM=CD﹣DM=16﹣4=12,∴BM=.故选:C.二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是 5.5元.【分析】将数据重新排列,再根据中位数的定义求解可得.【解答】解:将这组数据重新排列为:3,5,5,5,6,6,6,10,所以这组数据的中位数为=5.5(元),故答案为:5.5元.13.(3分)方程组的解为.【分析】由图象可知,一次函数x+y=3与y=2x的交点坐标为(1,2),所以方程组的解为.【解答】解:∵一次函数x+y=3与y=2x的交点坐标为(1,2),∴方程组的解为.故答案为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为8.【分析】连接EF,AE交BF于O点,如图,由作法得AB=AF,AE平分∠BAD,先证明四边形ABEF为菱形得到AE⊥BF,OA=OE,BO=OF=3,然后利用勾股定理计算出OA,从而得到AE的长.【解答】解:连接EF,AE交BF于O点,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F AE=∠BEA,由作法得AB=AF,AE平分∠BAD,∴∠BAE=∠F AE,∴∠BAE=∠BEA,∴BA=BE,∴AF=BE,而AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF为菱形,∴AE⊥BF,OA=OE,BO=OF=3,在Rt△AOB中,OA===4,∴AE=2OA=8.故答案为8.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算二次根式的乘除运算、化简二次根式,再计算加减运算可得.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=﹣+2=4+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)【分析】作出A点到公路的距离,构造出直角三角形,利用勾股定理易得BD长,那么根据直角三角形BCD的各边利用勾股定理即可求得商店与车站之间的距离.【解答】解:作AB⊥L于B,则AB=30m,AD=50m.∴BD=40m.设CD=x,则CB=40﹣x,x2=(40﹣x)2+302,x2=1600+x2﹣80x+302,80x=2500,x≈31,答:商店C与公交站D之间的距离约为31米.18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【分析】(1)先由读1本书的人数及其所占百分比可得总人数,再用总人数乘以读4本书的百分比可得其人数,用读3本书人数除以总人数可得其百分比,据此可补全统计图,最后根据中位数的定义可得答案;(2)根据加权平均数的定义求解可得;(3)用总人数乘以样本中四月份“读书量”为5本的学生人数所占比例可得答案.【解答】解:(1)∵被调查的总人数为3÷5%=60(人),∴读书4本的人数为60×20%=12(人),读3本书的人数所占百分比为×100%=35%,∵共有60个数据,其中位数为第30、31个数据的平均数,而第30、31个数据均为3本,∴中位数为=3(本),故答案为:3本.(2)本次所抽取学生四月份“读书量”的平均数为=3.6(本);(3)估计该校七年级学生中,四月份“读书量”为5本的学生人数为600×=60(人).19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.【分析】(1)把A点坐标代入y1=ax+2可求出a的值;(2)设C(t,t﹣1),利用两点间的距离公式得到(t﹣2)2+(t﹣1﹣1)2=(2)2,然后解方程可得到点C的坐标;(3)先确定一次函数y1=﹣x+2与x轴的交点坐标为(4,0),然后结合函数图象,写出x轴上且直线y=x﹣1在直线y=﹣x+2上方所对应的自变量的范围即可.【解答】解:(1)把A(2,1)代入y1=ax+2得2a+2=1,解得a=﹣;(2)设C(t,t﹣1),∵A(2,1),AC=2,∴(t﹣2)2+(t﹣1﹣1)2=(2)2,解得t1=0,t2=4,∴点C的坐标为(0,﹣1)或(4,3);(3)当y=0时,﹣x+2=0,解得x=4,∴一次函数y1=﹣x+2与x轴的交点坐标为(4,0),∴当2<x<4时,y2>y1>0.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【解答】(1)证明:∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)解:如图,连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF===10,∴S△DEF=EF×DE,∴EG==,∴FG=CG===,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?【分析】(1)根据3部A型号手机和2部B型号手机营业额10800元,4部A型号手机和1部B型号手机营业额10400元,构造二元一次方程组求解即可;(2)①根据:每类手机利润=单部手机利润×部数,总利润=A型手机利润+B型手机利润,得函数关系式.注意a的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得解得(2)①由题意,得w=(2000﹣1500)a+(2400﹣1800)(50﹣a),即w=30000﹣100a,又∵50﹣a≤3a∴a≥∴w关于a的函数关系式为w=30000﹣100a(a≥);②w关于a的函数关系式为w=30000﹣100a,∵k=﹣100<0,∴w随a的增大而减小,又∵a只能取正整数,∴当a=13时,总利润w最大,最大利润w=30000﹣100×13=2870050﹣a=37答:该营业厅购进A型号手机13部,B型号手机37部时,销售总利润最大,最大利润为28700元22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是BC⊥CF,BC、CF、CD三条线段之间的数量关系为CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,根据直角三角形斜边上中线的性质即可得到DF的长,再求出CD,BC即可解决问题.【解答】解:(1)如图1中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF⊥BC,CF+CD=BC.(2)结论:CF⊥BC,CF﹣CD=BC.理由:如图2中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∴BC+CD=CF,∴CF﹣CD=BC;(3)如图3中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,BD=CF=5,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵OD=OF,∴DF=2OC=13,∴Rt△CDF中,CD===12,∴BC=DC﹣BD=12﹣5=7,∴AB=AC=,∴S△ABC=××=.23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为(,0),点C的坐标为(0,﹣1);(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y=0和x=0,可得B、C点坐标;(2)根据面积的和差,可得关于t的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y轴的右侧,有三个符合条件的点M,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M的坐标.【解答】解:(1)将D(1,﹣)代入y=x+n,解得n=﹣3,即y=x﹣3,当y=0时,x﹣3=0.解得x=,即B点坐标为(,0);将(1,﹣)代入y=﹣x+m,解得m=﹣1,即y=﹣x﹣1,当x=0时,y=﹣1.即C点坐标为(0,﹣1);故答案为:(,0),(0,﹣1);(2)如图1,S△BDP=(t﹣)×|﹣|=,当y=0时,﹣x﹣1=0,解得x=﹣,即E点坐标为(﹣,0),S△CDP=S△DPE﹣S△CPE=(t+)×﹣×(t+)×|﹣1|=,由△BDP和△CDP的面积相等,得:=+,解得t=5.2;(3)以CP为腰作等腰直角△CPM,有以下两种情况:①如图2,当以点C为直角顶点,CP为腰时,点M1在y轴的左侧,不符合题意,过M2作M2A⊥y轴于A,∵∠PCM2=∠PCO+∠ACM2=∠PCO+∠OPC=90°,∴∠ACM2=∠OPC,∵∠POC=∠CAM2,PC=CM2,∴△POC≌△CAM2(AAS),∴PO=AC=5.2,OC=AM2=1,∴M2(1,﹣6.2);②如图3,当以点P为直角顶点,CP为腰时,过M4作M4E⊥x轴于E,同理得△COP≌△PEM4,∴OC=EP=1,OP=M4E=5.2,∴M4(6.2,﹣5.2),同理得M3(4.2,5.2);综上所述,满足条件的点M的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).。

(新人教版)八年级(下册)期末数学试卷6+参考答案与试题解析

(新人教版)八年级(下册)期末数学试卷6+参考答案与试题解析

八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A. B. C.D.2.平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD 的周长为()A.16 B.24 C.4D.86.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5° B.60°C.67.5° D.75°8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥19.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=210.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD 的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为______.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是______.14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=______.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=______.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为______.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为______m.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为______,线段BC的长为______.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生______人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.25.在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.26.如图,在数轴上点A表示的实数是______.27.我们已经学习了反比例函数,在生活中,两个变量间具有反比例函数关系的实例有许多,例如:在路程s一定时,平均速度v是运行时间t的反比例函数,其函数关系式可以写为:v=(s为常数,s≠0).请你仿照上例,再举一个在日常生活、学习中,两个变量间具有反比例函数关系的实例:______;并写出这两个变量之间的函数解析式:______.28.已知:关于x的一元二次方程mx2﹣3(m﹣1)x+2m﹣3=0(m>3).(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(用含m的代数式表示);①求方程的两个实数根x1,x2(用含m的代数式表示);②若mx1<8﹣4x2,直接写出m的取值范围.29.四边形ABCD是正方形,对角线AC,BD相交于点O.(1)如图1,点P是正方形ABCD外一点,连接OP,以OP为一边,作正方形OPMN,且边ON与边BC相交,连接AP,BN.①依题意补全图1;②判断AP与BN的数量关系及位置关系,写出结论并加以证明;(2)点P在AB延长线上,且∠APO=30°,连接OP,以OP为一边,作正方形OPMN,且边ON与BC的延长线恰交于点N,连接CM,若AB=2,求CM的长(不必写出计算结果,简述求CM长的过程)八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)1.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、为最简二次根式,符合题意;B、=2,不合题意;C、=,不合题意;D、=2,不合题意,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.平行四边形ABCD中,若∠B=2∠A,则∠C的度数为()A.120°B.60°C.30°D.15°【考点】平行四边形的性质.【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故选B.【点评】本题考查的是平行四边形的性质,熟知平行四边形的对角相等是解答此题的关键.3.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如表所示()则在这四个选手中,成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】先比较四个选手的方差的大小,根据方差的性质解答即可.【解答】解:∵0.60>0.56>0.50>0.45,∴丁的方差最小,∴成绩最稳定的是丁,故选:D.【点评】本题考查的是方差的性质,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.若A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征结合点A、B的横坐标,求出y1、y2的值,二者进行比较即可得出结论.【解答】解:∵A(1,y1),B(2,y2)两点都在反比例函数y=的图象上,∴1•y1=1,2•y2=1,解得:y1=1,y2=,∵1>,∴y1>y2.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据反比例函数图象上点的坐标特征求出y1、y2的值.本题属于基础题,难度不大,解决该题型题目时,结合点的横坐标,利用反比例函数图象上点的坐标特征求出点的纵坐标是关键.5.如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD 的周长为()A.16 B.24 C.4D.8【考点】菱形的性质.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD 中,根据勾股定理可以求得AB的长,即可求得菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴BO=OD=AC=2,AO=OC=BD=3,AC⊥BD,∴AB==,∴菱形的周长为4.故选:C.【点评】本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.6.下列命题中,正确的是()A.有一组邻边相等的四边形是菱形B.对角线互相平分且垂直的四边形是矩形C.两组邻角相等的四边形是平行四边形D.对角线互相垂直且相等的平行四边形是正方形【考点】命题与定理.【分析】分别根据菱形、矩形、正方形及平行四边形的判定定理对各选项进行逐一分析即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,故本选项错误;B、对角线互相平分且垂直的四边形是菱形,故本选项错误;C、两组对角相等的四边形是平行四边形,故本选项错误;D、对角线互相垂直且相等的平行四边形是正方形,故本选项正确.故选D.【点评】本题考查的是命题与定理,熟知菱形、矩形、正方形及平行四边形的判定定理是解答此题的关键.7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=CD,则∠BEC的度数为()A.22.5° B.60°C.67.5° D.75°【考点】正方形的性质.【分析】由正方形的性质得到BC=CD,∠DBC=45°,证出BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠DBC=45°,∵BE=CD,∴BE=BC,∴∠BEC=∠BCE=(180°﹣45°)÷2=67.5°,故选C.【点评】本题考查了正方形的性质,三角形的内角和定理,等腰三角形的性质等知识;熟练掌握正方形的性质,证出BE=BC是解决问题的关键.8.关于x的一元二次方程x2﹣2x+k=0有两个实数根,则实数k的取值范围是()A.k≤1 B.k>1 C.k=1 D.k≥1【考点】根的判别式.【分析】根据所给的方程找出a,b,c的值,再根据关于x的一元二次方程x2﹣2x+k=0有两个实数根,得出△=b2﹣4ac≥0,从而求出k的取值范围.【解答】解:∵a=1,b=﹣2,c=k,而方程有两个实数根,∴△=b2﹣4ac=4﹣4k≥0,∴k≤1;故选A.【点评】本题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.9.已知正比例函数y=kx的图象与反比例函数y=的图象交于A,B两点,若点A的坐标为(﹣2,1),则关于x的方程=kx的两个实数根分别为()A.x1=﹣1,x2=1 B.x1=﹣1,x2=2 C.x1=﹣2,x2=1 D.x1=﹣2,x2=2【考点】反比例函数与一次函数的交点问题.【分析】根据正、反比例函数图象的对称性可得出点A、B关于原点对称,由点A的坐标即可得出点B的坐标,结合A、B点的横坐标即可得出结论.【解答】解:∵正比例函数图象关于原点对称,反比例函数图象关于原点对称,∴两函数的交点A、B关于原点对称,∵点A的坐标为(﹣2,1),∴点B的坐标为(2,﹣1).∴关于x的方程=kx的两个实数根分别为﹣2、2.故选D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据正、反比例函数的对称性求出两交点的坐标是关键.10.中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD 的面积分别记为S1,S2,S3,若S1+S2+S3=18,则正方形EFGH的面积为()A.9 B.6 C.5 D.【考点】勾股定理的证明.【分析】据图形的特征得出四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,从而用x,y表示出S1,S2,S3,得出答案即可.【解答】解:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=18,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=18,故3x+12y=18,x+4y=6,所以S2=x+4y=6,即正方形EFGH的面积为6.故选:B.【点评】此题主要考查了勾股定理的应用,根据已知得出用x,y表示出S1,S2,S3,再利用S1+S2+S3=18求出是解决问题的关键.二、填空题(本题共20分,第11-14题,每小题3分,第15-18题,每小题3分)11.关于x的一元二次方程x2﹣6x+m=0有一个根为2,则m的值为8.【考点】一元二次方程的解.【分析】根据关于x的一元二次方程x2﹣6x+m=0有一个根为2,可以求得m的值.【解答】解:∵关于x的一元二次方程x2﹣6x+m=0有一个根为2,∴22﹣6×2+m=0,解得,m=8,故答案为:8.【点评】本题考查一元二次方程的解,解题的关键是明确方程的解一定适合方程.12.如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为5.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【解答】解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.【点评】此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.13.某校开展了“书香校园”的活动,小腾班长统计了本学期全班40名同学课外图书的阅读数量(单位:本),绘制了折线统计图(如图所示),在这40名学生的图书阅读数量中,中位数是23.【考点】折线统计图;中位数.【分析】根据中位数的定义求解即可.【解答】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即=23,故答案为:23.【点评】此题考查了折线统计图及中位数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.14.将一元二次方程x2+4x+1=0化成(x+a)2=b的形式,其中a,b是常数,则a+b=5.【考点】解一元二次方程-配方法.【分析】方程配方得到结果,确定出a与b的值,即可求出a+b的值.【解答】解:方程x2+4x+1=0,移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3,∴a=2,b=3,则a+b=5,故答案为:5【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.15.反比例函数y=在第一象限的图象如图,请写出一个满足条件的k值,k=3.【考点】反比例函数的性质.【分析】根据反比例函数y=的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得答案.【解答】解:∵反比例函数y=的图象在第一象限,∴k>0,∴k=3,故答案为:3.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.16.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=3,BC=4,则DE的长为.【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】先根据等角对等边,得出DE=BE,再设DE=BE=x,在直角三角形ABE中,根据勾股定理列出关于x的方程,求得x的值即可.【解答】解:由折叠得,∠CBD=∠EBD,由AD∥BC得,∠CBD=∠EDB,∴∠EBD=∠EDB,∴DE=BE,设DE=BE=x,则AE=4﹣x,在直角三角形ABE中,AE2+AB2=BE2,即(4﹣x)2+32=x2,解得x=,∴DE的长为.故答案为:【点评】本题以折叠问题为背景,主要考查了轴对称的性质以及勾股定理.折叠是一种对称变换,它属于轴对称,折叠前后图形的对应边和对应角相等.解题时,我们常设所求的线段长为x,然后用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.17.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为500m.【考点】勾股定理的应用.【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【解答】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故答案是:500.【点评】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.18.如图,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP 的长,y表示线段BP的长,y与x之间的关系如图2所示,则线段AB的长为2,线段BC的长为2.【考点】动点问题的函数图象.【分析】如图1中,作BE⊥AC于E,由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt △ABE,Rt△BEC中利用勾股定理即可解决问题.【解答】解:如图1中,作BE⊥AC于E.由图2可知,AB=2,AE=1,AC=4,EC=3,在Rt△ABE中,∵∠AEB=90°,∴BE===,在Rt△BEC中,BC===2.故答案分别为2,2.【点评】本题考查动点问题的函数图象、勾股定理等知识,解题的关键是读懂图象信息,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题共16分,第19题8分,第20题8分)19.计算:(1)﹣+(+1)(﹣1)(2)×÷.【考点】二次根式的混合运算.【分析】(1)先化简二次根式、根据平方差公式去括号,再合并同类二次根式可得;(2)先化简,再计算乘除法可得.【解答】解:(1)原式=3﹣2+3﹣1=+2;(2)原式=2××=8.【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质化简各二次根式是解题的关键.20.解方程:(1)x2﹣6x+5=0(2)2x2﹣3x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x1=5,x2=1;(2)2x2﹣3x﹣1=0,b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=17,x=,x1=,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.四、解答题(本题共34分,第21-22题,每小题7分,第23题6分,第24-25题,每小题7分)21.如图,在▱ABCD中,点E,M分别在边AB,CD上,且AE=CM,点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF;(2)连接EM,FN,若EM⊥FN,求证:EFMN是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)直接利用平行四边形的性质得出AN=CF,再利用全等三角形的判定方法得出答案;(2)直接利用全等三角形的判定与性质得出EN=FM,EF=MN,再结合菱形的判定方法得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵ND=BF,∴AD﹣ND=BC﹣BF,即AN=CF,在△AEN和△CMF中,∴△AEN≌△CMF(SAS);(2)如图:由(1)△AEN≌△CMF,故EN=FM,同理可得:△EBF≌△MDN,∴EF=MN,∵EN=FM,EF=MN,∴四边形EFMN是平行四边形,∵EM⊥FN,∴四边形EFMN是菱形.【点评】此题主要考查了菱形的判定以及全等三角形的判定与性质,正确掌握全等三角形的判定与性质是解题关键.22.为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生25人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?【考点】方差;统计表;扇形统计图;条形统计图;中位数;众数.【分析】(1)根据扇形统计图可以得到这个班的女生人数;(2)根据本班有45人和(1)中求得得女生人数可以得到男生人数,从而可以得到得7分的男生人数,进而将统计图补充完整;(3)根据表格中的数据可以求得男生得平均成绩和女生的众数;(4)答案不唯一,只要从某一方面能说明理由即可;(5)根据题意可以求得女生优秀人数再增加多少人才能完成康老师提出的目标.【解答】解:(1)∵在这次测试中,该班女生得10分的人数为4人,∴这个班共有女生:4÷16%=25(人),故答案为:25;(2)男生得7分的人数为:45﹣25﹣1﹣2﹣3﹣5﹣3=6,故补全的统计图如右图所示,(3)男生得平均分是:=7.9(分),女生的众数是:8,故答案为:7.9,8;(4)女生队表现更突出一些,理由:从众数看,女生好于男生;(5)由题意可得,女生需增加的人数为:45×60%﹣(20×40%+6)﹣(25×36%)=4(人),即女生优秀人数再增加4人才能完成康老师提出的目标.【点评】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键.23.已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.【考点】勾股定理的逆定理;勾股定理.【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD.【解答】解:∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.【点评】本题考查了等腰三角形的性质、勾股定理、勾股定理的逆定理.解题的关键是连接AC,并证明△ACD是直角三角形.24.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别为OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形;(2)求证:四边形EFMN是矩形;(3)连接DM,若DM⊥AC于点M,ON=3,求矩形ABCD的面积.【考点】矩形的判定与性质.【分析】(1)根据题目要求画出图形即可;(2)根据三角形中位线定理可得EF∥AB,EF=AB,NM∥CD,MN=DC,再由矩形的性质可得AB∥DC,AB=DC,AC=BD,进而可得四边形EFMN是矩形;(3)根据条件可得DM垂直平分OC,进而可得DO=CO,然后证明△COD是等边三角形,进而得出BC,CD的长,进而得出答案.【解答】(1)解:如图所示:(2)证明:∵点E,F分别为OA,OB的中点,∴EF∥AB,EF=AB,同理:NM∥CD,MN=DC,∵四边形ABCD是矩形,∴AB∥DC,AB=DC,AC=BD,∴EF∥NM,EF=MN,∴四边形EFMN是平行四边形,∵点E,F,M,N分别为OA,OB,OC,OD的中点,∴EO=AO,MO=CO,在矩形ABCD中,AO=CO=AC,BO=DO=BD,∴EM=EO+MO=AC,同理可证FN=BD,∴EM=FN,∴四边形EFMN是矩形.(3)解:∵DM⊥AC于点M,由(2)MO=CO,∴DO=CD,在矩形ABCD中,AO=CO=AC,BO=DO=BD,AC=BD,∴AO=BO=CO=DO,∴△COD是等边三角形,∴∠ODC=60°,∵MN∥DC,∴∠FNM=∠ODC=60°,在矩形EFMN中,∠FMN=90°.∴∠NFM=90°﹣∠FNM=30°,∵NO=3,∴FN=2NO=6,FM=3,MN=3,∵点F,M分别为OB,OC的中点,∴BC=2FM=6,∴矩形的面积为BC•CD=36.【点评】此题主要考查了矩形的判定与性质以及等边三角形的判定与性质、勾股定理等知识,正确得出△COD是等边三角形是解题关键.25.在平面直角坐标系xOy中,四边形OABC是矩形,点B的坐标为(4,3),反比例函数y=的图象经过点B.(1)求反比例函数的解析式;(2)一次函数y=ax﹣1的图象与y轴交于点D,与反比例函数y=的图象交于点E,且△ADE的面积等于6,求一次函数的解析式;(3)在(2)的条件下,直线OE与双曲线y=(x>0)交于第一象限的点P,将直线OE向右平移个单位后,与双曲线y=(x>0)交于点Q,与x轴交于点H,若QH=OP,求k的值.【考点】反比例函数与一次函数的交点问题;矩形的性质;坐标与图形变化-平移.【分析】(1)利用待定系数法即可解决.(2)设点E(x E,y E),由△ADE的面积=6,得•AD•|x E|=6,列出方程即可解决.(3)设点P(x P,y P),取OP中点M,则OM=OP,则M(x P,x P),Q(x P+,x P),列出方程求出x P即可解决问题.【解答】解:(1)∵反比例函数y=的图象经过点B(4,3),∴=3,∴m=12,∴反比例函数解析式为y=.(2)∵四边形OABC是矩形,点B(4,3),∴A(0,3),C(4,0),∵一次函数y=ax﹣1的图象与y轴交于点D,∴点D(0,﹣1),AD=4,设点E(x E,y E),∵△ADE的面积=6,∴•AD•|x E|=6,∴x E=±3,∵点E在反比例函数y=图象上,∴E(3,4),或(﹣3,﹣4),当E(3,4)在一次函数y=ax﹣1上时,4=3a﹣1,∴a=,∴一次函数解析式为y=x﹣1,当点(﹣3,﹣4)在一次函数y=ax﹣1上时,﹣4=﹣3a﹣1,∴a=1,∴一次函数解析式为y=x﹣1,综上所述一次函数解析式为y=x﹣1或y=x﹣1.(3)由(2)可知,直线OE解析式为y=x,设点P(x P,y P),取OP中点M,则OM= OP,∴M(x P,x P),∴Q(x P+,x P),∴H(,0),∵点P、Q在反比例函数y=图象上,∴x P•x P=(x P+)x P,∴x P=,∴P(,),∴k=.【点评】本题考查反比例函数图象与一次函数图象的交点问题,矩形的性质、坐标与图形的变化等知识,解题的关键是把问题转化为方程,学会利用参数解决问题,属于中考常考题型.26.如图,在数轴上点A表示的实数是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学年八年级下册数学期末考试试卷解析版 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2016-2017学年八年级下册数学期末考试试卷(解析版)一、选择题1.下列式子没有意义的是()A. B. C. D.2.下列计算中,正确的是()A.÷ =B.(4 )2=8C.=2D.2 ×2 =23.刻画一组数据波动大小的统计量是()A.平均数B.方差C.众数D.中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.关于正比例函数y=﹣2x,下列结论中正确的是()A.函数图象经过点(﹣2,1)B.y随x的增大而减小C.函数图象经过第一、三象限D.不论x取何值,总有y<06.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2,3,4B.,,C.1,,2D.7,8,97.若一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为()cm.A.10B.11C.12D.138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD 的面积是()A.24B.26C.30D.489.在下列命题中,是假命题的是()A.有一个角是直角的平行四边形是矩形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.有两组邻边相等的四边形是菱形10.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx ﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A. B.﹣1C.2D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b(k≠0)中,x与y的部分对应值如下表:x﹣2﹣1012y﹣6﹣4﹣202那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远”,这个问题的答案是:其下端离开墙角________个单位.16.如图所示,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于下列结论:①∠GFI=90°;②GH=GI;③GI= (BC﹣DE);④四边形FGHI是正方形.其中正确的是________(请写出所有正确结论的序号).三、解答题17.计算:(+ ﹣)× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .(1)求AD的长.(2)求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF为平行四边形.20.下表是某校八年级(1)班43名学生右眼视力的检查结果.视力人数125435115106(1)该班学生右眼视力的平均数是________(结果保留1位小数).(2)该班学生右眼视力的中位数是________.(3)该班小鸣同学右眼视力是,能不能说小鸣同学的右眼视力处于全班同学的中上水平试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.(1)求OF的长.(2)求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A(﹣30,0)和点B(0,15),直线y=x+5与直线y=kx+b相交于点P,与y轴交于点C.(1)求直线y=kx+b的解析式.(2)求△PBC的面积.年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价元/半小时,骑行单价最低可降至元/半小时(比如,某用户邀请了3位好友,则骑行单价为元/半小时).B品牌共享单车计费方式为:元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE的面积为S2.(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案. 5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×(﹣2)=4,即图象经过点(﹣2,4),不经过点(﹣2,1),故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不论x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、()2+()2≠()2,故不是直角三角形,B不符合题意;C、12+()2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为(x﹣1)cm,由勾股定理得,x2=52+(x﹣1)2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为(x-1)cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S= ×AC×BD= ×6×8=24.菱形ABCD故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A(0,0),B(10,0),C(12,6),D(2,6),∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点(6,3),最后将点(6,3)代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=(+2)(﹣2)=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点(0,2),且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= (BC﹣DE),故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=(BC-DE).三、<b >解答题</b>17.【答案】解:原式=(6 + ﹣3 )×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】(1)解:在Rt△ABD中,AD= =3(2)解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】(1)在Rt△ABD中,依据勾股定理可求得AD的长;(2)在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD(AAS),∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】(1)(2)(3)解:不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:(1)该班学生右眼视力的平均数是×(+×2+×5+×4+×3+×5+++×5+×10+×6)≈,故答案为:;(2)由于共有43个数据,其中位数为第22个数据,即中位数为,(3)不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:(1);(2);(3)不能.【分析】(1)根据加权平均数公式求解即可;(2)首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;(3)根据小鸣同学右眼视力是,小于中位数,故此可得到问题的答案.21.【答案】(1)解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.(2)解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】(1)由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;(2)在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可.22.【答案】(1)解:将点A(﹣30,0)、B(0,15)代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.(2)解:联立两直线解析式成方程组,,解得:,∴点P的坐标为(20,25).当x=0时,y=x+5=5,∴点C的坐标为(0,5),∴BC=15﹣5=10,∴S△PBC = BCxP= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】(1)将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b的值,于是可得到直线AB的解析式;(2)联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】(1)解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣,当x≥10且x为正整数时,y=,即y关于x的函数解析式是y=(2)解:由题意可得,当0≤x≤9时,1﹣>,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣=,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣<,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,<,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】(1)可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;(2)分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】(1)解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;(2)解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】(1)首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;(2)根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】(1)解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.(2)解:由题意S1﹣S2= (4+x)x﹣(4﹣x)x=x2(0<x<4).(3)解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BCtan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=(4 ﹣4)2=48﹣32 .【考点】正方形的性质【解析】【分析】(1)首先延长BP 交DE 于M .然后依据SAS 可证明△BCP ≌△DCE ,依据全等三角形的性质可得到∠BCP=∠CDE ,由∠CBP+∠CPB=90°,∠CPB=∠DPM ,即可推出∠CDE+∠DPM=90°;(2)根据题意可得到S 1-S 2=S △PBE -S △PDE ,然后依据三角形的面积公式列出函数关系式即可;(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC 的长,最后再利用(2)中结论进行计算即可.。

相关文档
最新文档