人教版初中数学九年级数学易错题集全套20页word文档
初三数学易错题集锦(word文档良心出品)

初三数学易错题代数第一章∶一元二次方程1、解方程1112-=+-x m x x 的过程中若会产生增根,则m=____2.关于x 的方程m 2x 2+(2m +1)x +1=0有两个不相等的根,求m 的取值范围__ 3,若关于x 的方程ax 2-2x +1=0有实根,那a 范围____4,已知方程3x 2-4x -2=0,则x 1-x 2=___,大根减小根为____ 5,以251+-和251--的一元二次方程是____6,若关于x 的方程(a+3)x 2-(a 2-a -6)x +a=0的两根互为相反数,则a=___7,已知a,b 为不相等的实数,且a 2-3a +1=0,b 2-3b+1=0则a b +ba=___8,方程ax 2+c=0(a ≠0)a,c 异号,则方程根为_____ 9,若方程3x 2+1=mx 的二次项为3x 2,则一次项系数为_____ 23,分解因式4x 2+8x +1=_____24,若方程2x 2+3x -5=0的两根为x 1 ,x 2 则x 12+x 22=_____ 25,方程组有两组相同的实数解,则k=___方程组的解为___43,若x 是锐角,cosA 是方程2x 2-5x +2=0的一个根,则∠A=___1、已知:Rt △ABC 中,∠C=900,斜边c 长为 5 ,两条直角边a,b 的长分别是x 2-(2m-1)x+4(m-1)=0的两根,则m 的值等于 ( ) A. –1 B. 4 C.-4或1 D. –1或4. 2、已知关于x 的方程012)32(2=+--x m x m 有两个不相等的实数根,则m 的范围是:( ) A .m<3 B. 233≠<m m 且 C. 0,233≠≠<m m m 且 D. 2330≠<≤m m 且 3、已知方程①01222=+-x x ,②041x =+-,③1122=++++x x x x ,④0x 12x =---,⑤01)12(2=-+++k x k x 其中一定有...实数解的方程有 A 、1个 B 、2个 C 、3个 D 、4个5、已知 ,012=-+m m 那么代数式2001223-+m m 的值是 ( ) (A)2000 (B)-2000 (C)2001 (D)-2001 6,下面解答正确的是( )A , 分式的值是零,x=-2或x=1B, 实数范围内分解因式2x 2+x -2=)4171)(4171(+-----x x C, x=-1是无理方程22-2x +7x =-x的根D, 代数式x 2+2x -1通过配方法知x=-1时,它有最小值是-27,关于x 的方程x 2-mx +n=0有一正一负的两实根,且负根绝对值较大,则( ) A , n >0, m <0 B,n>0, m >0, C, n<0 m>0 D,n <0 m<0 8,若x =-b+b 2+4ac 2a则有( )A ,ax 2+bx+c=0 B,ax 2+bx-c=0 C,ax 2-bx+c=0 D, ax 2-bx-c=09、在Rt △ABC 中,∠C=900,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )(A ) 23 (B )25(C ) 5 (D )220,已知关于x 的方程x 2+px +q=0的两根为x 1=-3 x 2=4,则二次三项式x 2-px +q=( ) A.(x +3)(x -4) B, (x -3)(x +4) C,(x +3)(x +4)D,(x -3)(x -4)三, 解答题1,甲乙二人合作一项工程,4天可完成,若先有甲单独做3天,剩下的由乙独做,则以所用的时间等于甲单独完成这项工程的时间,求甲乙二人单独完成此项工程各需几天?2,解方程mnx 2-(m 2+n 2)x +mn=0 (mn ≠0)3,在⊿ABC 中,∠A ∠B ∠C 的对边分别为a,b,c 且a,b 是关于x 的方程∶x 2-(c +4)x+4c +8=0的两根,若25asinA=9c,求⊿ABC 的面积第二章∶函数第一节∶平面直角坐标系22,平面直角坐标系中,点A (1-2a,a-2)位于第三象限且a 为整数,则点A 的坐标是_____10、已知点()2,1+-a a M 在第二象限,则a 的取值范围是( )(A )2->a (B )12<<-a (C )2-<a (D )1>a14、若点M (x -1,1-y )在第一象限,则点N (1-x ,y -1)关于x 轴的对称点在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限第二节∶函数 11、函数321+=x y 中,自变量x 的取值范围是____12、函数x x y -+=0的自变量的取值范围是_____1,锐角三角形ABC 内接于⊙O ,∠B=2∠C ,∠C 所对圆弧的度数为n ,则n 的取值范围是 ( )A, 0°<n <45° B, 0°<n <90° C, 30°<n <45° D,60°<n <90° 第三节∶一次函数15,当___时,函数y=(m +3)x2m +3+4x -5(x ≠0)是一个一次函数。
数学九年级上册 全册期末复习试卷易错题(Word版 含答案)

数学九年级上册 全册期末复习试卷易错题(Word 版 含答案)一、选择题1.下列是一元二次方程的是( ) A .2x +1=0B .x 2+2x +3=0C .y 2+x =1D .1x=1 2.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个3.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A .3B .31+C .31-D .234.如图,四边形ABCD 内接于⊙O ,已知∠A =80°,则∠C 的度数是( )A .40°B .80°C .100°D .120°5.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 6.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣20217.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是( )A .14B .34C .15D .358.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .2 B .1 C .2 D .29.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( ) A .摸出黑球的可能性最小 B .不可能摸出白球 C .一定能摸出红球D .摸出红球的可能性最大10.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°11.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒12.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.413.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个14.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2315.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.17.二次函数23(1)2y x =-+图象的顶点坐标为________.18.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.19.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___. 20.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______. 21.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.22.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .23.如图,点O 是△ABC 的内切圆的圆心,若∠A =100°,则∠BOC 为_____.24.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).25.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.26.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC =_____.27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.28.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.29.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26P 的坐标. 32.如图,在ABC ∆中,AB AC =.以AB 为直径的O 与BC 交于点E ,与AC 交于点D,点F 在边AC 的延长线上,且12CBF BAC ∠=∠.(1)试说明FB 是O的切线;(2)过点C 作CG AF ⊥,垂足为C .若4CF =,3BG =,求O 的半径;(3)连接DE ,设CDE ∆的面积为1S ,ABC ∆的面积为2S ,若1215S S =,10AB =,求BC 的长.33.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.34.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF=3m ,沿BD 方向到达点F 处再测得自己得影长FG=4m ,如果小明的身高为1.6m ,求路灯杆AB 的高度.35.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .四、压轴题36.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?37.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ; ②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.38.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.39.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C作AB的垂线交⊙O于点D,连结OD,过点B作OD的平行线交⊙O于点E、交射线CD于点F.(1)若ED=BE,求∠F的度数:(2)设线段OC=a,求线段BE和EF的长(用含a的代数式表示);(3)设点C关于直线OD的对称点为P,若△PBE为等腰三角形,求OC的长.40.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x2+bx+c,①当0≤x≤3时,求函数y的最大值和最小值;②设函数y在t≤x≤t+1内的最大值为p,最小值为q,若p-q=3,求t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为2的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A 、方程2x+1=0中未知数的最高次数不是2,是一元一次方程,故不是一元二次方程;B 、方程x 2+2x+3=0只含一个未知数,且未知数的最高次数为2的整式方程,故是一元二次方程;C 、方程y 2+x =1含有两个未知数,是二元二次方程,故不是一元二次方程;D 、方程1x=1不是整式方程,是分式方程,故不是一元二次方程. 故选:B. 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.是否符合定义的条件是作出判断的关键.2.C解析:C 【解析】 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可. 【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点, 把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确; 对称轴为直线x =﹣1,即:﹣2ba=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的; 由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确; 故选C . 【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.3.B解析:B 【解析】 【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得32EF CF BE AB ==,于是设EF =3x ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案. 【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形, ∴△CEF ∽△AEB , 设AB =2,∵∠ADB =30°, ∴BD =23,∵∠BDC =∠CBD =45°,CF ⊥BD , ∴CF=DF=BF =12BD =3, ∴3EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+, ∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+,∴()()222232622EG DG DE x x ===+=+,∴()()226262CG CD DG x x x =-=+-+=,∴()62tan 312x EG ACD CG x+∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.4.C解析:C【解析】【分析】根据圆内接四边形的性质得出∠C+∠A=180°,代入求出即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠C+∠A=180°,∵∠A=80°,∴∠C=100°,故选:C .【点睛】本题考查了圆内接四边形的性质的应用.熟记圆内接四边形对角互补是解决此题的关键.5.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 6.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可.【详解】解:根据题意,得a 2+3a ﹣1=0,解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键解析:D【解析】【分析】根据题意即从5个球中摸出一个球,概率为35. 【详解】摸到红球的概率=33235=+, 故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键. 8.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,, 设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB ,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴122OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.解析:D【解析】【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球, ∴摸出黑球的概率是223, 摸出白球的概率是123, 摸出红球的概率是2023, ∵123<223<2023, ∴从中任意摸出1个球,摸出红球的可能性最大;故选:D .【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.10.C解析:C【解析】【分析】设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A 、∠C 分别为x 、2x ,∵四边形ABCD 是圆内接四边形,∴x +2x =180°,解得,x =60°,即∠A =60°,故选:C .【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.11.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.12.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.13.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即BC AC BC AC BC -=解得51-AC ,故④正确.①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得BC=512-AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,15.D解析:D【解析】【分析】根据题意得出△DEF ∽△BCF ,进而得出=DE EF BC FC ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,故AD ∥BC ,∴△DEF ∽△BCF , ∴=DE EF BC FC, ∵点E 是边AD 的中点, ∴AE=DE=12AD , ∴12EF FC . 故选D .二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 18.、 、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D 的直线与△ABC 的另一个交点为E ,∵AC =4,BC =解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.19.【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,∴此扇形的弧长为=π.故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.解析:π【解析】【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°, ∴此扇形的弧长为603180π⨯=π. 故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键. 20.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时,224k k 142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.21.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得: 解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 22.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 23.140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC解析:140°.【解析】【分析】根据内心的定义可知OB、OC为∠ABC和∠ACB的角平分线,根据三角形内角和定理可求出∠OBC+∠OCB的度数,进而可求出∠BOC的度数.【详解】∵点O是△ABC的内切圆的圆心,∴OB、OC为∠ABC和∠ACB的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=100°,∴∠ABC+∠ACB=180°-100°=80°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,∴∠BOC=180°-40°=140°.故答案为:140°【点睛】本题考查了三角形内心的定义及三角形内角和定理,熟练掌握三角形内切圆的圆心是三角形三条角平分线的交点是解题关键.24.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm 2). 故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 25.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°=2, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD在Rt △ECF 中,sin ∠AEC =25CF CE ==,.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.26.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.27.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.28.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题31.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF 与y 的关系,从而得出y 的值,再代入抛物线解析式求出x 的值,得出点坐标.【详解】解:(1)把()4,1A 和()0,1-代入218y x bx c =++得:1241b c c =++⎧⎨-=⎩解方程组得出:01b c =⎧⎨=-⎩所以,0b =,1c =-(2)由已知条件得出C 点坐标为2310,2C ⎛⎫ ⎪⎝⎭,设()0,M n .过点C 作CD l ⊥,过点A 作AE l ⊥.两个直角三角形的三个角对应相等,∴CMD AME ∆∆∽∴CD MD AE ME= ∴2310214n n -=- ∵解得:4n =∴()0,4M(3)设点P 的纵坐标为y,由题意得出,12EF y ⨯⨯=EF = ∵MP 与PE 都为圆的半径,∴MP=PE∴()2228y 84()2EF y y ++-=+ 整理得出,∴EF =∵EF = ∴y=±1, ∴当y=1时有,21118x =-,解得,x 4=±; ∴当y=-1时有,21118x -=-,此时,x=0 ∴综上所述得出P 的坐标为:()4,1P 或()4,1-或()0,1-【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.32.(1)详见解析;(2)3;(3)BC =【解析】【分析】(1)根据切线的判断方法证明AB BF ⊥即可求解;(2)根据tan CG AB F CF BF==即可求出AB 即可求解; (3)连接BD .求出E 为BC 中点,得到BDECDE S S ∆∆=,根据1215S S =,设1S a =,25S a =,得到2BCD S a ∆=,3ABD S a ∆=,求出23CD AD =得到6AD =,4CD =,再根据勾股定理即可求解.【详解】。
九年级数学上册全册期末复习试卷易错题(Word版 含答案)

九年级数学上册全册期末复习试卷易错题(Word 版 含答案)一、选择题1.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .242.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º 3.抛物线223y x x =++与y 轴的交点为( )A .(0,2)B .(2,0)C .(0,3)D .(3,0) 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 5.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:16.抛物线2y 3(x 1)1=-+的顶点坐标是( ) A .()1,1B .()1,1-C .()1,1--D .()1,1- 7.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .y =(x+1)2+3B .y =(x+1)2﹣3C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+38.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4 9.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 10.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103)B .(163,45)C .(203,45)D .(163,43) 11.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°12.下列条件中,一定能判断两个等腰三角形相似的是( )A .都含有一个40°的内角B .都含有一个50°的内角C .都含有一个60°的内角D .都含有一个70°的内角13.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( )A .点M 在⊙C 上B .点M 在⊙C 内 C .点M 在⊙C 外D .点M 不在⊙C 内14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③15.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.17.已知tan (α+15°)3α的度数为______°. 18.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.19.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;20.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.21.长度等于2的弦所对的圆心角是90°,则该圆半径为_____.22.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.23.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.24.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.25.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.26.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.27.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .28.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.29.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.已知关于x的一元二次方程ax2+bx+5a=0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题31.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题:(1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?32.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点,取EF中点G,连接DG并延长交AB于点M,延长EF交AC于点N。
九年级数学期末试卷易错题(Word版 含答案)

九年级数学期末试卷易错题(Word 版 含答案)一、选择题1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm 2.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( )A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=03.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .104.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .195.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4D .y =2(x ﹣3)2+46.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++7.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是( ) A .8 B .9 C .10 D .11 8.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .1809.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DEAB BC= D .AD AEAC AB= 10.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .111.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变12.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题13.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)14.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.15.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=-1,x2=2 ,则二次函数y=x2+mx+n中,当y<0时,x的取值范围是________;16.如图,AB是半圆O的直径,AB=10,过点A的直线交半圆于点C,且sin∠CAB=45,连结BC,点D为BC的中点.已知点E在射线AC上,△CDE与△ACB相似,则线段AE的长为________;17.在△ABC中,∠C=90°,cosA=35,则tanA等于.18.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.19.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.20.若点 M(-1, y1),N(1, y2),P(72, y3 )都在抛物线 y=-mx2 +4mx+m2 +1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).21.已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是.22.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…23.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.24.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅; (2)若43AB =,8AD =,求DG 的长. 26.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 . A .6 cm×4 cm B .6 cm×4.5 cm C .7 cm×4 cm D .7 cm×4.5 cm27.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。
九年级上册数学 全册期末复习试卷易错题(Word版 含答案)

九年级上册数学 全册期末复习试卷易错题(Word 版 含答案)一、选择题1.下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .220x x --=C .2320x xy -=D .240y -=2.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-3 3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥-1D .m ≤-1 4.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .无法判断 5.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( ) A .5 B .2 C .5或2 D .2或7-1 6.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°7.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )A .2sin 3B =; B .2cos 3B =;C .2tan 3B =;D .以上都不对;8.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.29.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( )A .14B .13C .12D .2310.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根11.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .10012.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12 B .13 C .1010 D .3101013.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .214.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③ 15.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++ 二、填空题16.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.17.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .18.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.19.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.20.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.21.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.22.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.23.数据2,3,5,5,4的众数是____.24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .25.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.26.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.27.抛物线()2322y x =+-的顶点坐标是______.28.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.29.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.30.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.三、解答题31.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.32.已知关于的方程,若方程的一个根是–4,求另一个根及的值.33.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由;(2)若3tan 4BCD ∠=,求EF 的长. 34.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.35.如图,某农户计划用长12m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7m .(1)若生物园的面积为9m 2,则这个生物园垂直于墙的一边长为多少?(2)若要使生物园的面积最大,该怎样围?四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C,且与直线2l:12y x交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.37.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).38.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q是线段BC上一点,且点Q的横坐标为m.①求点Q 的纵坐标;(用含m 的代数式表示)②若点P 是⊙A 上一动点,求PQ 的最小值;(2)若点A 从原点O 出发,以1个单位/秒的速度沿折线OBC 运动,到点C 运动停止,⊙A 随着点A 的运动而移动.①点A 从O→B 的运动的过程中,若⊙A 与直线BC 相切,求t 的值;②在⊙A 整个运动过程中,当⊙A 与线段BC 有两个公共点时,直接写出t 满足的条件. 39.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示);(3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长.40.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示).(2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x 2+3x=0,x (x+3)=0,解得:x 1=0,x 2=-3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧,y 随x 的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.4.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..5.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,10AC== ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.6.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 7.C解析:C【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6;平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12; 故选:C .【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数, 10.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.11.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.12.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.13.D解析:D【解析】【分析】先证明△ABD 为等腰直角三角形得到∠ABD =45°,BD AB ,再证明△CBD 为等边三角形得到BC =BD AB ,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,从而得到下面圆锥的侧面积.【详解】∵∠A =90°,AB =AD ,∴△ABD 为等腰直角三角形,∴∠ABD =45°,BD AB ,∵∠ABC =105°,∴∠CBD =60°,而CB =CD ,∴△CBD 为等边三角形,∴BC =BD AB ,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB :CB ,×1.故选D .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点.15.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题16.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 17.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=,解得:AB=1205060=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.18.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.19.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.20.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根 31【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=32,x 2=232(不符合题意,舍去)∴DM=232,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.21.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.22.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.23.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则: 1204180R ππ⨯=,解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两解析:63+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】 解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD =32, ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:33π)=﹣π ∵S△ABC =12∴纸片能接触到的最大面积为:=+π.故答案为.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.26.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 27.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .28.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.30.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB , ∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 三、解答题31.35°【解析】【分析】连接OD ,根据切线的性质得∠ODC =90°,根据圆周角定理即可求得答案.【详解】连接OD ,∵CD 为⊙O 的切线,∴∠ODC =90°,∴∠DOC =90°﹣∠C =70°,由圆周角定理得,∠A =12∠DOC =35°. 【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.32.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k ,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.33.(1)OE ∥BC .理由见解析;(2)125【解析】【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案.【详解】解:(1) OE ∥BC .理由如下:连接OC ,∵CD 是⊙O 的切线,∴OC ⊥CD ,∴∠OCE =90︒ ,∴∠OCA +∠ECF =90︒,。
数学九年级上册易错题

数学九年级上册易错题一、选择题(1 - 10题)1. 一元二次方程x^2-2x - 3 = 0的根的情况是()- A. 有两个相等的实数根。
- B. 有两个不相等的实数根。
- C. 没有实数根。
- D. 无法确定。
- 解析:对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
在方程x^2-2x - 3 = 0中,a = 1,b=-2,c=-3,则Δ=(-2)^2-4×1×(-3)=4 + 12=16>0。
当Δ>0时,方程有两个不相等的实数根,所以答案是B。
2. 若关于x的一元二次方程(m - 1)x^2+5x+m^2-3m + 2 = 0的常数项为0,则m的值等于()- A. 1.- B. 2.- C. 1或2。
- D. 0.- 解析:因为方程的常数项为0,所以m^2-3m + 2 = 0,即(m - 1)(m - 2)=0,解得m = 1或m = 2。
又因为方程是一元二次方程,二次项系数m - 1≠0,即m≠1,所以m = 2,答案是B。
3. 二次函数y = x^2-2x + 3的顶点坐标是()- A. (1,2)- B. (-1,2)- C. (1, - 2)- D. (-1,-2)- 解析:对于二次函数y=ax^2+bx + c(a≠0),其顶点坐标的横坐标x =-(b)/(2a),纵坐标y=frac{4ac - b^2}{4a}。
在y = x^2-2x + 3中,a = 1,b=-2,c = 3,x =-(-2)/(2×1)=1,y=frac{4×1×3-(-2)^2}{4×1}=(12 - 4)/(4)=2,所以顶点坐标是(1,2),答案是A。
4. 已知二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论中正确的是()- A. a>0- B. c<0- C. 3是方程ax^2+bx + c = 0的一个根。
人教版九年级数学易错题收集整理+常见数学易错题精选

人教版九年级数学易错题收集整理+常见数学易错题精选人教版九年级数学易错题成长系列1、二次函数2y ax bx c =++图像如图所示,则下列结论正确的是( )A.20,0,0,40a b c b ac <<>-> B.20,0,0,40a b c b ac ><>-< C.20,0,0,40a b c b ac <><-> D.20,0,0,40a b c b ac <>>-> 如图,二次函数2y ax bx c =++的图像过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是( )A. 当0x =时,y 的值大于1B. 当3x =时,y 的值小于0C. 当1x =时,y 的值大于1D. y 的最大值小于02、二次函数2y ax bx =+的图像如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )A. -3B. 3C. -5D. 94、设二次函数2y x bx c =++,当1x ≤时,总有0y ≥,当13x ≤≤时,总有0y ≤,那么c 的取值范围是 。
5、已知抛物线212y x bx =+经过点A (4,0)。
设点C (1,-3),请在抛物线的对称轴上确定一点D ,使得|AD-CD|的值最大,则D 的坐标为 。
6、已知:关于x 的方程2(13a)210ax x a --+-=(1)当a 取何值时,二次函数2(13a)21y ax x a =--+-的对称轴是x=-2? (2)求证:a 取任何实数时,方程2(13a)210ax x a --+-=总有根。
7、如图,抛物线254y ax x a =-+与x 轴相交于A 、B ,且过点C (5, 4)。
(1)求a 的值和该抛物线的顶点P 的坐标(2)请你设计一种平移方法,使平移之后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式。
九年级数学期末试卷易错题(Word版 含答案)

九年级数学期末试卷易错题(Word 版 含答案)一、选择题1.方程 x 2=4的解是( ) A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-42.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )A .60°B .65°C .70°D .80° 3.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1) C .(2,﹣1) D .(0,1) 4.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤ 5.一元二次方程x 2=9的根是( )A .3B .±3C .9D .±96.如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.27.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .68.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--9.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )A.45B.35C.43D.3410.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y2>y1>y311.在△ABC中,∠C=90°,tan A=13,那么sin A的值是()A.12B.13C.1010D.31012.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.2二、填空题13.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.14.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.15.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x…-10123…y…-3-3-139…关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.16.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.17.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.18.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为_____.19.如图,D、E分别是△ABC的边AB,AC上的点,ADAB=AEAC,AE=2,EC=6,AB=12,则AD的长为_____.20.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)21.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为__________m.22.已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.x…﹣1012…y…0343…x+=x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=23.像233,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=3时,9=3满足题意;当x2=﹣1时,1=﹣1不符合题意;所以原方程的解是x=3.运用以上x+=1的解为_____.经验,则方程x+524.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?26.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.27.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.28.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同. (1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率. 29.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.30.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.31.解方程:2670x x --= 32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】两边开方得到x=±2. 【详解】 解:∵x 2=4, ∴x=±2, ∴x 1=2,x 2=-2. 故选:C . 【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.2.D解析:D【解析】【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.3.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.4.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O与直线l的距离d满足:5d>.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.5.B解析:B 【解析】 【分析】两边直接开平方得:3x =±,进而可得答案. 【详解】 解:29x =,两边直接开平方得:3x =±, 则13x =,23x =-. 故选:B . 【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2(0)x a a =的形式,利用数的开方直接求解.6.B解析:B 【解析】 【分析】根据平行线分线段成比例定理即可解决问题. 【详解】 解:////AD BE CF ,AB DEBC EF ∴=,即1 1.23EF =, 3.6EF ∴=, 3.6 1.2 4.8DF EF DE ∴++===,故选B . 【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.7.C解析:C 【解析】 【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答. 【详解】如图,作直径BD ,连接CD ,∵∠BDC 和∠BAC 是BC 所对的圆周角,∠BAC =30°, ∴∠BDC =∠BAC =30°,∵BD 是直径,∠BCD 是BD 所对的圆周角, ∴∠BCD =90°, ∴BD =2BC =4,故选:C . 【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.8.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).9.A解析:A 【解析】 【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解. 【详解】 如图,∵∠C=90°,AC=8,BC=6,∴AB=222268BC AC+=+=10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.10.B解析:B【解析】【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.11.C解析:C【解析】【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得ABx,sin A=BCAB=10,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.12.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.二、填空题13.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m15.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 16.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.17.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90R=25180∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.18.1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB解析:1【解析】【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【详解】如图:长方形AEFM,连接AC,∵由勾股定理得:AB 2=32+12=10,BC 2=22+12=5,AC 2=22+12=5∴AC 2+BC 2=AB 2,AC =BC ,即∠ACB =90°,∴∠ABC =45°∴tan ∠ABC=1【点睛】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB =90°是解此题的关键.19.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.20.60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧解析:60π【解析】试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.由题意得圆锥的母线长∴圆锥的侧面积.考点:勾股定理,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 21.4【解析】【分析】根据题意可知,,代入数据可得出答案.【详解】解:由题意得出:,即,解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平解析:4【解析】【分析】根据题意可知,1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.22.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.23.x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x移到等号右边得到:=1﹣x,两边平方,得x+5=1﹣2x解析:x=﹣1【解析】【分析】根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.【详解】解:将x1﹣x,两边平方,得x+5=1﹣2x+x2,解得x 1=4,x 2=﹣1,检验:x =4时,=5,左边≠右边,∴x =4不是原方程的解,当x =﹣1时,﹣1+2=1,左边=右边,∴x =﹣1是原方程的解,∴原方程的解是x =﹣1,故答案为:x =﹣1.【点睛】本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.24.10【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x,根据题意得,5000(1+x)2=7200解得,x1=0.2=20%,x2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=112∴﹣m2+3m+4=394-,∴21139(,)24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴3222m∴m=52∴﹣m2+3m+4=214∴3521(,)24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539(,)24M--21139(,)24M-3521(,)24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.27.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,x乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,2 s甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.28.(1)13;(2)13,见解析【解析】【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,∴1P=3(摸到红球);(2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P==63(两次白球);用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P==63(两次白球).【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.29.(1)x1=115x2=1152)x1=13,x2=-3【解析】【分析】(1)利用配方法解方程即可;(2)先移项,然后利用因式分解法解方程.【详解】(1)解:x2-2x=2 3x2-2x+1=23+1(x-1)2=5 3x-1=15∴x1=115x2=115(2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0(3x -1) (-x -3)=0∴x 1=13,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.30.见解析【解析】【分析】根据题意,先算出各组数据的平均数,再利用方差公式计算求出各组数据的方差比较大小即可.【详解】 ∵x 高=()110+6+7+8+9=85⨯(℃), x 低 =()11+01+0+3=0.65⨯-(℃), 2S 高=()()()()()222221108687888985⎡⎤⨯-+-+-+-+-⎣⎦=2(℃2)2S 低=()()()()()22222110.600.610.600.630.65⎡⎤⨯-+-+--+-+-⎣⎦=1.84(℃2) ∴2S 高>2S 低∴这5天的日最高气温波动大.【点睛】本题考查方差的应用,解题的关键是熟练掌握方差公式:S 2=()()()()22123221...n x x x x x x x x n ⎡⎤-+-+-++-⎢⎥⎣⎦. 31.x 1=7,x 2=1-【解析】【分析】 观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点Q即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页九年级数学易错题集1、关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,则k 的取值范围是 .分析:根据一元二次方程kx 2﹣x+1=0有两个不相等的实数根,得△=b 2﹣4ac >0,然后据此列出关于k 的方程,解方程即可.解答:∵kx 2﹣x+1=0有两个不相等的实数根,∴△=1﹣4k>0,且k ≠0,解得:k <14且k ≠0. 答案:k <14且k ≠0. 考点:根的判别式.2、若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx=5的解为( )A 、120,4x x ==B 、121,5x x ==C 、121,5x x ==-D 、121,5x x =-=分析:二次函数y =x 2+bx 的图像的对称轴是212b b x =-=-⨯,第 2 页解答: ∵对称轴过点(2,0), ∴22b -=,即4b =-, 将4b =-值代入方程,得:245x x -=,()()510x x -+=,∴11x =-,25x =答案:D考点:二次函数对称轴;二元一次方程的解。
3、如图,在平面直角坐标系xOy 中,△由△绕点P 旋转得到,则点P 的坐标为( ) A .( 0, 1)B .( 1, -1)C .( 0, -1)D .( 1, 0) 分析:根据格结构,找出对应点连线的垂直平分线的交点即为旋转中心.解答:由图形可知: 对应点的连线CC ′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1)答案:B.考点:坐标与图形变化—旋转.4、下列图形中,是轴对称图形但不是中心对称图形的是()A、直角三角形B、正三角形C、平行四边形D、正六边形分析:中心对称图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合;轴对称图形被一条直线分割成的两部分沿着对称轴折叠时,互相重合;据此判断出是轴对称图形,但不是中心对称图形的是哪个即可.解答:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项B正确;第 3 页∵选项C中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项D不正确.答案:B.考点:中心对称图形;轴对称图形.点评:(1)此题主要考查了中心对称图形问题,要熟练掌握,解答此题的关键是要明确:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.(2)此题还考查了轴对称图形,要熟练掌握,解答此题的关键是要明确:轴对称图形是针对一个图形而言,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.第 4 页第 5 页5、如图,用一个半径为30cm ,面积为π300cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为( ) A 、5cm B 、10cmC 、20cmD 、π5cm分析:∵扇形的半径为30cm ,面积为π300cm 2, ∴扇形的圆心角为230036012030ππ⋅=︒⋅. ∴扇形的弧长为()1203020180cm ππ⋅⋅=.∵圆锥底面周长等于它的侧面展开图的弧长,∴根据圆的周长公式,得220r ππ=,解得()10r cm =.∴圆锥的底面半径为10cm .答案:B .考点:圆锥的计算. 6、如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B =135°,则的长为( ) A . π2 B . πC . 2πD . 3π第 6 页分析:连接OA 、OC ,然后根据圆周角定理求得∠AOC 的度数,最后根据弧长公式求解.解答:连接OA 、OC ,∵∠B =135°,∴∠D =180°﹣135°=45°,∴∠AOC =90°, 则的长==π. 答案:B .考点:弧长计算;圆周角定理;圆内接四边形性质.点评:本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L =180R n . 7、下列说法正确的是( )A 、掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B 、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定C 、“明天降雨的概率为”,表示明天半天都在降雨D、了解一批电视机的使用寿命,适合用普查的方式分析:利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.解答:解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;答案:B.点评:本题主要考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大.考点:方差;全面调查与抽样调查;随机事件;概率的意义.第 7 页第 8 页8、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A 、B 、C 、D 、分析:列表分如下:由表知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,∴两次摸出的球都是黑球的概率是.答案:D .考点:用列表法求概率.9、如图,正比例函数x k y 11=的图像与反比例函数xk y 22=的图象相交于A 、B 两点,其中点A 的横坐标为2,当21y y >时,x 的取值范围是( ).第 9 页A 、22>或<x x -B 、202<<或<x x -C 、2002<<或<<x x -D 、202>或<<x x - 分析:根据函数的交点可得点B 的横坐标为-2,根据图象可得当一次函数的函数值大于反比例函数的函数值时x >2或-2<x <0.答案:D考点:反比例函数与一次函数.10、如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD=AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A .B .C .D .分析: 根据三角形的中位线求出EF =BD ,EF ∥BD ,推出△AEF∽△ABD ,得出=,求出==,即可求出△AEF与多边形BCDFE的面积之比.解答:连接BD,Array∵F、E分别为AD、AB中点,∴EF =BD,EF∥BD,∴△AEF∽△ABD,∴△AEF的面积:四边形EFDB的面积=1:3,∵CD =AB,CB⊥DC,AB∥CD,∴△AEF与多边形BCDFE面积之比为:1:(3+2)=1:5 答案:C.考点:相似三角形的判定与性质;三角形的面积;三角形中位线定理.专题:压轴题.点评:本题考查了三角形的面积,三角形的中位线等知识点的应用,主要考查学生运用性质进行推理和计算第 10 页第 11 页的能力,题目比较典型,难度适中.11、如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1) 解析:∵线段CD 和线段AB 关于原点位似,∴△ODC ∽△OBA ,∴31OB ==AB CD OD , 即3136==CD OD ,∴CD =1,OD =2,∴C (2,1). 另解:设C (x ,y ),∵线段CD 和线段AB 关于原点位似, ∴3136==y x ,∴x =2,y =1,∴C (2,1).点评:每对对应点的连线所在的直线都相交于一点的相似图形叫做位似图形.位似图形对应点到位似中心的距离比等于位似比(相似比);在平面直角坐标系中,如果位似图形是以原点为位似中心,那么位似图形对应点的坐标比等于相似比.12、若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°分析:先由特殊角的三角函数值及余弦函数随锐角的增大而减小,得:45°<α<90°;再由特殊角的三角函数值及正切函数随锐角的增大而增大,得出:0<α<60°;从而得出45°<α<60°.解答:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.第 12 页答案:B.考点:锐角三角函数的增减性.专题:应用题.点评:本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键.13、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.解答:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,第 13 页OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,Array PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴PB ===11米,∴BC=PB﹣PC=(11﹣4)米.答案:D.考点:解直角三角形的应用.点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.14、一个几何体的三视图如图,则这个几何体是()A.三棱锥 B.三棱柱 C.圆柱D.长方体分析:根据三视图的知识,正视图为两个矩形,侧视图为一个矩形,俯视图为一个三角形,故这个几何体为直三棱柱.解答:根据图中三视图的形状,符合条件的只有直三棱柱,因此这个几何体的名称是直三棱柱.第 14 页答案:B.考点:由三视图判断几何体.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.15、下列说法不正确的是()A.圆锥的俯视图是圆B.对角线互相垂直平分的四边形是菱形C.任意一个等腰三角形是钝角三角形D.周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大分析:根据三视图、菱形的判定定理、等腰三角形的性质、正方形的性质、即可解答.解答: A、圆锥的俯视图是圆,正确;B、对角线互相垂直平分的四边形是菱形,正确;C、任意一个等腰三角形是钝角三角形,错误;例如,顶角为80°的等腰三角形,它的两个底角分别为50°,50°,为锐角三角形;D、周长相等的正方形、长方形、圆,这三个几何图形中,圆面积最大,正确;答案:C.第 15 页第 16 页考点:命题与定理. 点评:本题考查命题、定理,解题的关键是熟记三视图、菱形判定定理、等腰三角形性质、正方形的性质.16、抛掷一枚质地均匀的硬币,如果连续抛掷 1 000 次,那么第 999 次出现正面朝上的概率是( )A 、9991B 、10001C 、1000999D 、21 分析:没有正确理解等可能事件的概率. 此题只需考虑第999 次出现的结果,有两种结果,第 999 次出现正面朝上只有一种结果,即可求解 .答案:D17、游园晚会上有一个闯关活动:将5 张分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,若翻开的图形是轴对称图形,就可以过关,则一次过关的概率是( )A 、51B 、52C 、53D 、54 分析:容易因为不能准确判断轴对称图形,算错概率. 答案:D18、在一幅长为 80 cm ,宽为 50 cm 的矩形风景画的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图 ,如果要使整个挂图的面积是 5 400 cm2,设金色纸边的宽为 x cm ,那么x 满足的方程是( )A .x 2+130x -1 400=0B .x 2+65x -350=0C .x 2-130x -1 400=D. x2-65x-350=0解析:观察图形可知,金色纸边的面积与矩形风景画的面积之和为 5 400 cm2,而矩形风景画的面积为 4 000cm2,设金色纸边的宽为x cm,则可用含x 的代数式表示出金色纸边的面积为[4x2+2(80x+50x)]cm2.答案:B点评:从同学们所熟知的生活情景入手,考查同学们建立方程模型的能力,使考查的过程具有一定的趣味性,同时,建模的思想作为初中数学的重点和难点是需要师生在学习过程中有针对性突破的,而中考的命题毫无疑问在这方面给出了一种明显的导向,应当引起重视.19、已知:△ABC中,点E是AB边的中点,点F在AC边上,相似,则需要增加的一个条件是.(写出一个即可)分析:根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.解答:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF =AC;第 17 页第 18 页②∵△AFE ∽△ACB ,∴∠AFE =∠AB C .∴要使以A 、E 、F 为顶点的三角形与△ABC 相似, 则AF =AC 或∠AFE =∠AB C .答案:AF =AC 或∠AFE =∠AB C .考点:相似三角形的判定.专题:开放型.点评:本题很简单,考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.20、已知:m ,n 为两圆的半径(m ≠n ),d 是两圆的圆心距,且方程 2x -2mx +2n =d (n -m )有两个相等的实数根,求证:这两个圆相外切.证明:∵2x -2mx +2n =d (n -m )有两个相等的实数根,∴整理该方程,得:2x -2mx +2n +(m -n )d =0, ∴2b -4ac =2)2(m -4×1×[2n +(m -n )d ] =42m -42n -4(m -n )d =0.即 4(m -n )(m +n -d )=0.又∵m ≠n ,即 m -n ≠0,∴m +n -d =0,即 d =m +n .∴两圆相外切.点评:证明两个圆相外切,就是证明两圆圆心距等于两圆半径之和,即d=m+n,根据题意可由b2-4ac=0来证明d=m+n.第 19 页。