数据结构实验 表达式括号匹配配对判断问题概览

合集下载

括号匹配栈实验报告

括号匹配栈实验报告

一、实验目的本次实验旨在通过编写程序实现括号匹配功能,加深对栈数据结构原理的理解和应用。

通过实验,掌握栈的基本操作,如入栈、出栈、判断栈空等,并学会利用栈解决括号匹配问题。

二、实验原理1. 栈是一种后进先出(LIFO)的线性数据结构,它只允许在栈顶进行插入和删除操作。

2. 括号匹配问题是指在一个字符串中,判断左右括号是否成对出现,且对应匹配。

3. 在解决括号匹配问题时,可以使用栈来存储遇到的左括号,并在遇到右括号时进行匹配。

如果栈为空或括号不匹配,则判断为无效括号。

如果栈为空,表示括号匹配正确,否则表示不匹配。

三、实验内容1. 定义栈结构体,包括栈的最大容量、栈顶指针、栈底指针、栈元素数组等。

2. 编写栈的基本操作函数,如初始化、入栈、出栈、判断栈空等。

3. 编写括号匹配函数,利用栈实现括号匹配功能。

4. 编写主函数,接收用户输入的字符串,调用括号匹配函数进行判断,并输出结果。

四、实验步骤1. 定义栈结构体和栈的基本操作函数。

```c#define MAX_SIZE 100typedef struct {char data[MAX_SIZE];int top;} Stack;void InitStack(Stack s) {s->top = -1;}int IsEmpty(Stack s) {return s->top == -1;}void Push(Stack s, char x) {if (s->top == MAX_SIZE - 1) { return;}s->data[++s->top] = x;}char Pop(Stack s) {if (s->top == -1) {return '\0';}return s->data[s->top--];}```2. 编写括号匹配函数。

```cint BracketMatch(char str) {Stack s;InitStack(&s);while (str) {if (str == '(' || str == '[' || str == '{') {Push(&s, str);} else if (str == ')' || str == ']' || str == '}') {if (IsEmpty(&s)) {return 0; // 不匹配}char c = Pop(&s);if ((c == '(' && str != ')') || (c == '[' && str != ']') || (c == '{' && str != '}')) {return 0; // 不匹配}}str++;}return IsEmpty(&s); // 栈为空,匹配成功}```3. 编写主函数。

数据结构 括号匹配)

数据结构 括号匹配)

}
情况③
void Push(SqStack *S,SElemType e)
{ /* 插入元素e为新的栈顶元素 */ if((*S).top-(*S).base>=(*S).stacksize)

{
(*S).base=(SElemType*)realloc((*S).base,((*S). stacksize+STACK_INCREMENT)*sizeof(SEle mType));
(2)要求当输入一个表达式,可判断并输出括 号是否匹配。
②算法思想描述
• 在算术表达式中,右括号和左括号匹配的 次序正好符合后到的括号要最先被匹配的 “后进先出”堆栈操作特点,因此可以借 助一个堆栈来进行判断。
• 运用C语言编写程序。 • 括号匹配的四种情况:
1. 左右括号配对次序不正确 2. 右括号多于左括号(缺少左括号) 3. 左括号多于右括号(缺少右括号) 4. 左右括号匹配正确
(可包含()、[]和{})\n"); gets(ch); p=ch; /* p指向字符串的首字符 */ while(*p) /* 没到串尾 */ switch(*p) {case '(': case '[': case '{':Push(&s,*p++); /* 左括号入栈,且p++ */ break; case ')': case ']': case '}':if(!StackEmpty(s)) /* 栈不空 */
A ×所以(B算-C45术) ÷表栈内(左达D没的右+式有左括E与括号)之号匹}配配对
*((*S).top)++=e;

数据结构中关于括号匹配问题的算法

数据结构中关于括号匹配问题的算法

《数据结构》实验报告二实验内容:括号匹配学号:姓名:一、上机实验的问题和要求(需求分析):[ 题目] 假设表达式中允许有两种括号:圆括号和方括号,其嵌套的顺序随意,即(()[ ])或[([ ] [ ])] 等为正确格式,[(])或(((]均为不正确的格式。

读入含圆括号和方括号的符号序列,输出“匹配”或“此串括号匹配不合法”。

二、程序设计的基本思想,原理和算法描述:本程序是在实现栈的基本操作的基础上实现其基本应用,即括号匹配问题,重点利用其“先进后出”的特性三、调试和运行程序过程中产生的问题及采取的措施:(略)四、源程序及注释[ 源程序] 程序名: 4.cpp#include "stdio.h"#include "malloc.h"#include "process.h"#define stack_int_size 8#define stackincrement 10#define overflow -2#define error 0#define ok 1typedef int status;typedef char selemtype;typedef struct{ selemtype * base;selemtype * top;int stacksize;}sqstack;status initstack(sqstack &s){//构造一个空栈ss.base=(selemtype *)malloc(stack_int_size * sizeof(selemtype));if(!s.base)exit(overflow);s.top=s.base;s.stacksize=stack_int_size;return ok;}//initstackstatus emptystack(sqstack s){if(s.top==s.base)return ok;else return error;}status push(sqstack &s,selemtype e){//插入元素e为新的栈顶元素int stacksize;if(s.top-s.base>=s.stacksize){s.base=(selemtype *)realloc(s.base, (s.stacksize+stackincrement )* sizeof(selemtype));if(!s.base)exit (overflow);s.top=s.base+s.stacksize;s.stacksize+=stackincrement;}*s.top++=e;return ok;}//pushstatus pop(sqstack &s,selemtype &e){//若栈不为空,则删除s的栈顶元素,用e返回其值if(s.top==s.base)return error;e=* --s.top;return ok;}//popint kuohao(char m[]){ //若括号匹配则返回1,否则返回0;sqstack s;int i=0;char x;initstack(s);while(m[i]!='#'){ if(m[i]=='('||m[i]=='[')push(s,m[i]);if(m[i]==')'||m[i]==']'){ if(emptystack(s))return 0;else{pop(s,x);if((x=='('&&m[i]==']')||(x=='['&&m[i]==')'))return 0; } }i++;}if(emptystack(s))return 1;else return 0;}void main (){ char e[7]={'(','(','(',']',')',']','#'};int p;p=kuohao(e);printf("说明:若括号匹配的话,输出结果为1,反之则为0.\n");printf("判断结果为:%d\n",p); }五、运行结果如输入的括号序列为:'(','(','(',']',')',']','#'运行结果:0(表明括号不匹配)。

数据结构计算器实验报告

数据结构计算器实验报告

数据结构计算器实验报告数据结构计算器实验报告引言:数据结构是计算机科学中非常重要的一门课程,它研究了数据的组织、存储和管理方式,以及对数据进行操作和处理的算法和技术。

在本次实验中,我们设计了一个基于数据结构的计算器,旨在通过实践应用数据结构的知识,提高我们的编程能力和算法思维。

一、设计思路我们的计算器主要有两个功能:进行四则运算和进行括号匹配。

为了实现这两个功能,我们选择了栈这一数据结构。

栈是一种具有后进先出(LIFO)特点的数据结构,非常适合用来处理括号匹配和运算符的优先级。

二、括号匹配算法在进行四则运算之前,我们首先需要对输入的表达式进行括号匹配的检查。

我们使用了一个栈来实现这一功能。

算法的基本思路是,遍历表达式中的每个字符,当遇到左括号时,将其入栈;当遇到右括号时,将栈顶元素出栈,并判断出栈的元素是否与当前右括号匹配。

如果匹配,则继续遍历下一个字符;如果不匹配,则说明表达式存在括号不匹配的错误。

三、四则运算算法当表达式通过了括号匹配的检查后,我们就可以进行四则运算了。

我们使用两个栈来实现这一功能,一个栈用来存储操作数,另一个栈用来存储运算符。

算法的基本思路是,遍历表达式中的每个字符,当遇到数字时,将其入操作数栈;当遇到运算符时,将其入运算符栈,并根据运算符的优先级进行相应的操作。

四、运算符优先级为了正确计算表达式的值,我们需要定义运算符的优先级。

一般来说,乘法和除法的优先级高于加法和减法。

为了实现这一功能,我们可以使用一个优先级表来存储运算符的优先级。

在进行运算时,我们可以通过比较栈顶运算符和当前运算符的优先级来决定是否进行运算。

五、实验结果经过我们的努力,我们成功地实现了一个基于数据结构的计算器。

我们对该计算器进行了多组测试,包括括号匹配、四则运算等不同情况。

在所有的测试中,我们的计算器都能正确地输出结果,并且在处理大规模表达式时也能保持较好的性能。

六、总结与展望通过本次实验,我们深入理解了数据结构的应用和算法的设计。

数据结构实验表达式括号匹配配对判断问题分析

数据结构实验表达式括号匹配配对判断问题分析
实验 表达式括号匹配配对判断问题
姓名:
班级:
学号:
实验时间:
1. 问题描述
一个算术表达式含圆括号、中括号、花括号 , 且它们可任意嵌套使用。
写一程序,判断任一算术表达式中所含括号是否正确配对。
2. 数据结构设计
匹配判别发生在右括号出现时, 且被匹配的左括号应是距离右括号最近
被输入的,二不是最先被输入的括号
return 0; break;
case '}': if(Pop(s)!='{') return 0; break;
case ']': if(Pop(s)!='[')
return 0; break; } } int re=0; // 定义并初始化判空函数的返回值 re=Empty(s,re); // 返回判空函数的返回值 if(re==1) return 1; // 栈为空 else return 0; // 栈不为空,有左括号,存在 '(' 或'[' 或'{' 未匹配 } 4. 运行与测试 ① 输入 1+(2+3)
void main() // 主函数 {
char str[100]; // 定义一个单字符型数组以储存键盘输入的字符串。 cout<<" 请输入一个长度小于 100 的字符串: "<<endl; cin>>str; // 从键盘输入字符存储到字符数组中,有输入则继续。 int re=Check(str); if(re==1)
stack s;
InitStack(s);
int strn = strlen(str); //

实验三实验报告括号匹配的检验

实验三实验报告括号匹配的检验

实验三实验报告括号匹配的检验实验题⽬:括号匹配的检验⼀、实验⽬的加深理解栈的定义和特性;掌握栈的存储结构与实现⼆、实验内容:任意输⼊⼀个由若⼲个圆括号、⽅括号和花括号组成字符串,设计⼀个算法判断该串中的括号是否配对。

三、设计与编码1、基本思想基本思想:最内层(最迟出现)的左刮号必须与最内层(最早出现)的同类右刮号配对,它最急切地期待着配对。

配对之后, 期待得以消解。

因此为左刮号设置⼀个栈,置于栈顶的左刮号期待配对的急切程度最⾼。

实例:[ ( [ ] { } ) ]、( [ { } ] )、{ [ ] } )、( { [ ] }、( { [ ] ] )2、编码#include#includeconst int StackSize=100;class SeqStack{public:SeqStack(){top=-1;}~SeqStack(){}void Push(char s);char Pop();void Peidui(char s[StackSize]);private:char data[StackSize];int top;};void SeqStack::Push(char s){if(top==StackSize-1) throw"上溢";top++;data[top]=s;char SeqStack::Pop(){if(top==-1)throw"下溢";else{char a;a=data[top--];return a;}}void SeqStack::Peidui(char *s){int i=0,l=strlen(s);char t;for(i=0;i{if(s[i]=='{'||s[i]=='['||s[i]=='(')Push(s[i]);else{if(top==-1){cout<<"右括号多了,不匹配"<return;}else{t=data[top];if(t=='{'&&s[i]=='}'||t=='['&&s[i]==']'||t=='('&&s[i]==')') {Pop();}elsebreak;}}if(top==-1&&s[i]=='\0')cout <<"配对成功"<elseif(top!=-1&&s[i]=='\0')cout<<"左括号多了,不匹配"<elsecout<<"左右类型不匹配"<}void main(){char str[10];cout<<"请输⼊括号;"<cin>>str;SeqStack S;S.Peidui(str);}四、调试与运⾏1、调试时遇到的主要问题及解决2、运⾏结果(输⼊及输出,可以截取运⾏窗体的界⾯)五、实验⼼得。

数据结构实验(括号配对问题)

数据结构实验(括号配对问题)

数据结构实验(括号配对问题)⼀、实验题⽬设计算法判断⼀个算数表达式的圆括号是否正确配对。

⼆、问题分析这道题⽤到的是栈的知识,这个程序要求我们知道如何对⼀个字符串进⾏存储,判断算数表达式是否配对正确的关键是对表达式进⾏扫描,熟悉圆括号的进出栈操作。

三、概要设计1)为了实现上述程序功能,需要:[1]建⽴⼀个顺序栈;[2]键盘输⼊⼀个表达式,并对其进⾏扫描;[3]当扫描到“(”就进⾏⼊栈操作,遇到“)”就将栈顶元素出栈,扫描到其他元素不进⾏任何操作;[4]扫描完表达式,判断栈是否为空。

若为空,则匹配正确,反之错误。

2)本程序包含的函数:[1]主函数main()[2]void Bracket()四、详细设计1)定义顺序栈类型Typedefstruct{Char stack[StackMaxSize];Int top;}Stack;2) [1]⾸先将定义⼀个栈S置成空栈,InitStack(S);[2]然后在main()⾥定义字符串str[100],并将其输⼊gets(str);[3]接着利⽤while(str[i]!=’\0’)语句对字符串进⾏扫描[4]如果遇到“(“就执⾏push(S,’(‘)操作,遇到”)“就进⾏删除栈顶元素操作;[5]最后判断栈是否为空,StackEmpty(S)。

五、调试分析在⼀开始的试验中,在判断括号是否判断正确的if语句中if(!flag1&&flag2),这样得到的结果就不正确了,如图:解决⽅法:将判断括号配对是否正确的if语句中if(!flag1&&flag2)改为if(!flag2)这样只要判断flag2标志的栈是否为空,从⽽得到括号是否配对正确。

六、测试结果:1)测试数据:4+(4+5),))((,)+(),)+()+(2)测试结果截图:七、附录(源代码)#includevoid Bracket(char *str);void main()//主函数{char str[100];//定义⼀个字符串printf("please input:");gets(str);Bracket(str);}#define StackMaxSize 100 typedefstruct{//定义⼀个顺序栈类型char stack[StackMaxSize]; int top;}Stack;Stack *InitStack(Stack *S)//置空栈{S->top=-1;return S;}intStackEmpty(Stack *S)//判栈空{return S->top==-1;}char Pop(Stack *S,char *a)//顺序栈取栈顶元素{*a=S->top;if(S->top<=StackMaxSize-1&&S->top>=0) return(S->stack[S->top]);elseprintf("error");}void Push(Stack *S,charstr){//顺序栈⼊栈if(S->toptop>=-1){ S->top++;S->stack[S->top]=str;}elseprintf("error");}void Bracket(char *str){Stack S1,*S=&S1char a;inti=0,flag1=0,flag2;InitStack(S);while(str[i]!='\0'){switch(str[i]){case '(':Push(S,'(');break;case ')':Pop(S,&a);if(a!='('){flag1=1;break;//出现不匹配,⽴即结束循环}default:break;}if(flag1)break;i++;}flag2=StackEmpty(S);//flag2判断堆栈是否为空if(!flag2) printf("括号匹配正确\n");elseprintf("括号匹配不正确\n");}。

表达式的括号匹配检验问题课程设计报告

表达式的括号匹配检验问题课程设计报告

合肥学院计算机科学与技术系课程设计报告2008~2009学年第二学期2009年5月题目:表达式的括号匹配检验问题。

试验完成如下要求:假设在表达式中允许有三种括号:圆括号、方括号和花括号,其嵌套的顺序是随意。

要求设计测试数据,如果在表达式中括号使用正确,输出结果为“此表达式中括号匹配合法”,否则输出结果为“此表达式中括号匹配不合法”,#为表达式的起始和结束标志。

在初始和结束时,栈为空。

一、问题分析和任务定义此程序需要完成如下要求:表达式中允许有三种括号:圆括号、方括号和花括号,嵌套顺序随意。

要求设计测试数据,判断表达式中括号使用是否正确,如果正确,输出结果为“此表达式中括号匹配合法”,否则输出结果为“此表达式中括号匹配不合法”,表达式的输出格式为:“#表达式#”。

实现本程序需要解决的几个问题:1、用什么数据结构。

2、怎样实现判断括号是匹配的。

3、括号匹配与不匹配有几种情况。

4、输出与输入数据的形式。

本程序的难点在于怎么样判断括号是否匹配。

按任务书中的提示,首先,建立一个栈,用来存储读入的括号。

若是左括号,则做为一个新的更急迫的期待压入栈,若是右括号,则和当前栈顶的括号比较,若匹配,则输出此表达式中括号匹配合法,若不匹配,则输出此表达式中括号匹配不合法。

括号分为大括号,小括号,中括号,每个括号比较的方法是一样的。

如输入为#(3+2)#:输入#,输入(,“输入3+2,输入“)”,是右括,是左括号,入栈号“(”出栈,与“)”比较,匹配,栈空图1 具体实例演示括号匹配过程由于本程序要求表达式的输入形式是#表达式#,#是表达式的起始与结束的标志,所以判断表达式遍历完的条件是读到第二个#号。

总的来说本题目是一个以栈为数据结构,设计一个求有关于表达式中括号匹配的问题的程序。

数据类型应为字符型,需要自定义栈的结构体,初始栈,入栈,出栈,判断栈空的操作。

本程序用的是顺序栈,用地址连续的存储空间依次存储栈中的元素,并记录当前栈顶数据元素的位置,这样的栈称为顺序栈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验表达式括号匹配配对判断问题
姓名:班级:
学号:实验时间:
1.问题描述
一个算术表达式含圆括号、中括号、花括号,且它们可任意嵌套使用。

写一程序,判断任一算术表达式中所含括号是否正确配对。

2.数据结构设计
匹配判别发生在右括号出现时,且被匹配的左括号应是距离右括号最近被输入的,二不是最先被输入的括号
,即“先入后匹配”。

因此用栈来解决。

#define stacksize 100 //定义栈的空间大小
struct
stack{ //定义栈的结构体
char strstack[stacksize];//定义栈的存储格式为字符型
int top; //定义栈的栈顶变量
};
void InitStack(stack &s)
{//定义一个新栈s,初始化栈顶为-1
s.top = -1;
}
3.算法设计
(1)入栈的算法
char Push(stack &s, char a)
{ //入栈操作,将字符a入栈s
if(s.top == stacksize - 1) //当栈顶为栈的空间大小-1,栈满return 0;
s.top ++;//入栈操作一次,栈顶+1
s.strstack[s.top] = a;//此时,栈顶元素为字符a
return a;
}
(2)出栈的算法设计
char Pop(stack &s )
{ //出栈操作
if(s.top == -1) //当栈顶为-1时,栈空
return 0;
char a = s.strstack[s.top];//将栈顶元素赋予字符a,并返回字符a,完成出栈操作
s.top--;
return a;
}
(3)判断栈是否为空的函数
int Empty(stack &s,int re)
{ //定义判断栈是否为空的函数
if(s.top==-1)
return 1;//栈为空时返回值为1
else
return 0;//栈不为空时返回值为0
}
(4)判断是否匹配的算法。

如果右括号,进栈,取下个字符;如果是左括号,出栈,取下个字符;最后判断栈是否为空。

int Check(char* str)
{ //检验括号是否匹配的函数
stack s;
InitStack(s);
int strn = strlen(str); //定义字符串长度为strn
for(int i=0;i <strn;i++)
{
char a=str[i];
int re=0;
switch(a)
{//对输入的字符a进行判断
case '(':
case '{':
case '[':
Push(s,a);//若是左括号,则进行入栈操作
break;
//若是右括号,则进行出栈操作,若出栈元素不是与输入相对应的左括号,则字符串括号中不匹配,返回
case ')':
if(Pop(s)!='(')
return 0;
break;
case '}':
if(Pop(s)!='{')
return 0;
break;
case ']':
if(Pop(s)!='[')
return 0;
break;
}
}
int re=0; //定义并初始化判空函数的返回值
re=Empty(s,re); //返回判空函数的返回值
if(re==1)
return 1; //栈为空
else
return 0; //栈不为空,有左括号,存在'('或'['或'{'未匹配}
4.运行与测试
①输入1+(2+3)
②输入1+(2+3))
③输入1+((2+3)
④输入1+2+3+4
⑤输入1+[2+(4-2])*2
5.调试记录及收获
在运行程序时,当输入1+((2+3)时,因为错把’(’写成’(’,也就是输入法的中英文没有切换,所以得到的结果是错的。

这就说明输入时要注意中英文。

通过本次实验,我对栈的使用更加熟练,入栈出栈的顺序也有了更一步的了解。

附:源代码
#include "stdafx.h"
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define stacksize 100 //定义栈的空间大小
struct
stack{ //定义栈的结构体
char strstack[stacksize];//定义栈的存储格式为字符型
int top; //定义栈的栈顶变量
};
void InitStack(stack &s)
{//定义一个新栈s,初始化栈顶为-1
s.top = -1;
}
char Push(stack &s, char a)
{ //入栈操作,将字符a入栈s
if(s.top == stacksize - 1) //当栈顶为栈的空间大小-1,栈满
return 0;
s.top ++;//入栈操作一次,栈顶+1
s.strstack[s.top] = a;//此时,栈顶元素为字符a
return a;
}
char Pop(stack &s )
{ //出栈操作
if(s.top == -1) //当栈顶为-1时,栈空
return 0;
char a = s.strstack[s.top];//将栈顶元素赋予字符a,并返回字符a,完成出栈操作
s.top--;
return a;
}
int Empty(stack &s,int re)
{ //定义判断栈是否为空的函数
if(s.top==-1)
return 1;//栈为空时返回值为1
else
return 0;//栈不为空时返回值为0
}
int Check(char* str)
{ //检验括号是否匹配的函数
stack s;
InitStack(s);
int strn = strlen(str); //定义字符串长度为strn
for(int i=0;i <strn;i++)
{
char a=str[i];
int re=0;
switch(a)
{//对输入的字符a进行判断
case '(':
case '{':
case '[':
Push(s,a);//若是左括号,则进行入栈操作
break;
//若是右括号,则进行出栈操作,若出栈元素不是与输入相对应的左括号,则字符串括号中不匹配,返回
case ')':
if(Pop(s)!='(')
return 0;
break;
case '}':
if(Pop(s)!='{')
return 0;
break;
case ']':
if(Pop(s)!='[')
return 0;
break;
/*case ')': if(Empty(s,re) || Pop(s) != '(') return 0; Pop(s); break;
case ']': if(Empty(s,re) || Pop(s) != '[') return 0; Pop(s); break;
case '}': if(Empty(s,re) || Pop(s) != '{') return 0; Pop(s); break;*/
}
}
int re=0; //定义并初始化判空函数的返回值
re=Empty(s,re); //返回判空函数的返回值
if(re==1)
return 1; //栈为空
else
return 0; //栈不为空,有左括号,即存在'('或'['或'{'未匹配
}
void main() //主函数
{
char str[100]; //定义一个单字符型数组以储存键盘输入的字符串。

cout<<"请输入一个长度小于100的字符串:"<<endl;
cin>>str; //从键盘输入字符存储到字符数组中,有输入则继续。

int re=Check(str);
if(re==1)
cout<<"匹配!"<<endl;
else
if(re==0)
cout<<"不匹配!!"<<endl;
}。

相关文档
最新文档