2014年辽宁卷高考文科数学真题及答案

合集下载

14年高考真题——文科数学(辽宁卷)-推荐下载

14年高考真题——文科数学(辽宁卷)-推荐下载


6

(D) c a b

(D) p q
辽宁
(D)
2014 年高考真题文科数学(解析版) 卷
8.已知点 A2, 3在抛物线 C : y2 2 px 的准线上,记 C 的焦点为 F ,则直线
AF 的斜率为( )
(A) 4 3
(B) 1
9.设等差数列an的公差为 d ,若数列2a1an 为递减数列,则( )
⑴根据表中数据,问是否有 95%的把握认为
“南方学生和北方学生在选用甜品的饮食习惯
,求:⑴
a

方面有差异”; ⑵已知在被调查的北方学生中有 5 名数学系的学生,其中 2 名喜欢甜品,
现在从这 5 名学生中随机抽取 3 人,求至多有 1 人喜欢甜品的概率。
附: 2 n n11n22 n12n21 2 ,

(A)5, 3
(D)4, 3
(B)6, 9 8
二.填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.执行右侧的程序框图,若输入 n 3 ,则输出T

Page 2 of 8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2014年(辽宁卷)普通高等学校招生全国统一考试(文科)数学(含解析)

2014年(辽宁卷)普通高等学校招生全国统一考试(文科)数学(含解析)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c是非零向量,已知命题P :若0a b ⋅= ,0b c ⋅= ,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82π-D .84π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 【答案】C 【解析】9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d >10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 执行右侧的程序框图,若输入3n =,则输出T = .14.已知x,y满足条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为.15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G分别为AC、DC、AD的中点. (Ⅰ)求证:EF⊥平面BCG;(Ⅱ)求三棱锥D-BCG的体积.附:椎体的体积公式13V Sh=,其中S为底面面积,h为高.20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).(Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.【考点定位】1、直线方程;2、椭圆的标准方程;3、弦长公式和点到直线的距离公式. 21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+>.22. (本小题满分10分)选修4-1:几何证明选讲,连接DG并延长交圆于点A,作如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且PG PD弦AB垂直EP,垂足为F.(Ⅰ)求证:AB为圆的直径;(Ⅱ)若AC=BD,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(Ⅰ)求M ;(Ⅱ)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.。

2014年辽宁高考数学文科卷

2014年辽宁高考数学文科卷

2014年辽宁高考数学文科卷1. 已知集合,,,则集合A.B.C.D.2. 设复数满足,则A.B.C.D.3.已知,,,则A. B. C. D.4.已知,表示两条不同的直线,表示平面,下列说法正确的是 A.若,,则.B.若,,则. C.若,,则.D.若,,则. 5.设,,是非零向量.已知命题:若,,则.命题:若,,则.则下列命题中真命题是 A.B.C.D.6.将一个质点随机投入如图所示的长方形中,,,则质点落在以为直径的半圆内的概率是A. B. C. D.7.某几何体三视图如图所示,则该几何体的体积为A.B.C.D.8.已知点在抛物线的准线上,记的焦点为,则直线的斜率为主视图左视图俯视图A. B. C. D.9.设等差数列的公差为,若数列为递减数列,则A. B. C. D.10.已知为偶函数,当时,,则不等式的解集为A. B. C. D.11.将函数的图象向右平移个单位长度,所得图象对应的函数A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增12.当时,不等式恒成立,则实数的取值范围是A. B. C. D.13. 执行下面的程序框图,若输入,则输出________的最大值为15.已知椭圆,点与的焦点不重合. 若关于的焦点的对称点分别为,,线段的中点在上,则________16.对于,当非零实数,满足且使最大时,的最小值为_______17. 在△中,内角的对边分别为,且.已知,,.求输入,,输出(Ⅰ)和的值; (Ⅱ)的值.18.调查结果如下表所示:(Ⅰ)根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有名数学系的学生,其中名喜欢甜品,现在从这名学生中随机抽取人,求至多有人喜欢甜品的概率.,附:19. 如图,△和△所在平面互相垂直,且,,分别为的中点. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.附:锥体的体积公式,其中为底面面积,为高.20. 圆的切线与轴正半轴,轴正半轴围成一个三角形,当该三角形面积最小时,切点为.(Ⅰ)求点的坐标;(Ⅱ)焦点在轴上的椭圆过点,且与直线交于两点,若△的面积为,求的标准方程.21. 已知函数,.证明:(Ⅰ)存在唯一,使;(Ⅱ)存在唯一,使,且对(Ⅰ)中的,有.22. (选修4-1)如图,交圆于两点,切圆于,为上一点且,连接并延长交圆于点,作弦垂直,垂足为.(Ⅰ)求证:为圆的直径;(Ⅱ)若,求证:.23. (选修4-2)将圆上每一点横坐标保持不变,纵坐标变为原来的倍,得到曲线.(Ⅰ)写出的参数方程;(Ⅱ)设直线与的交点为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.24. (选修4-5)设函数,.记的解集为,的解集为.(Ⅰ)求;(Ⅱ)当时,证明:.。

2014年高考辽宁文数word解析完美版

2014年高考辽宁文数word解析完美版

2014年普通高等学校招生全国统一考试(辽宁卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分, 共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB =( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x << 2. 设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i - 3. 已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >> 4. 已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥5. 设,,a b c 是非零向量,已知命题P :若0=⋅b a ,0=⋅c b ,则0=⋅c a ;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝ 6. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π7. 某几何体三视图如图所示,则该几何体的体积为( ) A .84π-B . 82π-C .8π-D . 82π-8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .43-B .-1C .34-D .12- 9. 设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( ) A .0d > B .0d < C .10a d > D . 10a d <10. 已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11. 将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( )A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8-- C .[6,2]-- D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 执行右侧的程序框图,若输入3n =,则输出T = .14. 已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y=+的最大值为 .15. 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16. 对于0c >,当非零实数a ,b 满足02422=-+-c b ab a ,且使|2|a b +最大时,cb a 421++的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.18. (本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:21212211222112)(++++-=n n n n n n n n n χ,19. (本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(1)求证:EF ⊥平面BCG ; (2)求三棱锥D-BCG 的体积. 附:椎体的体积公式13V Sh=,其中S 为底面面积,h 为高.DC20. (本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.21. (本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22. (本小题满分10分)选修4-1:几何证明选讲 如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径;A(2)若AC=BD ,求证:AB=ED.23. (本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24. (本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ; (2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.2014高考辽宁卷文科数学参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. D A C B A B C C D A B C 1.【解析】).10()∪(∞).C 1[]0∞-(∴∞)1[],0-(R ,,,=+⋃=⋃+=∞=B A B A B A 2.【解析】..3225252-25,5)-2)(2-(A i i i i i z i i z 选)(+=++=+=∴= 3.【解析】.∴).2,1(∈log ),1-2-(∈log ),121(∈2312131231-b a c c b a >>===,, 4.【解析】对A, 平行同一平面的直线不一定平行,所以A 错;对B ,直线垂直平面,则必垂直平面内任意一条直线,所以B 对;同样C,D 均错. 5.【解析】命题p 为假,命题q 为真,所以A 正确. 选A6.【解析】 421121)(2ππ=⨯⋅=A P ,所以选B.7.【解析】几何体为直棱柱,体积π-82)21π-22(2=⨯⨯==sh V ,选C. 8.【解析】.4p 2,2,)3,2-(==pA 得在准线上..43-2-2-3),0,2(,8∴2C k F F x y AF 选从而的坐标为焦点===9. 【解析】由已知得n a a 1递减,所以n n a a a a 111<+,解得.00;0011><<>d a d a 且或且..01D d a 选<∴10.【解析】依题可以画出函数)(x f y =的图象如图,直线21=y 与函数)(x f y =的四个交点横坐标从左到右依次为43,31,31,43--,因此可得,43131≤-≤x 或31143-≤-≤-x ,解得]47,34[]32,41[ ∈x ,选A. 11.【解析】;一个增区间为的周期把]6π-4π,6π-4π-[π,)6π(2sin 3)3π2sin(3=+=+=T x x y.].127π,12π[]6π-4π2π,6π-4π-2π[2πB 选后,增区间为右移=+12.【解析】xt x x f x 10≠.0≥)(0.==时,令当成立时,当 ]1,2-[∈∀x ,0≥)341-()(323x x x a x x f ++=]21,-∞-(∈∀t ,0≤34-),∞,1[∈∀t ,0≥34-∴3232t t t a t t t a +++++且)1-9)(1(981-)(,34-)(232t t t t t g t t t a t g +=++='++=则令.)∞,1[]21,-1-(),-1∞-()(递增上递减,在上递增,在在+'t g.].-2,-6[∈a ∴-6≥-2≤.0≥)1(0≤)-1(∴C a a g g 选且解得,且二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 20 14. 18 15. 12 16. 1-16.【解析】设2a b t +=,则2b t a =-,代入到22420a ab b c -+-=中,得()()2242220a a t a t a c --+--=,即221260a ta t c -+-=………(*)因为关于a 的二次方程(*)有实根,所以0)(1243622≥-⨯-=∆c t t ,可得c t 42≤,所以当|2|b a +取最大值时,⎪⎩⎪⎨⎧==c b c a 2或⎪⎩⎪⎨⎧-=-=cb c a 2. (1) 当⎪⎩⎪⎨⎧==cb ca 2时,0422421>++=++c c c c b a , (2) 当⎪⎩⎪⎨⎧-=-=cb ca 2时,11)211(44224212-≥--=+--=++c c c c c b a ,当且仅当2,1,4-=-==b a c 时等号成立.综上可知,当2,1,4-=-==b a c 时,cb a 421++的最小值为1-.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.【解析】(1)由2BA BC ∙=得,2cos =B ca ,又1cos 3B =,所以6=ac .又3b =, ac b c a B 2-cos 222+=,得到13cos 2222=+=+B ca b c a ,2,3.2,3∴====>c a c a c a 所以,解得(2)322`cos 1sin 31cos 2=-=∴=B B B ,924sin ,972c -cos ,2,3,3222==+====C ab b a C c b a.2723)-cos(.2723sin sin cos cos )-cos(==+=∴C B C B C B C B 所以,18. 【解析】(1)841.376.4≈3710030702080)1020-1060(100χ22>∙=∙∙∙∙∙=面有差异”方的学生在甜品饮食方的把握认为“南方和北所以,有%95 (2)种;人,共有人中选从1035 1077611611==+p 所以,所求事件的概率种人喜欢甜品的情况有种,所以至多有学生喜欢甜品的情况有个种,只有品的情况有其中,没有学生喜欢甜19. 【解析】(1)︒====120∠∠,DBC ABC BD BC BA 且BCG⊥EF ∴∩BC ⊥EF EF ⊥BC EF⊥BC EFH,⊥BC ∴∩BC ⊥BC,⊥⊥EF ,⊥EF//AD ∴,ΔΔΔ∴面,且,即面,且根据对称性可知,上,且在设即分别是三边的中点,且,中在全等,与C CG CG H EH FH EH FH BC H CGCG DC AC G F E ACD DCAC DBC ABC ====(2)BCG,⊥Δ∴BCG ⊥面上的高底边面面BC ABC ABC21CG -21∴3120sin 22212331CG -3Δ.CD -CG -ΔΔCD -CG -的体积为所以,三棱锥的体积三棱锥上的高底边的高是它的一半即三棱锥B D V S S V V B D BC ABC B G B D BCD BCD B G B D ==︒∙∙∙=∙∙===20.【解析】(1),4,,,2=r n m P r 为点上下两段线段长分别设圆半径三角形面积由射影定理得,2mn r =16)(421442122422+++=++=n m r n m s ,168211682124224++=++≥r r n m r ).2,2(2P s n m 取最大值,这时时,仅当==(2)).,(),(122112222y x B y x A b y a x ,,设椭圆方程为=+122)2,2(22=+b a P 得:椭圆过点.233=+=d x y P 的距离到直线则324221Δ==∙∙=AB AB d S ABP ,解得由题得,由弦长公式得332]4-)[(2]4-))[(1(212212122122=+=++=x x x x x x x x k AB 136)(3,66,30313-6,316-38-48-32,34-∴01-3322,01-33213122.3164-)(22222224224222122122222222222221221=+=====+=∙∙==+=++=+++⎪⎩⎪⎨⎧=++==+=+y x a b a b bb b b b b b x x b x x b x x b x x a x b y ax x y ba P x x x x 所以,椭圆方程为舍,或解得即代入上式得整理得得由代入方程得:把点即21.【解析】(1)04-2π)2π(,02-π-)0(∴2-sin 2-)cos -(π)(2>=<==f f x x x x f 上仅有一个零点,在所以,上单调递增,在上有零点,在)2π0()()2π0()(∴0osx)2-π(sin πosx 2-)sin 1(π)()2π0()(∴x f x f c x c x x f x f >+=+='(2) π),,2π(∈,1-π2sinx 1sinx -1π)-()(x x x x g ++=1-π2sinx 1cosx -π)-()(∴x x x g ++=)2π(0,∈,π2-πsin 1cos -)-π(∴x x x x x x g ++=.h(x)g(x))2π(0,∈,π2-πsin 1cos -h(x)的零点相同与,则设x x x x x ++=π2-sin 1sin 1cos -π2-)sin (1cos )sin 1(sin sin 1cos -(x)h 22x x x x x x x x x x x +++=+++++=')2π(0,∈,)sin 1(π)()sin 1(π)sin 1(2-)cos -π(x x x x f x x x +=++=,上只有一个零点在知,由0)2π(0,)()1(x x f .(x)h ,00左负右正在点即左负右正且在点x x ' π.,),2()(π∴π,-π∴0)-π(,0)h()0(∈,0)(0)2πh(,01)0(h(x)∴101100121212202000>+>++<=+===<=>=x x x x g x x x x x x x x x g x x x x h h x x 且上存在唯一零点在所以,即即,使得,存在唯一故点右侧递增,且点左侧递减,在在ππ22.【解析】(1)PG PD D PD =' .到延长, AG ∠∠∴∠∠∠∴F DB D PD FGA PGD ADP ='==为切线 π∠∠BDA AG ∠∴π∠ADP ∠BDA ∠=++=++'FGA F DB D.,2π∠BDA ∴π2π∠BDA ∴为直径所以AB ==+(2)EC ∠AG ∠AD ∠∴A F B AC BD ===为直径中,在三角形ED EG AF ACE ∴2π∠EAD ⇒2π∠EAG ∴⊥== .,AB ED =所以 23. 【解析】(1).],π∈[0,t sin 2cos 为参数,的参数方程:曲线t t y t x C ⎩⎨⎧== (2)02-θsin 2θcos 2θ)sin 2θ,(cos =+在直线上,则上的点设曲线P C0.3θsin ρ4-cos θ 2ρ,23-4)21-(211-∴).1,21(),2,0(),0,1(.2π0θ.1)4πθsin(2=+====+是所求直线的极坐标方程所以即的中垂线方程是垂直中点所以,,或即解得x y x y AB AB B A24. 【解析】(1).1≤1-|1-|2)(x x x f += .1≤01;34≤≤11≥<<x x x x 时,解得当时,解得当 }.34≤≤0|{].34,0[1≤)(∴x x M x f =所以,的解集为(2)由41816)(2≤+-=x x x g ,解得4341≤≤-x .因此},4341|{≤≤-=x x N 故 }430|{≤≤=x x N M ,于是当N M x ∈时,x x f -=1)(.于是.41)1()()]()[()]([)(22≤-=⋅=+=⋅+x x x f x x f x x xf x f x x f x。

2014辽宁高考数学卷辽宁卷

2014辽宁高考数学卷辽宁卷

普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第I 卷一、选择题(1) 已知全集U R =,{}0|A x x =≤,{}1|B x x =≥,则集合()U AB =ð (A ) {}0|x x ≥ (B ){}1|x x ≤ (C ){}1|0x x ≤≤ (D ){}1|0x x <<(2) 设复数z 满足(2)(2)5z i i --=,则z =( )A. 23i +B. 23i -C. 32i +D. 32i -(3) 已知132a -=,21log 3b =,121log 3c =,则 (A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>(4) 已知,m n 表示两条不同的直线,α表示平面,下列说法正确的是( )A. 若//,//m n αα,则//m nB. 若,m n αα⊥⊂,则m n ⊥C. 若,m m n α⊥⊥,则//n αD. 若//,m m n α⊥,则n α⊥(5) 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b , b ∥c ,则a ∥c . 则下列命题中真命题是(A )p q ∨ (B )p q ∧ (C ) ()()p q ⌝∧⌝ (D ) ()p q ∨⌝(6) 若将一个质点随即投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是(A )2π (B )4π (C )6π (D )8π(7) 某几何体三视图如图所示,则该几何体体积为(A )82π- (B )8π- (C )82π- (D )84π-(8) 已知点A (-2,3)在抛物线2:2C y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为(A )43- (B ) -1 (C )34- (D )12- (9) 设等差数列{}n a 中的公差为d ,若数列1{2}n aa为递减数列,则A. 0d <B. 0d >C. 10a d <D. 10a d >(10) 已知()f x 为偶函数,当0x ≥时,1cos ,0,2()121,,2x x f x x x π⎧⎡⎤∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫⎪-∈+∞ ⎪⎪⎝⎭⎩,则不等式1(1)2f x -≤的解集为(A )1247,,4334⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(B )3112,,4343⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦ (C )1347,,3434⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦(D )3113,,4334⎡⎤⎡⎤--⎢⎥⎢⎥⎣⎦⎣⎦ (11) 将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图像向右平移2π个长度单位,所得图像对应函数 (A )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 (C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增 (12) 当[]2,1x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是(A )[]5,3-- (B )96,8⎡⎤--⎢⎥⎣⎦ (C )[]6,2-- (D )[]4,3-- 第II 卷二、填空题(13) 执行右侧的程序框图,若输入3n =,则输出T = .(14) 已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,则目标函数34z x y =+的最大值为(15) 已知椭圆22:194x y C +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则AN BN += .(16) 对于0c >,当非零实数,a b 满足22420a ab b c -+-=且使|2|a b +最大时,124a b c++的最小值为______________ 三、解答题(17) (本小题满分12分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值;(Ⅱ)()cos B C -的值。

2014年高考文科数学辽宁卷-答案

2014年高考文科数学辽宁卷-答案

2014年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)答案解析{|AB x x =(){|0U A B x ∴=【提示】先求A B ,再根据补集的定义求()A B .【考点】交、并、补集的混合运算【解析】(2i)(2i)z --=5(2i)2i ++【提示】把给出的等式两边同时乘以【考点】复数代数形式的乘除运算【提示】A 运用线面平行的性质,结合线线的位置关系,即可判断;B 运用线面垂直的性质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.【考点】空间中直线与直线之间的位置关系 5.【答案】A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题p 为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,为真命题,p q ∧,()()p q ⌝∧⌝,()p q ∨⌝都为假命【解析】等差数列(123i)++++++的值,当输入(123i)++++++的值,根据条件确定跳出循环的,Q在椭圆【解析】242a ab -2232324b b ⎛⎫⎤+= ⎪⎥ ⎪⎝⎭⎦224b b ++=2BA BC =得co s c B. 2c =232+⨯2sin c B b ⨯=cos cos B C【提示】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将1cos 3B =代入求出6ac =,再利用余22【提示】(Ⅰ)根据表中数据,利用公式,即可得出结论.(Ⅰ)AB BC =G 为AD .CG BG G =,.EF AD ∥BCG .(Ⅱ)在平面ABC 内,作AO 的延长线于O ,∆所在平面互相垂直,∴AO ⊥平面.G 到平面BCD 的距离h 11sin1203322BD BC ︒=000014482x y x y =P 的坐标为(122d AB =,解得()(21k ⎡=+⎣2232b b -,代入上式得2231683b b -=【提示】(Ⅰ)设切点P 的坐标为00(,)x y ,求得圆的切线方程,根据切线与x 轴正半轴,y 轴正半轴围成的三角形的面积008S x y =.再利用基本不等式求得S 取得最小值,求得点P 的坐标. 122d AB =,求出(Ⅰ)()πf x =0,2f ⎪⎝⎭上有零点.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x -=-++1sin x ++cos )1sin x x -++【考点】函数零点的判定定理 22.【答案】证明:(Ⅰ)PD PG PDG PGD PD =∴∠=∠为切线,PDA DBA ∴∠=∠,PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,,Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P ,则线段12PP 的中点坐标为1,12⎛⎫ ⎪⎝⎭,再根据与l垂直的直线的斜率为12, 故所求的直线的方程为11122y x ⎛⎫-=- ⎪⎝⎭,即32202x y -+=.【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫⎪⎝⎭在圆22111x y +=上,求出C 的方程,化为(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,13,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦.当x MN ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,再取并集,即MN =30,4⎡⎢⎣MN 时,,要证的不等式得证。

2014年普通高等学校招生全国统一考试(辽宁卷.文)

2014年普通高等学校招生全国统一考试(辽宁卷.文)

2014年普通高等学校招生全国统一考试(辽宁卷)数学(文科)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = ( )A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<2.设复数z 满足(2)(2)5z i i --=,则z =( )A .23i +B .23i -C .32i +D .32i -3.已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥5.设,,a b c 是非零向量,已知命题P :若0a b ⋅= ,0b c ⋅= ,则0a c ⋅=;命题q :若//,//a b b c,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A .2π B .4π C .6π D .8π7.某几何体三视图如图所示,则该几何体的体积为( )A .84π-B .82π-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343-- C .1347[,][,]3434D .3113[,][,]4334--11.将函数3sin(2)3y x π=+的图象向右平移2π个单位长度,所得图象对应的函数( ) A .在区间7[,]1212ππ上单调递减B .在区间7[,]1212ππ上单调递增 C .在区间[,]63ππ-上单调递减 D .在区间[,]63ππ-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.执行下侧的程序框图,若输入3n =,则输出T = .14.已知x ,y 满足约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >,已知2BA BC ∙= ,1cos 3B =,3b =,求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值. 18.(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:()2121211222112+++++-=n n n n n n n n n x19.(本小题满分12分)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D-BCG 的体积. 附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证明:(Ⅰ)存在唯一0(0,)2x π∈,使0()0f x =;(Ⅱ)存在唯一1(,)2x ππ∈,使1()0g x =,且对(Ⅰ)中的01x x π+>.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC=BD ,求证:AB=ED .23.(本小题满分10分)选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (Ⅰ)写出C 的参数方程;(Ⅱ)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4-5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N . (Ⅰ)求M ;(Ⅱ)当x M N ∈ 时,证明:221()[()]4x f x x f x +≤.。

2014年高考文科数学辽宁卷及答案解析

2014年高考文科数学辽宁卷及答案解析

数学试卷 第1页(共21页)数学试卷 第2页(共21页)数学试卷 第3页(共21页)绝密★启用前2014年普通高等学校招生全国统一考试(辽宁卷)数 学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U =R ,{|0}A x x =≤,{|}B x x =≥1,则集合()UAB =ð( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<2.设复数z 满足(2i)(2i)5z --=,则z =( ) A .23i +B .23i -C .32i +D .32i - 3.已知132a -=,21log 3b =,121log 3c =,则( ) A .b a c >>B .a c b >>C .c b a >>D .c a b >>4.已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( )A .若m α∥,n α∥,则m n ∥B .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则n α∥D .若m α∥,m n ⊥,则n α⊥5.设a ,b ,c 是非零向量.已知命题p :若a b 0=,b c 0=,则a c 0=; 命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .π2B .π4C .π6D .π87.某几何体三视图如图所示,则该几何体的体积为( )A .π84-B .π82-C .8π-D .82π-8.已知点(2,3)A -在抛物线C :22ypx =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12-9.设等差数列{}n a 的公差为d .若数列1{2}na a 为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <10.已知()f x 为偶函数,当0x ≥时,1cos π,[0,],2()121,(,),2x x f x x x ⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩则不等式1(1)2f x -≤的解集为( )A .1247[,][,]4334B .3112[,][,]4343--C .1347[,][,]3434D .3113[,][,]4334--11.将函数π3sin(2)3y x =+的图象向右平移π2个单位长度,所得图象对应的函数( )A .在区间π7π[,]1212上单调递减B .在区间π7π[,]1212上单调递增C .在区间ππ[,]63-上单调递减D .在区间ππ[,]63-上单调递增12.当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是 ( ) A .[5,3]--B .9[6,]8--C .[6,2]--D .[4,3]--第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共21页)数学试卷 第5页(共21页)数学试卷 第6页(共21页)13.执行右侧的程序框图,若输入3n =,则输出T =________. 14.已知x ,y 满足约束条件220240330x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤ 则目标函数34z x y =+的最大值为________.15.已知椭圆C :22194x y +=,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN +=________.16.对于0c >,当非零实数a ,b 满足22420a ab b c -+-=且使|2|a b +最大时,124a bc++的最小值为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC =,1cos 3B =,3b =.求:(Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.18.(本小题满分12分)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(Ⅱ)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.19.(本小题满分12分)如图,ABC △和BCD △所在平面互相垂直,且2AB BC BD ===,120ABC DBC ∠=∠=,E ,F ,G 分别为AC ,DC ,AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积.附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.20.(本小题满分12分)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (Ⅰ)求点P 的坐标;(Ⅱ)焦点在x 轴上的椭圆C 过点P ,且与直线l :y x =+交于A ,B 两点.若PAB △的面积为2,求C 的标准方程.21.(本小题满分12分)已知函数()π(cos )2sin 2f x x x x =---,2()(π1πxg x x =--. 证明:(Ⅰ)存在唯一0π(0,)2x ∈,使0()0f x =; (Ⅱ)存在唯一1π(,π)2x ∈,使1()0gx =,且对(Ⅰ)中的0x ,有01πx x +>.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题附:22112212211212()+n n n n n n n n n χ++-=+,数学试卷 第7页(共21页)数学试卷 第8页(共21页)数学试卷 第9页(共21页)号下方的方框涂黑.22.(本小题满分10分)选修4—1:几何证明选讲如图,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (Ⅰ)求证:AB 为圆的直径; (Ⅱ)若AC BD =,求证:AB ED =.23.(本小题满分10分)选修4—4:坐标系与参考方程 将圆221xy +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(Ⅰ)写出C 的参数方程;(Ⅱ)设直线l :220x y +-=与C 的交点为1P ,2P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24.(本小题满分10分)选修4—5:不等式选讲设函数()2|1|1f x x x =-+-,2()1681g x x x =-+.记()1f x ≤的解集为M ,()4g x ≤的解集为N .(Ⅰ)求M ; (Ⅱ)当x M N ∈时,证明:221()[()]4x f x x f x +≤.2014年普通高等学校招生全国统一考试(辽宁卷){|AB x x =){|0AB x =【提示】先求A B ,再根据补集的定义求)AB ð.【考点】交、并、补集的混合运算【解析】(2i)(2z -【提示】把给出的等式两边同时乘以B 运用线面垂直的性质,即可判断;C 运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D 运用线面平行的性质和线面垂直的判定,即可判断.【考点】空间中直线与直线之间的位置关系A【解析】若0a b =,0b c =,则a b b c =,即()0a c b -=,则0a c =不一定成立,故命题p 为假命题.若a b ∥,b c ∥,则a c ∥,故命题q 为真命题.则p q ∨,命题,故选A.的真假,利用复合命题之间的关系即可得到结论.数学试卷 第10页(共21页)数学试卷 第11页(共21页)数学试卷 第12页(共21页)【解析】等差数列(123)++++++的值,当输入(123i)++++++的值,距最大,即最大.max .,Q数学试卷 第13页(共21页)数学试卷 第14页(共21页)数学试卷 第15页(共21页)【解析】242a ab -不等式得,23232b ⎤⎛⎫⎤=⎥⎦(Ⅰ)由2B A B C =得2cos ac B .2c =232+2sin c B b ⨯=C 1⎛=- 2BA BC =1cos 3B =代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到22(Ⅱ)利用古典概型概率公式,即可求解.【考点】独立性检验的应用,古典概型及其概率计算公式Ⅰ)AB BC =G 为AD 的中点,CG ∴.CG BG G =,BGC .EF AD ∥EF ∴⊥平面BCG (Ⅱ)在平面,∆.G 6B=11sin1203322BD BC ︒=00014482x y x y =再根据2200x y +=数学试卷 第16页(共21页)数学试卷 第17页(共21页)数学试卷 第18页(共21页)122d AB =,解得()221k ⎡=+⎣2232b b -,代入上式得2231683b b -= 或26b =,所以椭圆方程为:P 00(,)x y 切线与x 轴正半轴,y 轴正半轴围成的三角形的面积008S x y =.再利用基122d AB =,求出【考点】直线与圆锥曲线的综合问题(Ⅰ)()πf x =.()πf x '=上单调递增.(Ⅱ)()(g x =cos (π)1sin x x x --++cos 1sin x x ++cos )1sin x x -++由导数法可得函数的零点,可得不等式【考点】函数零点的判定定理 )PD PG PDG PGD PD=∴∠=∠为切线,PDA DBA ∴∠=∠,PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠,NDA PFA ∴∠=∠.9090AF EP PFA BDA AB ⊥∴∠=︒∴∠=︒∴为圆的直径.(Ⅱ)连接BC ,DC .90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA △与Rt ACB △中,AB BA AC BD ==,, Rt BDA Rt ACB ∴△≌△,DAB CBA DCB DAB ∴∠=∠∠=∠,DCB CBA ∴∠=∠,DC AB ∴∥.AB EP DC EP DCE ⊥∴⊥∠,为直角,∴ED 为圆的直径,AB 为圆的直径,AB ED ∴=.(Ⅱ)由214220x x y ⎧+=⎪⎨⎪+-=⎩,可得10x y =⎧⎨=⎩,02x y =⎧⎨=⎩,不妨设1(1,0)P 、2(0,2)P , 则线段12P P 的中点坐标为1,12⎛⎫ ⎪⎝⎭,再根据与l 垂直的直线的斜率为12, 故所求的直线的方程为111y x ⎛⎫-=- ⎪,即3220x y -+=.数学试卷 第19页(共21页) 数学试卷 第20页(共21页) 数学试卷 第21页(共21页)【提示】(Ⅰ)在曲线C 上任意取一点(,)x y ,再根据点,2y x ⎛⎫⎪⎝⎭在圆221x y +=上,求出C 的方程,化为参数方程.(Ⅱ)由2()16814g x x x =-+≤,求得1344x -≤≤,,44N ⎡⎤∴=-⎢⎥⎣⎦,M N ∴=30,4⎡⎤⎢⎥⎣⎦. 当x MN ∈时,()1f x x =-,22()[()]()[x ()]x f x x f x xf x f x +=+2111424x ⎛⎫=--≤ ⎪⎝⎭,故要证的不等式成立.【提示】(Ⅰ)由所给的不等式可得1331x x ≥⎧⎨-≤⎩①,或111x x <⎧⎨-≤⎩②,分别求得①、②的解集,再取并集,即得所求.N =30,4⎡⎢⎣MN 时,f ,显然它小于或等于14,要证的不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试
(辽宁卷) 文科数学
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出
的四个选项中,只有一项 是符合题目要求的.
1. 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =( ) A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x <<
2.设复数z 满足(2)(2)5z i i --=,则z =( ) A .23i + B .23i - C .32i + D .32i -
3.已知1
3
2a -=,212
11log ,log 33
b c ==,则( )
A .a b c >>
B .a c b >>
C .c a b >>
D .c b a >>
4.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥
5.设,,a b c 是非零向量,已知命题P :学科 网若0a b ∙=,0b c ∙=,则0a c ∙=;
命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝
6.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2
π
B .4
π C .6
π D .8
π
7. 某几何体三视图如图所示,则该几何体的体积为( ) A .82π- B .8π- C .82
π- D .84
π-
8. 已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )
A .43-
B .-1
C .34-
D .12
-
9. 设等差数列{}n a 的公差为d ,若数列1{2}n
a a 为递减数列,则( )
A .0d <
B .0d >
C .10a d <
D .10a d >
10.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2
()121,(,)
2x x f x x x π⎧
∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式
1
(1)2f x -≤
的解集为( ) A .1247[,][,]4334 B .3112[,][,]4343-- C .1347[,][,]3434 D .3113[,][,]4334-- 11. 将函数3sin(2)3
y x π
=+的图象向右平移2
π
个单位长度,所得图象对应
的函数( ) A .在区间7[
,
]1212ππ
上单调递减
B .在区间7[,]1212
ππ
上单调递增
C .在区间[,]63
ππ
-上单调递减
D .在区间[,]63
ππ
-上单调递增
12. 当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )
A .[5,3]--
B .9[6,]8
-- C .[6,2]-- D .[4,3]--
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 执行右侧的程序框图,若输入3n =,则输出T =
.
14.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪
-+≥⎨⎪--≤⎩
,则目标函数34z x y =+的最大值
为 .
15. 已知椭圆C :22
194
x y +=,点M 与C 的焦点不重合,若M 关于C 的焦
点的对称点分别为A ,B ,线段MN 的中点在C 上,则
||||AN BN += .
16. 对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a
b
c
-+的最小值为 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)
在ABC ∆中,学 科网内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ∙=,
1
cos 3
B =,3b =,求:
(1)a 和c 的值; (2)cos()B C -的值. 18. (本小题满分12分)
某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
19. (本小题满分12分)
如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,
0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.
(1)求证:EF ⊥平面BCG ; (2)求三棱锥D-BCG 的体积.
附:椎体的体积公式13
V Sh =,其中S 为底面面积,h 为高.
20. (本小题满分12分)
圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;
(2)焦点在x 轴上的椭圆C 过点P ,且与直线
:l y x =A ,B 两点,若PAB ∆的面积为2,求C 的标准方程.
21. (本小题满分12分)
已知函数()(cos )2sin 2f x x x x π=---,2()(1x
g x x ππ
=--. 证明:(1)存在唯一0(0,)2
x π
∈,使0()0f x =;
(2)存在唯一1(,)2
x π
π∈,使1()0g x =,且对(1)中的01x x π+<.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
22. (本小题满分10分)选修4-1:几何证明选讲
如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F. (1)求证:AB 为圆的直径; (2)若AC=BD ,求证:AB=ED.
23. (本小题满分10分)选修4-4:坐标系与参数方程
将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C 的参数方程;
(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12PP 的中点且与l 垂直的直线的极坐标方程.
24. (本小题满分10分)选修4-5:不等式选讲
设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,
()4g x ≤的解集为N.
(1)求M ; (2)当x M N ∈时,证明:221()[()]4
x f x x f x +≤
.。

相关文档
最新文档