一种基于区域自适应的非局部均值(Nonlocal Means)图像去噪方法

合集下载

一种基于区域自适应的非局部均值(Nonlocal Means)图像去噪方法

一种基于区域自适应的非局部均值(Nonlocal Means)图像去噪方法

Region-based non-local means algorithm for noise removalW.L.Zeng and X.B.LuThe non-local means (NLM)provides a useful tool for image denoising and many variations of the NLM method have been proposed.However,few works have tried to tackle the task of adaptively choos-ing the patch size according to region characteristics.Presented is a region-based NLM method for noise removal.The proposed method first analyses and classifies the image into several region types.According to the region type,a local window is adaptively adjusted to match the local property of a region.Experimental results show the effectiveness of the proposed method and demonstrate its superior-ity to the state-of-the-art methods.Introduction:The use of the non-local means (NLM)filter for noise removal has been extensively studied in the past few years.The NLM filter was first addressed in [1].The discrete version of the NLM is as follows:u (k ,l )=(i ,j )[N (k ,l )w (k ,l ,i ,j )v (i ,j )(1)where u is the restored value at pixel (k,l )and N (k,l )stands for theneighbourhood of the pixel (k,l ).The weight function w (k,l,i,j )is defined asw (k ,l ,i ,j )=1exp −||T k ,l v −T i ,j v ||22,a(2)where T k,l and T i,j denote two operators that extract two patches of sizeq ×q centred at pixel (k,l )and (i,j ),respectively;h is the decay para-meter of the weights; . 2,a is the weighted Euclidean norm using a Gaussian kernel with standard deviation a ,and Z (k,l )is the normalised constantZ (k ,l )= (i ,j )exp −||T k ,l v −T i ,j v ||22,ah 2(3)The core idea of the NLM filter exploits spatial correlation in the entireimage for noise removal and can produce promising results.This method is time consuming and not able to suppress any noise for non-repetitive neighbourhoods.Numerous methods were proposed to accel-erate the NLM method [2–4].Also,variations of the NLM method have been proposed to improve the denoising performance [5–7].In smooth areas,a large matching window size could be used to reduce the influ-ence of misinterpreting noise as local structure.Conversely,a small matching window size could be used for the edge /texture region,which means not only the local structure existing within a neighbour-hood can be effectively used but can also speed up the matching process.To the best of our knowledge,few works have tried to tackle the task of adaptively choosing the patch size according to region characteristics.To overcome the disadvantage of the NLM method and its variances,in this Letter we present an adaptive NLM (ANLM)method for noise removal.The proposed method first analyses and classifies the image into several region types based on local structure information of a pixel.According to the region type,a local window is adaptively adjusted to match the local property of a region.Experimental results show the effectiveness of the proposed method.Proposed NLM algorithm:The adaptive patches based non-local means algorithm is conducted according to the region classification results,owing to the fact that the structure tensor can obtain more local structure information [8].Therefore,we use it to classify the region.For each pixel (i,j )of the region,the structure tensor matrix is defined asT s =t 11t 12t 12t 22 =G s ∗(g x (i ,j ))2G s ∗g x (i ,j )g y (i ,j )G s ∗g y (i ,j )g x (i ,j )G s ∗(g y (i ,j ))2where g x and g y stand for gradient information in the x and y directions,G s denotes a Gaussian kernel with a standard deviation s .Theeigenvalues l 1and l 2of T s are given byl 1=12t 11+t 22+ (t 11−t 22)2+4t 212 and l 2=1t 11+t 22− (t 11−t 22)2+4t 212 For a pixel in the smooth region,there is a small eigenvalue difference;for a pixel in an edge /texture region,there is a large eigenvalue differ-ence.Therefore,region classification can be achieved by examining the eigenvalue difference of each pixel.Let l (i ,j )=|l 1(i ,j )−l 2(i ,j )|.We propose the following classifi-cation scheme to partition the whole image region into n classes {c 1,···,c n }:(i ,j )[c 1,if l (i ,j )≤l min +(l max −l min )n c 2,if l (i ,j )≤l min +2(l max −l min )n ...c n ,if l (i ,j )≤l min +n (l max −l min )n ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩where l min and l max are the minimum and maximum of {l (i ,j ):(i ,j )[V },respectively.To exploit the local structure information and reduce noise in different regions,we adaptively choose the matching window based on the region classification result.The scheme for selecting the matching window is asfollows:if (k ,l )[c r ,T k ,l :=T r k ,l ,where T rk ,l denotes an operator of the r-type region that extracts one patch of size q r ×q r .To reduce the influ-ence of misinterpreting noise as local structure,a larger patch size is adopted for a smooth region.In contrast,a small patch size is employed for the edge /texture region.Intuitively,the number of the class n should be as big as possible.In practice,the gain is insignificant for n greater than 4.Therefore,we choose n ¼4in our experiments.Table 1:PSNR performance comparison of ‘Lena’,‘Barbara’,‘Peppers’imagesFig.1Comparison of results with additive Gaussian noise of s ¼35a Original image b Noisy image c NLM d WUNLM e ANLMExperimental results:In this Section,we compare our proposed ANLM method with the NLM method [2]and the weight update NLM (WUNLM)method [3].We test the proposed method on ‘Lena’,‘Barbara’,and ‘Peppers’,which were taken from the USC-SIPI Image Database (/database/base).The performance of the method was evaluated by measuring the peak signal-to-noise ratio (PSNR).In general h corresponds to the noise level and is usuallyELECTRONICS LETTERS 29th September 2011Vol.47No.20,1125-1127fixed to the standard deviation of the noise.The size of the search window is21×21.Table1shows results obtained with three methods across four noise levels.Figs.1a and b,show the‘Barbara’image and the corresponding noisy image generated by adding Gaussian white noise with variance s¼35,respectively.Figs.1c–e show denoised images by using the NLM,WUNLM,and ANLM methods,respectively.From the standpoint of perceptual view and PSNR values,the proposed ANLM method produced the best quality. Conclusions:An adaptive NLM(ANLM)method for noise removal is presented.In the method,an image isfirst analysed and classified into several region types.According to the region type,a local window is adaptively adjusted to match the local property of a region. Experimental results show the effectiveness of the proposed method and demonstrate its superiority to the state-of-the-art methods. Acknowledgments:This work was supported by the National Natural Science Foundation of China under grant60972001,the National Key Technologies R&D Program of China under grant2009BAG13A06 and the Scientific Innovation Research of College Graduate in Jiangsu Province under grant CXZZ_0163.#The Institution of Engineering and Technology20115August2011doi:10.1049/el.2011.2456W.L.Zeng(School of Transportation,Southeast University,Nanjing 210096,People’s Republic of China)X.B.Lu(School of Automation,Southeast University,Nanjing210096, People’s Republic of China)E-mail:xblu2008@References1Budades,A.,Coll,B.,and Morel,J.M.:‘A review of image denoising algorithms,with a new one’,Multiscale Model Simul.,2005,4,(2), pp.490–5302Mahmoudi,M.,and Sapiro,G.:‘Fast image and video denoising via nonlocal means of similar neighborhoods’,IEEE Signal Process.Lett., 2005,12,(12),pp.839–8423Vignesh,R.,Oh,B.T.,and Kuo,C.-C.J.:‘Fast non-local means(NLM) computation with probabilistic early termination’,IEEE Signal Process.Lett.,2010,17,(3),pp.277–2804Brox,T.,Kleinschmidt,O.,and Cremers,D.:‘Efficient nonlocal means for denoising of textural patterns’,IEEE Trans.Image Process.,2008, 17,(7),pp.1083–10925Kervrann,C.,and Boulanger,J.:‘Optimal spatial adaptation for patch-based image denoising’,IEEE Trans.Image Process.,2006,15,(10), pp.2866–28786Ville,D.V.D.,and Kocher,M.:‘SURE-based non-local means’,IEEE Signal Process.Lett.,2009,16,(11),pp.973–9767Park,S.W.,and Kang,M.G.:‘NLM algorithm with weight update’, Electron.Lett.,2010,16,(15),pp.1061–10638Brox,T.,Weickert,J.,Burgeth,B.,and Mrazek,P.:‘Nonlinear structure tensors’,Image put.,2006,24,pp.41–55ELECTRONICS LETTERS29th September2011Vol.47No.20。

保持纹理细节的自适应非局部均值图像降噪

保持纹理细节的自适应非局部均值图像降噪

A da pt i v e No nl oc a l M e a ns I ma g e De no i s i ng f o r Be t t e r Pr e s e r v a t i o n o f Te xt u r e s
C H E N Ga n g , Q I A N Z h e n — x i n g , WAN G S h u o — z h ov e r ,i t d o e s n o t ma k e f u l l u s e o f t h e i ma g e c o n t e n t s a n d i s l e s s e f e c t i v e
i f l t e r p a r a me t e r h t o a c h i e v e be t t e r a c c u r a c y .Ex p e r i me n t a l r e s u l t s s h o w t h a t t h e p r o po s e d o u t p e r f o r ms PND me t h o d a n d c a n p r e s e r v e mo r e e d g e a n d t e x t u r e d e t a i l s wh i l e a c hi e v i n g s a t i s f a c t o r y d e n o i s i n g r e s u l t s .
D OI : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 7 - 2 8 6 1 . 2 0 1 3 . 0 7 . 0 2 3

研究简报 ・
保持 纹理细 节 的 自适 应非局 部均值 图像 降噪

医学像处理技术的噪声去除方法

医学像处理技术的噪声去除方法

医学像处理技术的噪声去除方法在医学图像处理技术中,噪声是一个常见且严重的问题。

噪声的存在会对图像的质量和准确性产生负面影响,因此,开发一种有效的噪声去除方法对于医学图像的应用至关重要。

本文将介绍几种常见的医学图像噪声去除方法,并比较它们的优缺点。

一、平滑滤波法平滑滤波法是最简单且常见的噪声去除方法之一。

其基本原理是利用相邻像素的平均值或加权平均值来替代噪声像素的值。

常用的平滑滤波方法包括均值滤波、中值滤波和高斯滤波。

均值滤波法通过计算像素周围邻域像素的平均值来平滑图像,但它对于边缘细节的保护较差;中值滤波法则是用局部邻域的中值来代替噪声像素,对于椒盐噪声有较好的去除效果;高斯滤波则通过与邻域像素的加权平均来平滑图像,它能在一定程度上保留图像的细节。

二、小波变换法小波变换是一种时频分析方法,它通过将信号分解为不同频率的小波子带来表示信号。

在医学图像处理中,小波变换被广泛应用于噪声去除。

小波变换可以将信号的低频成分与高频成分相分离,然后通过对高频成分进行阈值去噪处理来实现图像的去噪。

小波变换法具有较好的去噪效果,可以有效地去除多种噪声,但它的计算复杂度较高。

三、非局部均值滤波法非局部均值滤波法(Non-local Means,简称NLM)是一种基于相似性原理的图像去噪方法。

该方法通过计算图像中每个像素与其他像素之间的相似性来过滤噪声。

具体来说,NLM方法将每个像素与图像中所有其他像素进行比较,并计算它们之间的相似度。

然后,通过对相似度进行加权平均来计算噪声像素的值,从而实现去噪的目的。

NLM方法具有较好的去噪效果,尤其擅长去除高斯白噪声和椒盐噪声。

四、偏微分方程法偏微分方程法(Partial Differential Equation,简称PDE)是一种通过偏微分方程对图像进行去噪的方法。

PDE方法通过定义一个能量函数来描述图像噪声与图像细节之间的平衡关系,并使用偏微分方程对能量函数进行最小化求解。

一种基于深度学习的非局部均值图像降噪方法

一种基于深度学习的非局部均值图像降噪方法

第37卷第8期计算机仿真2020年8月文章编号:1006 -9348(2020)08 -0228 -07一种基于深度学习的非局部均值图像降噪方法刘建宾,刘保中(北京信息科技大学计算机学院,北京K X H01)摘要:针对传统图像降噪算法对图像进行降噪时效果不佳的问题,提出一种深度学习与非局部均值滤波算法相结合的图像 降噪新方法。

在传统非局部均值滤波算法基础上,通过构建图像分块滤波学习过程框架和五层神经网络模型,运用梯度下 降反向传导算法和ReLU激活函数,采用均方对数误差损失函数和Adam优化函数进行小批量处理模型训练,在kerns框架 上得到较好的降噪效果。

通过和高斯滤波、中值滤波、双边滤波、非局部均值滤波算法对比实验,验证了方法的有效性。

关键词:非局部均值;深度学习;图像分块;图像降噪;神经网络中图分类号:TP391 文献标识码:BNon - Local Mean Image Denoising Method Based on Deep LearningLIU Jian - bin,LIU Bao - zhong(Computer School,Beijing Information Science&Technology University,Beijing 100101):Aiming at the problem that the traditional image denoising algorithm is not effective in noise reduction,a new image denoising method combining deep learning and non- local mean filtering algorithm is proposed.On thebasis of the traditional non- local mean filtering algorithm,by constructing the image block filtering learning process framework and the five- layer neural network model f using the gradient descent reverse conduction algorithm and the RELU activation function,the mean square logarithmic error loss function and the Adam optimization function were used to perform small batch processing model training and obtain better noise reduction effect on Keras framework.The effectiveness of the method was verified by comparison with Gaussian filtering,median filtering,bilateral filte­ring,and non- local mean filtering algorithms.:Non- local means(NLM);Deep learning;Image segmentation;Image denoising;Neural networki引言在图像处理领域中图像降噪问题备受研究者的青睐。

采用结构自适应窗的非局部均值图像去噪算法

采用结构自适应窗的非局部均值图像去噪算法

采用结构自适应窗的非局部均值图像去噪算法郝红侠;刘芳;焦李成;武杰【摘要】针对图像去噪处理中的非局部均值(NLM)算法相似性度量结果不够准确的问题,提出了一种采用结构自适应窗的非局部均值图像去噪(SAW-NLM)算法.首先利用从含噪图像中提取的初始素描图将含噪图像划分为结构区和非结构区,然后对这两部分区域分别采用基于结构方向的自适应窗和各向同性窗来搜索相似图像块,最后利用这些相似图像块得到当前待估计像素的去噪结果.为了抑制伪纹理现象,在估计过程中采用了块估计的方式.自适应窗有效结合了图像的结构方向和灰度信息,因此能够更准确度量图像块的相似性.实验结果表明:SAW-NLM算法具有更优的边缘保持和平滑效果,与传统NLM算法相比,峰值信噪比最大可提高1.1 dB,图像结构相似度也提高了4.6.【期刊名称】《西安交通大学学报》【年(卷),期】2013(047)012【总页数】6页(P71-76)【关键词】图像去噪;度量;结构自适应窗;估计;非局部均值【作者】郝红侠;刘芳;焦李成;武杰【作者单位】西安电子科技大学计算机学院,710071,西安;智能信息感知与图像理解教育部重点实验室,710071,西安;西安电子科技大学计算机学院,710071,西安;智能信息感知与图像理解教育部重点实验室,710071,西安;智能信息感知与图像理解教育部重点实验室,710071,西安;西安电子科技大学计算机学院,710071,西安;智能信息感知与图像理解教育部重点实验室,710071,西安【正文语种】中文【中图分类】TN911.73图像去噪的目的是从含噪图像中有效地恢复真实信号。

其中,“有效”包含2部分内容:滤除噪声并保持边缘结构。

很多学者对该问题进行了研究[1-3],但大都基于图像是分片光滑的假设,利用局部信息来构建去噪模型。

近年来提出的非局部均值(Nonlocal Means,NLM)[4]将图像的冗余性和自相似性引入到去噪问题中,从非局部范围利用相似像素的加权平均来估计待去噪像素。

基于自适应非局部稀疏编码图像去噪方法

基于自适应非局部稀疏编码图像去噪方法

基于自适应非局部稀疏编码图像去噪方法王萌萌;屈红伟;孙燕;尚振宏【期刊名称】《计算机工程与设计》【年(卷),期】2017(038)008【摘要】Due to the degradation property of the observedimage,traditional sparse coding models may not be accurate enough for a faithful representation of the original image.To improve the performance of sparse coding-based image denoising,a simple yet effective framework for adaptive nonlocal sparse coding for image denoising was proposed.With the enhancement of sparse level and image local features,an adaptive learning dictionary was proposed.Meanwhile,the image nonlocal self-similarity was integrated into regularization term,and an adaptive regularization term was proposed to further improve the quality of image denoising.To enhance the computational efficiency of the proposed method,a fast implementation using iterative shrinkage thresholding method technique was developed.Experimental results demonstrate that the proposed method can effectively reconstruct the fine structures and edge preserve,and suppress the visualartifacts,outperforming many current state-of-the-art methods(i.e.,BM3D,EPLL) in terms of PSNR and FSIM and extensive practical application values.%由于图像的降质属性,传统的稀疏表示方法并不能如实的重建原图像.为提升基于稀疏编码方法图像去噪能力,提出一种非局部自适应稀疏编码图像去噪算法.为改进稀疏水平以及图像的局部属性,提出一种自适应学习字典;图像的非局部自相关先验融入到正则项中,提出一种自适应非局部正则项,进一步提升图像的去噪能力;为提高算法的有效性,利用一种迭代阀值算法进行优化.实验结果表明,该方法相对于BM3D、EPLL等方法具有较高的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似度(feature similarity,FSIM),在图像细节、边缘保持和抑制视觉块效应方面具有比较好的重建效果,具有广泛的实际应用价值.【总页数】6页(P2178-2183)【作者】王萌萌;屈红伟;孙燕;尚振宏【作者单位】南京师范大学计算机科学与技术学院,江苏南京210046;南京师范大学计算机科学与技术学院,江苏南京210046;南京师范大学计算机科学与技术学院,江苏南京210046;江苏省信息安全保密技术工程研究中心,江苏南京210097;昆明理工大学信息工程与自动化学院,云南昆明650500【正文语种】中文【中图分类】TP391.1【相关文献】1.基于非参数自适应密度估计理论的医学超声图像去噪方法 [J], 徐新艳;彭玉华;李立2.基于非局部稀疏编码的超分辨率图像复原 [J], 刘哲;杨静;陈路3.Ridgelet域中基于非参数自适应密度估计理论的图像去噪方法 [J], 李立;彭玉华;杨明强;薛佩军4.基于多层非负局部Laplacian稀疏编码的图像分类 [J], 万源;张景会;吴克风;孟晓静5.基于多小波-非采样Contourlet变换的自适应阈值图像去噪方法 [J], 雷浩鹏;李峰因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于改进非局部均值滤波算法的红外图像去噪

一种基于改进非局部均值滤波算法的红外图像去噪

一种基于改进非局部均值滤波算法的红外图像去噪郭晨龙;赵旭阳;郑海燕;梁锡宁【摘要】提出了一种基于梯度信息的结构相似性算法改进的红外图像非局部均值滤波方法.传统的非局部均值滤波算法采用欧氏距离度量图像块之间的相似性,因而不能够很好地衡量图像细节和边缘信息,导致滤波后图像模糊失真.针对此问题,采用结构相似性度量(structural similarity,SSIM)算法对欧氏距离进行加权改进,针对普通的SSIM边缘信息评价能力的不足,提出了带有梯度信息的GSSIM算法,实验结果表明本方法在保持非局部均值(Non-Local Means,NLM)滤波算法去噪能力的同时还能够较好地保持图像的边缘和细节信息.【期刊名称】《红外技术》【年(卷),期】2018(040)007【总页数】4页(P638-641)【关键词】非局部均值滤波;图像梯度;结构相似性度量;红外图像【作者】郭晨龙;赵旭阳;郑海燕;梁锡宁【作者单位】光电控制技术重点实验室,河南洛阳 471000;航空工业洛阳电光设备研究所,河南洛阳 471000;吉林大学,吉林长春 130022;上海大学,上海 200444;光电控制技术重点实验室,河南洛阳 471000;航空工业洛阳电光设备研究所,河南洛阳471000【正文语种】中文【中图分类】TP3910 引言红外探测技术已经普遍被用于机载红外搜索系统等各种军用领域[1]。

但是受到红外探测器工艺水平的限制以及探测器信号采集处理电路中暗电流等的信号污染,红外成像系统输出的图像往往具有较高的噪声,这使得红外系统的侦测与跟踪能力大幅度降低。

如何从含有噪声的红外图像中最大程度地恢复出原始图像信息具有十分重要的意义。

目前红外图像的去噪方法主要分为空域法和频域法两大方向。

空域的方法主要有中值滤波、均值滤波、高斯滤波、双边滤波、维纳滤波等。

频域滤波主要是对图像进行频域变换在频域空间进行滤波,如频域的高斯滤波、巴特沃斯滤波,还有小波阈值滤波等[2]。

一种自适应的非局部均值图像去噪算法

一种自适应的非局部均值图像去噪算法

一种自适应的非局部均值图像去噪算法李洪均;谢正光;李蕴华;王伟【期刊名称】《计算机应用与软件》【年(卷),期】2013(000)012【摘要】In this paper, we make the improvements on non-local means (NL-Means) algorithm introduced by Buades et al .Original NL-Means algorithm has the defect in filtering parameter definition .In order to solve this problem , we present the solution for noise estimation by establishing the relation between noise variance and the filtering parameter .Besides , according to the distribution feature of wavelet coeffi-cients, the coefficients are fitted by using the generalised Gaussian distribution ( GGD) model parameters ( scale and shape parameters ) .We also propose an effective noise variance estimation method using GGD model parameters .Experimental results show that the noise variance es-timation method can effectively estimate the size of noise variance , it can also makes the original NL-means algorithm adaptive .Such adaptive NL-Means algorithm can reach approximately optimal value , and has robustness and fastness with high accuracy .%对Buades等人提出的非局部均值图像去噪算法进行改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Region-based non-local means algorithm for noise removalW.L.Zeng and X.B.LuThe non-local means (NLM)provides a useful tool for image denoising and many variations of the NLM method have been proposed.However,few works have tried to tackle the task of adaptively choos-ing the patch size according to region characteristics.Presented is a region-based NLM method for noise removal.The proposed method first analyses and classifies the image into several region types.According to the region type,a local window is adaptively adjusted to match the local property of a region.Experimental results show the effectiveness of the proposed method and demonstrate its superior-ity to the state-of-the-art methods.Introduction:The use of the non-local means (NLM)filter for noise removal has been extensively studied in the past few years.The NLM filter was first addressed in [1].The discrete version of the NLM is as follows:u (k ,l )=(i ,j )[N (k ,l )w (k ,l ,i ,j )v (i ,j )(1)where u is the restored value at pixel (k,l )and N (k,l )stands for theneighbourhood of the pixel (k,l ).The weight function w (k,l,i,j )is defined asw (k ,l ,i ,j )=1exp −||T k ,l v −T i ,j v ||22,a(2)where T k,l and T i,j denote two operators that extract two patches of sizeq ×q centred at pixel (k,l )and (i,j ),respectively;h is the decay para-meter of the weights; . 2,a is the weighted Euclidean norm using a Gaussian kernel with standard deviation a ,and Z (k,l )is the normalised constantZ (k ,l )= (i ,j )exp −||T k ,l v −T i ,j v ||22,ah 2(3)The core idea of the NLM filter exploits spatial correlation in the entireimage for noise removal and can produce promising results.This method is time consuming and not able to suppress any noise for non-repetitive neighbourhoods.Numerous methods were proposed to accel-erate the NLM method [2–4].Also,variations of the NLM method have been proposed to improve the denoising performance [5–7].In smooth areas,a large matching window size could be used to reduce the influ-ence of misinterpreting noise as local structure.Conversely,a small matching window size could be used for the edge /texture region,which means not only the local structure existing within a neighbour-hood can be effectively used but can also speed up the matching process.To the best of our knowledge,few works have tried to tackle the task of adaptively choosing the patch size according to region characteristics.To overcome the disadvantage of the NLM method and its variances,in this Letter we present an adaptive NLM (ANLM)method for noise removal.The proposed method first analyses and classifies the image into several region types based on local structure information of a pixel.According to the region type,a local window is adaptively adjusted to match the local property of a region.Experimental results show the effectiveness of the proposed method.Proposed NLM algorithm:The adaptive patches based non-local means algorithm is conducted according to the region classification results,owing to the fact that the structure tensor can obtain more local structure information [8].Therefore,we use it to classify the region.For each pixel (i,j )of the region,the structure tensor matrix is defined asT s =t 11t 12t 12t 22 =G s ∗(g x (i ,j ))2G s ∗g x (i ,j )g y (i ,j )G s ∗g y (i ,j )g x (i ,j )G s ∗(g y (i ,j ))2where g x and g y stand for gradient information in the x and y directions,G s denotes a Gaussian kernel with a standard deviation s .Theeigenvalues l 1and l 2of T s are given byl 1=12t 11+t 22+ (t 11−t 22)2+4t 212 and l 2=1t 11+t 22− (t 11−t 22)2+4t 212 For a pixel in the smooth region,there is a small eigenvalue difference;for a pixel in an edge /texture region,there is a large eigenvalue differ-ence.Therefore,region classification can be achieved by examining the eigenvalue difference of each pixel.Let l (i ,j )=|l 1(i ,j )−l 2(i ,j )|.We propose the following classifi-cation scheme to partition the whole image region into n classes {c 1,···,c n }:(i ,j )[c 1,if l (i ,j )≤l min +(l max −l min )n c 2,if l (i ,j )≤l min +2(l max −l min )n ...c n ,if l (i ,j )≤l min +n (l max −l min )n ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩where l min and l max are the minimum and maximum of {l (i ,j ):(i ,j )[V },respectively.To exploit the local structure information and reduce noise in different regions,we adaptively choose the matching window based on the region classification result.The scheme for selecting the matching window is asfollows:if (k ,l )[c r ,T k ,l :=T r k ,l ,where T rk ,l denotes an operator of the r-type region that extracts one patch of size q r ×q r .To reduce the influ-ence of misinterpreting noise as local structure,a larger patch size is adopted for a smooth region.In contrast,a small patch size is employed for the edge /texture region.Intuitively,the number of the class n should be as big as possible.In practice,the gain is insignificant for n greater than 4.Therefore,we choose n ¼4in our experiments.Table 1:PSNR performance comparison of ‘Lena’,‘Barbara’,‘Peppers’imagesFig.1Comparison of results with additive Gaussian noise of s ¼35a Original image b Noisy image c NLM d WUNLM e ANLMExperimental results:In this Section,we compare our proposed ANLM method with the NLM method [2]and the weight update NLM (WUNLM)method [3].We test the proposed method on ‘Lena’,‘Barbara’,and ‘Peppers’,which were taken from the USC-SIPI Image Database (/database/base).The performance of the method was evaluated by measuring the peak signal-to-noise ratio (PSNR).In general h corresponds to the noise level and is usuallyELECTRONICS LETTERS 29th September 2011Vol.47No.20,1125-1127fixed to the standard deviation of the noise.The size of the search window is21×21.Table1shows results obtained with three methods across four noise levels.Figs.1a and b,show the‘Barbara’image and the corresponding noisy image generated by adding Gaussian white noise with variance s¼35,respectively.Figs.1c–e show denoised images by using the NLM,WUNLM,and ANLM methods,respectively.From the standpoint of perceptual view and PSNR values,the proposed ANLM method produced the best quality. Conclusions:An adaptive NLM(ANLM)method for noise removal is presented.In the method,an image isfirst analysed and classified into several region types.According to the region type,a local window is adaptively adjusted to match the local property of a region. Experimental results show the effectiveness of the proposed method and demonstrate its superiority to the state-of-the-art methods. Acknowledgments:This work was supported by the National Natural Science Foundation of China under grant60972001,the National Key Technologies R&D Program of China under grant2009BAG13A06 and the Scientific Innovation Research of College Graduate in Jiangsu Province under grant CXZZ_0163.#The Institution of Engineering and Technology20115August2011doi:10.1049/el.2011.2456W.L.Zeng(School of Transportation,Southeast University,Nanjing 210096,People’s Republic of China)X.B.Lu(School of Automation,Southeast University,Nanjing210096, People’s Republic of China)E-mail:xblu2008@References1Budades,A.,Coll,B.,and Morel,J.M.:‘A review of image denoising algorithms,with a new one’,Multiscale Model Simul.,2005,4,(2), pp.490–5302Mahmoudi,M.,and Sapiro,G.:‘Fast image and video denoising via nonlocal means of similar neighborhoods’,IEEE Signal Process.Lett., 2005,12,(12),pp.839–8423Vignesh,R.,Oh,B.T.,and Kuo,C.-C.J.:‘Fast non-local means(NLM) computation with probabilistic early termination’,IEEE Signal Process.Lett.,2010,17,(3),pp.277–2804Brox,T.,Kleinschmidt,O.,and Cremers,D.:‘Efficient nonlocal means for denoising of textural patterns’,IEEE Trans.Image Process.,2008, 17,(7),pp.1083–10925Kervrann,C.,and Boulanger,J.:‘Optimal spatial adaptation for patch-based image denoising’,IEEE Trans.Image Process.,2006,15,(10), pp.2866–28786Ville,D.V.D.,and Kocher,M.:‘SURE-based non-local means’,IEEE Signal Process.Lett.,2009,16,(11),pp.973–9767Park,S.W.,and Kang,M.G.:‘NLM algorithm with weight update’, Electron.Lett.,2010,16,(15),pp.1061–10638Brox,T.,Weickert,J.,Burgeth,B.,and Mrazek,P.:‘Nonlinear structure tensors’,Image put.,2006,24,pp.41–55ELECTRONICS LETTERS29th September2011Vol.47No.20。

相关文档
最新文档