OLED器件结构与原理

合集下载

OLED器件结构与发光机理

OLED器件结构与发光机理

OLED器件结构与发光机理OLED(Organic Light Emitting Diode,有机发光二极管)是一种使用有机材料作为发光材料的显示器件。

它由发光层、电流传输层和阳极、阴极等多个层次构成。

OLED器件结构主要包括底层和上层结构。

底层结构由底电极、电沉积聚合材料层、有机发光层、电荷传输层和顶电极构成。

底电极一般采用具有透明性的材料,如ITO(锡氧化铟)薄膜。

有机发光层是OLED最重要的部分,它是由光电材料组成的,包括发光材料和载流子传输材料。

电荷传输层通常位于有机发光层和电荷注入层之间,用于增强载流子传输和均衡电荷。

顶电极可以是金属膜、半透明金属膜或透明导电氧化物膜。

OLED发光机理是基于有机半导体材料的特性,通过在有机发光层中施加电场来激发载流子,进而发生电子与空穴的复合产生光子的过程。

OLED发光机制主要有两种类型:有机発光二极管(Organic Light Emitting Diode,OLED)和薄膜结构OLED(Thin Film Structure OLED,TWOLED)。

有机发光二极管(OLED)的发光机理通过空穴冲击电子复合产生激子,进而产生光子。

当电流通过正极(阳极)注入有机发光层时,电子从阴极传输到有机发光层,空穴从有机发光层传输到阳极。

当空穴和电子在有机发光层中相遇时,它们会组合成激子。

激子会通过能量耗散机制发射光子,产生可见光。

薄膜结构OLED(TWOLED)的发光机理则是通过电荷复合产生轴向光子和平行光子。

轴向光子主要是空穴通过有机薄膜的外部向前传播后与电子相遇产生复合,产生的光子从薄膜的垂直方向发出。

平行光子主要是空穴与电子的正方向进行复合,产生的光子从薄膜的平行方向发出。

两种发光机理都是通过电子与空穴的复合产生光子来实现OLED的发光。

OLED器件结构和发光机理的优势在于材料可塑性高、分辨率高、对比度高、透明度高、颜色饱和度高等特点。

因此,OLED被广泛应用于各种显示设备中,如手机、电视、显示屏、车载显示等领域。

oled制作工艺和器件原理

oled制作工艺和器件原理

oled制作工艺和器件原理
OLEDb是一种制作和操作发光二极管(OLED)的工艺。

OLED是一种具有自发光特性的有机材料的显示技术,可以在无需背光的情况下产生亮度和颜色。

OLED的制作工艺一般包括以下步骤:
1. 基底制备:选择透明和柔性的基底材料,如玻璃、塑料等,并在其上涂层透明导电层。

2. 阳极制备:在透明导电层上面涂层使得电流只能从阳极进入的阳极材料。

3. 有机材料沉积:将有机材料用蒸镀、溅射等方法沉积在阳极上,形成发光层。

4. 阴极制备:在有机材料上涂层使得电流只能从阴极出去的阴极材料。

5. 导电层制备:在阴极上涂层具有较低电阻且具有保护作用的导电层。

6. 装封:将制作好的OLED芯片封装在适当的封装材料中,以保护其免受环境损害。

OLED的器件原理是基于有机材料在电场中的电致发光现象。

在OLED中,电流从阳极流入,经过发光层后再流出阴极,
形成一个电流回路。

当电流通过发光层时,有机材料受到电场的激发,激发后会释放能量,这些能量以光的形式辐射出来,产生发光效果。

OLED的器件原理也与有机材料的能带结构有关。

在OLED中,有机材料常常包含一个能带隙,当电子从低能级跃迁到高能级时,会有能量差释放出来,产生光子。

调节有机材料的能带结构可以实现不同的颜色发光。

综上所述,OLEDb制作工艺是通过沉积有机材料在透明导电
层上并封装成器件,利用有机材料的电致发光特性实现发光显示。

OLED

OLED

分类
(一)从器件结构上进行分类 OLED,是一种有机电致发光器件,由比较特殊的有机材料构成的,按照其结构的不同可以将其划分为四种 类型,即单层器件、双层器件、三层器件以及多层器件。 (1)单层器件 单层器件也就是在器件的正、负极之间接入一层可以发光的有机层,其结构为衬底/ITO/发光层/阴极。在这 种结构中由于电子、空穴注入、传输不平衡,导致器件效率、亮度都较低,器件稳定性差。 (2)双层器件 双层器件是在单层器件的基础上,在发光层两侧加入空穴传输层(HTL)或电子传输层(ETL),克服了单层 器件载流子注入不平衡的问题,改善了器件的电压-电流特性,提高了器件的发光效率。 (3)三层器件 三层器件结构是应用最广泛的一种结构,其结构为衬底/ITO/HTL/发光层/ETL/阴极。这种结构的优点是使激 子被局限在发光层中,进而提高器件的效率。
电子产品领域中,OLED应用最为广泛的就是智能手机,其次是笔记本、显示屏、电视、平板、数码相机等 领域,由于OLED显示屏色彩更加浓艳,并且可以对色彩进行调教(不同显示模式),因此在实际应用中非常广 泛,特别是当今的曲面电视,广受群众的好评。
这里需要提一点VR技术,LCD屏观看VR设备有非常严重的拖影,但在OLED屏幕中会缓解非常多,这是因 为OLED屏是点亮光分子,而液晶是光液体流动。因此,在16年OLED屏幕正式超越了LCD屏,成为了手机界的 新宠儿。
(3)电子和空穴的再结合。当器件发光层界面处的电子和空穴达到一定数目时,电子和空穴会进行再结合并 在发光层产生激子。
(4)激子的退激发光。
显示技术
分类
优势
1、OLED显示技术依制程方式分为高分子制程及小分子制程两类,高分子制程(PLED)因不需薄膜制程,故 设备投资及生产成本均远低于TFT-LCD(类似CD—R以旋转涂布spin-coating方式涂模),较利于大尺寸显示器的 发展。但由于PLED每个颜色的衰减常数不同,因此产品多彩化不但困难,产品使用寿命也因而受到影响。小分 子有机电激发光元件虽在多彩化方面优于高分子有机电激发光元件,但设备投资及生产成本较高(因采加热蒸镀方 式蒸镀多层有机薄膜材料,为避免材料间的相互污染,故必须使用价格昂贵的多腔体的真空设备,且驱动电压大 及产出率较低。

2-OLED基础知识-2-器件物理

2-OLED基础知识-2-器件物理

Electronic Processes in Organic Crystals and Polymers by M. Pope and C.E. Swenberg
Frenkel 激子:电子和空穴束缚在一 个分子上,相互作用较强,电子和空 穴作为一个整体在有机半导体内移 动,电子空穴距离1nm,束缚能1eV。 Wannier激子:电子和空穴间的距离远大 于两个分子之间的间距,束缚能小,电 子和空穴容易分离,很不稳定,电子空 穴距离10nm,束缚能10meV 。 Charge transfer (CT)激子:半径约为 分子大小的几倍,束缚能较大,可以作 为一个整体运动,也可以被限制在陷阱
低电压、厚膜,欧姆传导:
电压上升(没有陷阱的情况):
适用于理想绝缘体即无陷阱的有机系统
体限制---陷阱限制电流
Trapped-charge-limited current (TCLC)
陷阱:拥有比母体更容易接受 电子或空穴的能级的位置
电压升高,注入电子密度增加,电子准费米能级移向LUMO能 级。准费米能级以下的陷阱被填满,空陷阱的密度减小,电 子有效迁移率升高。
注入限制电流
隧穿模型(Fowler-Nordheim tunneling model ) 热电子发射模型(Thermionic emission model)
热电子发射模型
电子和空穴必须拥有足够的热能,克服了电子与有 机层的势垒,才能注入到有机层。
隧穿模型 (Fowler-Nordheim tunneling model )
ITO/TPD/Alq3(Gaq3,Inq3)/MgAg
JAP 79(1996)7991
发光层厚度的影响
载流子的迁移
迁移率定义:单位电场强度下,载流子 的平均漂移速度,单位:cm2.V-1.S-1

OLED器件及其封装技术

OLED器件及其封装技术

OLED制备流程
有机功能层制备
有机薄膜是采用真空蒸镀法沉积成膜的,具体操作是在真空中将原材料加热
蒸发,使其原子或分子从表面气化逸出形成蒸气,入射到固体衬底或基片的表面 凝结成膜。蒸镀主要包括三个基本过程 ① 加热蒸发过程,包括由固态或液态转变为气态的相变过程。 ② 气化原子或分子从蒸发源射到基片的的过程,即这些粒子在环境气氛中的 飞行过程。 ③ 蒸发原子或分子在基片表面上的沉积过程,包括蒸气凝聚、成核、核生长
Thanks
18
膜封装是两种或几种聚合物薄膜叠加起来,各种聚合物薄膜优势互补,
形成一个致密的多层薄膜堆叠的封装层,这样很好地改善了封装的气
密性,提高了器件对水汽、氧气的阻隔能力。
无机/有机复合薄膜封装技术
有机-无机薄膜封装就是常说的 Barix 技术封装。这种封装技术用其独特
的成膜技术形成一层有机薄膜,然后在有机薄膜上沉积一层无机薄膜组成一个 Barix 封装单元,再重复堆叠多个封装单元形成一个多层聚合物和无机层的组 合,以提高封装的气密性。由于聚合物层具有很好的成膜性、均匀性和表面平 整度,但对水汽和氧气的阻隔效果欠佳,而无机薄膜层对水汽和氧气具有很好 阻隔作用但成膜性和平整度欠佳,让两者交替成膜堆叠形成一个互补的水汽和 氧气隔离单元,而且薄膜封装层的总厚度仅为 3 mm,满足器件超薄超轻的要
传统OLED封装技术
传统OLED封装技术是对刚性基板上制作电极和各有机功能层进行的封装,一般是给器件加一个盖板,并附干燥剂, 再通过环氧树脂等密封胶将基板和盖板相结合。这样的封装可在基板和盖板之间形成一个罩子,从而把器件和空气隔开, 因而可有效地防止OLED各功能层以及阴极与空气中的水、氧等成分发生反应。整个封装过程应在充有氮气、氩气等惰性 气体及水汽含量应小于3×10-6的环境中完成。 封装盖板主要分为金属盖板和玻璃盖板,金属盖板既可以阻挡水、氧等成分对器件封装的渗透,又可以使器件坚固, 但其不透光,重量及成本问题也限制了这种封装方法在有机电致发光器件上的应用。而玻璃盖板具有化学稳定性、电绝缘 性和致密性,但机械强度差,易产生微裂纹。传统的OLDE封装技术虽然有效,但很笨拙,而且成本高,因此,OLED采 用这些机械部件来封装,很难在价位上与LCD进行竞争。

有机电致发光器件(OLED)课件

有机电致发光器件(OLED)课件

OLED技术的创新与突破
提高效率和稳定性
通过材料和工艺的改进,提高OLED的发光效率和 稳定性,延长使用寿命。
柔性显示技术
进一步研究柔性OLED显示技术,实现更轻薄、可 弯曲的显示产品。
多功能集成
探索将触摸功能、传感器等集成到OLED显示面板 中,实现更多功能。
OLED产业的发展趋势与展望
市场规模持续增长
随着OLED在更多领域的应用,市场规模将持续增长,带动产业的 发展。
技术竞争加剧
随着技术的不断进步,OLED产业将面临激烈的技术竞争,促使企 业加大研发投入。
产业布局优化
随着全球产业格局的变化,OLED产业将进一步优化布局,形成更 加合理的产业链结构。
感谢观看
有机电致发光器件( OLED课件
• OLED基础知识 • OLED器件结构与性能 • OLED制造工艺与设备 • OLED市场与技术发展趋势 • OLED的未来展望
01
OLED基础知识
OLED的定义与特点
总结词
OLED是一种有机电致发光器件,具有自发光的特性,能够实现高对比度、广 视角、快速响应等优点。
OLED在未来的应用前景
显示器技术
随着显示技术的不断进步,OLED 有望成为下一代主流显示技术, 广泛应用于电视、电脑、手机、 平板等电子产品。
照明领域
OLED具有自发光的特性,可以做 成柔性的照明产品,为室内外照明 提供新的解决方案。
可穿戴设备
随着可穿戴设备的普及,OLED的轻 薄、柔性特点使其在智能手表、健 康监测器等设备上具有广阔的应用 前景。
OLED技术的挑战与机遇
挑战
OLED技术的成本较高,良品率较低,且寿命相对较短,这些 问题制约了OLED技术的进一步普及和应用。

OLED结构及发光原理

OLED结构及发光原理

OLED结构及发光原理OLED(Organic Light Emitting Diode)是一种将有机化合物作为发光材料的电子器件。

与传统液晶显示技术相比,OLED具有较高的对比度、更广的视角、更快的响应速度和更低的能耗。

下面详细介绍OLED的结构和发光原理。

1.OLED的结构OLED器件主要由以下几个部分组成:(1)基底:OLED器件的基底是一种透明的材料,通常是玻璃或塑料。

在基底上可以选择加入透光电极,提供电流传输功能。

(2)发射层:发射层是OLED的发光部分,包含有机发光材料。

常用的有机发光材料有小分子和聚合物两种类型。

发光材料的种类和结构可以决定OLED的发射光谱和颜色。

(3)电荷注入层:电荷注入层是用来注入电子和空穴的材料层。

通常分为电子传输层和空穴传输层。

电子注入层用来向发射层注入电子,空穴注入层用来向发射层注入空穴。

(4)电荷传输层:电荷传输层用来传输电子和空穴,将电子注入层和空穴注入层所注入的电荷输送到发射层。

(5)电极:OLED器件通常需要两个电极完成对电流的控制。

一个电极用作透光电极,另一个电极用作阴极或阳极,完成电子和空穴的注入。

2.OLED的发光原理OLED的发光原理可以分为电荷注入和发射两个主要过程:(1)电荷注入:当在OLED器件中加上适当的电压时,阴极从阴极端注入电子,阳极从阳极端注入空穴。

电子和空穴在电荷传输层中聚集,并进一步注入到发射层中。

(2)发射:在发射层中,电子与空穴相遇,发生复合反应并释放能量。

这些能量以光子的形式发射出来,形成可见光。

发射层中的有机发光材料的分子结构决定了光的颜色和发光效率。

3.OLED的工作原理OLED器件可以分为分子型OLED(MOLED)和聚合物型OLED(POLED)两种类型。

(1)MOLED:MOLED是由小分子有机材料构成的OLED。

MOLED的特点是组织有序、生长质量高,具有较高的发光效率和较长的寿命。

但MOLED 制造工艺复杂、成本高。

OLED器件结构与发光机理解析

OLED器件结构与发光机理解析

OLED器件结构与发光机理解析OLED(Organic Light Emitting Diode)是有机发光二极管,其结构和发光机理有很大的关系。

下面从结构和发光机理两个方面来解析OLED器件。

一、OLED器件结构1.底部导电玻璃基板:底部导电玻璃基板是OLED器件的基础,主要起到支撑和导电的作用。

通过将ITO(铟锡氧化物)等透明导电材料沉积在玻璃基板上,实现电流的导电,同时还可以透过基板传递光线。

2.有机发光材料层:有机发光材料层是OLED器件发光的核心部分,也被称为发光层。

有机发光材料通常由有机发光分子和离子或溶剂等组成。

有机发光分子通常是含有共轭结构的芳香化合物,如多苯环芳香烃、吡啶类化合物等。

有机发光分子在外加电场作用下,通过激发态和基态之间的跃迁,发射可见光。

3.电子传输层:电子传输层主要是用来提供电子注入和传输的层。

此层通常采用有机材料,如芳香胺、芳香醚等。

电子通过电子传输层进入发光层,与有机发光分子发生能级相互作用,从而实现能级的电荷复合,激活发光分子的发光。

4.阴极:阴极是OLED器件中的辅助电极,起到对OLED器件进行电流注入和电子回收的作用。

阴极通常采用金属材料,如铝、钙等。

当外加正向电压时,阴极注入电子进入电子传输层,与有机发光分子发生复合,从而激发发光。

二、OLED器件发光机理1.激发态跃迁:当外加正向电压时,电子从阴极注入电子传输层,然后传输到发光层。

在发光层中,电子与有机发光分子之间发生能级相互作用,使得发光分子的电子从基态跃迁到激发态。

在激发态下,电子处于高能量状态,此时会吸收光子,使得发光分子发出发光。

发光的波长和颜色取决于有机发光分子的能级结构。

2.基态复合:当电子从激发态返回基态时,激发态电子和基态离子形成复合态,释放出光子能量。

这是OLED器件发光的另一个重要机制。

基态复合的过程会产生较高的量子效率,从而提高OLED器件的发光效率。

总结起来,OLED器件的发光机理是由电子注入到发光层,激发发光分子进入激发态,经过能级跃迁后发出光子,最后发生基态复合产生发光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

OLED的结构和原理
编者:马晓宇 吉林奥来德光电材料股份有限公司
OLED的结构和原理
OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。

整个结构层中包括了:电洞传输层(HTL)、发光层(EL)与电子传输层(ETL)。

当电力供应至适当电压时,正极电洞与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三原色,构成基本色彩。

OLED的特性是自己发光,不像TFTLCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为21世纪最具前途的产品之一。

有机发光二极体的发光原理和无机发光二极体相似。

当元件受到直流电(DirectCurrent;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与电洞(Hole)分别由阴极与阳极注入元件,当两者在传导中相遇、结合,即形成所谓的电子-电洞复合(Electron-HoleCapture)。

而当化学分子受到外来能量激发後,若电子自旋(ElectronSpin)和基态电子成对,则为单重态(Singlet),其所释放的光为所谓的萤光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态(Triplet),其所释放的光为所谓的磷光(Phosphorescence)。

当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子(LightEmission)或热能(HeatDissipation)的方式放出,其中光子的部分可被利用当作显示功能;然有机萤光材料在室温下并无法观测到三重态的磷光,故PM-OLED元件发光效率之理论极限值仅25%。

PM-OLED发光原理是利用材料能阶差,将释放出来的能量转换成光子,所以我们可以选择适当的材料当作发光层或是在发光层中掺杂染料以得到我们所需要的发光颜色。

此外,一般电子与电洞的结合反应均在数十奈秒(ns)内,故PM-OLED的应答速度非常快。

P.S.:PM-OLEM的典型结构。

典型的PM-OLED由玻璃基板、ITO(indiumtinoxide;铟锡氧化物)阳极(Anode)、有机发光层(EmittingMaterialLayer)与阴极(Cathode)等所组成,其中,薄而透明的ITO阳极与金属阴极如同三明治般地将有机发光层包夹其中,当电压注入阳极的电洞(Hole)与阴极来的电子(Electron)在有机发光层结合时,激发有机材料而发光。

而目前发光效率较佳、普遍被使用的多层PM-OLED结构,除玻璃基板、阴阳电极与有机发光层外,尚需制作电洞注入层(HoleInjectLayer;HIL)、电洞传输层(HoleTransportLayer;HTL)、电子传输层(ElectronTransportLayer;ETL)与电子注入层(ElectronInjectLayer;EIL)等结构,且各传输层与电极之间需设置绝缘层,因此热蒸镀(Evaporate)加工难度相对提高,制作过程亦变得复杂。

由于有机材料及金属对氧气及水气相当敏感,制作完成後,需经过封装保护处理。

PM-OLED虽需由数层有机薄膜组成,然有机薄膜层厚度约仅1,000~1,500A°(0.10~
0.15um),整个显示板(Panel)在封装加乾燥剂(Desiccant)後总厚度不及200um(2mm),具轻薄之优势。

相关文档
最新文档