高三数学1.3函数的单调性复习课件.ppt

合集下载

函数的单调性课件(共17张PPT)

函数的单调性课件(共17张PPT)
如果我们以x表示时间间隔(单位:h),y表示记忆保持量,则 不难看出,图3-7中,y是的函数,记这个函数为y =f(x).
这个函数反映出记忆具有什么规律?你能从中得到什么启发?
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
问题情境:我们知道,“记忆”在我们的学习过程中 扮演着非常重要的角色,因此有关记忆的规律一直都 是人们研究的课題。德国心理学家艾宾浩斯曾经对记 忆保持量进行了系统的实验研究,并给出了类似图37所示的记忆规律.
创设情境,生成问题 在在活初初动中中1,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
△x表示自变量x的增量,△y表示因变量y的增量. 这时,对于属于这个区间上的任意两个不相等的值x1,x2: 这个数是增函数的充要条件是yx >0; 这个数是增函数的充要条件是y <0.
x
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
因此,函数f(x)=3x+2在(- ,+ )上是增函数.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
数学Biblioteka 基础模块(上册)第三章 函数
3.1.3 函数的单调性

函数的单调性与最值课件高三数学一轮复习

函数的单调性与最值课件高三数学一轮复习
3.最值定理:闭区间上的连续函数必有最值,最值产生于区间端点或极值点处.
第2课时 函数的单调性与最值
链接教材
夯基固本
典例精研
核心考点
课时分层作业
一、易错易混辨析(正确的打“√”,错误的打“×”)
1
(1)函数y= 的单调递减区间是(-∞,0)∪(0,+∞).

(× )
(2)若函数y=f (x)在[1,+∞)上单调递增,则函数y=f (x)的单调递增区间是[1,
(1)当f (x),g(x)都是增(减)函数时,f (x)+g(x)是增(减)函数;
(2)若k>0,则kf (x)与f (x)单调性相同;若k<0,则kf (x)与f (x)单调性相反;
1

(3)函数y=f (x)(f (x)≠0)在公共定义域内与y=-f (x),y=
的单调性相反;
(4)复合函数y=f (g(x))的单调性与y=f (u)和u=g(x)的单调性有关.简记为“同增异减”.
2
5

-2
2
- ,f
5
2
在区间[2,6]上单调递增,所以f
1−
[可判断函数f (x)=
(x)min=f (2)=-2.]
(x)max=f (6)=
第2课时
第2课时函数的单调性与最值
函数的单调性与最值
典例精研 核心考点
考点一 确定函数的单调性(单调区间)
考向1 图象法、性质法确定函数的单调性
[典例1]
第2课时 函数的单调性与最值
考向2
a 1+
夯基固本
典例精研
核心考点
课时分层作业
定义法、导数法确定函数的单调性
[典例2]
[解]

新教材高中数学第三章函数的单调性课件新人教B版必修第一册ppt

新教材高中数学第三章函数的单调性课件新人教B版必修第一册ppt

【解析】选 C.对于 A,y=-2x 在定义域上无单调性,在区间(-∞,0)和(0,+∞)上 是增函数,所以 A 错误; 对于 B,y=x2+1 1 在(-∞,0)上是增函数,在(0,+∞)上是减函数,所以 B 错误; 对于 C,y=-3x2-6x 图像是抛物线,对称轴是 x=-1,所以函数在[-1,+∞)上是 减函数,所以 C 正确; 对于 D,a>0 时,y=ax+3 在(-∞,+∞)上为增函数,a<0 时,y=ax+3 在(-∞, +∞)上是减函数,所以 D 错误.
A.[1,2]
B.12,2
C.(1,2]
D.21,2
【思路导引】分别考虑 x>0,x<0,分界点三个方面的因素求范围.
【解析】选 A.因为函数 f(x)=( -2x2b+-(1)2-x+b)b-x,1,x≤x0>,0, 2b-1>0,
在 R 上为增函数,所以 2-2 b≥0, 解得 1≤b≤2. b-1≥0,
3.函数 y=|x-1|的单调增区间是____________. 【解析】作出函数的图像,如图所示,所以函数的单调递增区间为[1,+∞).
答案:[1,+∞)
图像法求函数单调区间的步骤 (1)作图:作出函数的图像; (2)结论:上升图像对应单调递增区间,下降图像对应单调递减区间.
【补偿训练】 画出函数 y=|x|(x-2)的图像,并指出函数的单调区间. 【解析】y=|x|(x-2)=x-2-x22+x=2x( =x--(1)x-2-1)1,2+x≥1,0,x<0, 函数的图像如图所示. 由函数的图像知:函数的单调递增区间为(-∞,0]和[1,+∞), 单调递减区间为(0,1).
类型三 函数单调性的应用(数学运算、逻辑推理) 利用单调性解函数不等式 【典例】已知函数 f(x)的定义域为[-2,2],且 f(x)在区间[-2,2]上是增函数, f(1-m)<f(m),则实数 m 的取值范围为________. 【思路导引】从定义域,单调性两个方面列不等式求范围.

高中数学课件-函数的单调性(示范课课件)

高中数学课件-函数的单调性(示范课课件)

思考4:如何用数学符号语言定义函 数的单调性?
y
图象在区间D逐渐上升
区间D内随着x的增大,y也增大
22
1
0 12
x
方案A:在区间(0,+∞ )上取自变量1,2,∵1<2, f(1)<f(2) ∴f(x)在 (0,+∞ )上, 图象逐渐 上升
方案B:
函数f (x)在区间(a,b)上有无数个自变量x, 使得当a x1 x2 b时,有f (a) f (x1) f (x2) f (b), 由此能否说明该函数f (x)在(a,b)上的图象一直保持上升趋势? 请你说明理由(举例或者画图)
说明:1.区间端点处若有定义写开写闭均可.无定义只能写开区间;
2.图象法判断函数的单调性:从左向右看图象的升降情况
练习1 根据下图说出函数的单调区间,以及在每 一单调区间上,函数是增函数还是减函数.
y 4 3
2
1
-1 O
2 4 5x
解:函数y=f(x)的单调区间有[-1,0),[0,2) ,[2,4), [4,5]
(1) 函数单调性是针对某个区间D而言的,显然D是定义域 I的一部分,因此单调性是函数局部性质;
x1、x2的三大特征: (2)((11))任x1、意x性2同属于一个单调区间
(2)x1、x2不相等,通常取 x1<x2
(3)不是所有的函数都有单调性;
例1. 如图是定义在闭区间[-5,5]上的函数 y = f(x)的
的任意两个自变量的值x1,x2,
当x1<x2时,都有f(x1 ) < f(x2 ) , 当x1<x2时,都有 f (x1 ) > f(x2 ) ,
那么就说在f(x)这个区间上是单调增 那么就说在f(x)这个区间上是单调

高中数学【函数的单调性】经典课件

高中数学【函数的单调性】经典课件

可以看出,函数递增的充要条件是其图像上任意两点连线的斜 率都大于0,函数递减的充要条件是其图像上任意两点连线的斜率 都小于0
一般地,若I是函 数y=f(x)的定义域的子集,对任意x1,x2∈I且
x1≠x2,记y1=f(x1),y2=f(x2 ),则:f f (x2) f (x1)
),y
x
y2 x2
所以这个函数是增函数. 因此,当-1≤x≤6时, 有 f(-1)≤f(x)≤f(6),
从而这个函数的最小值为f(-1)=2,最大值为f(6)=23.
例2的结论也可由不等式的知识得到:因为-1≤x≤6,所以
-3≤3x≤18, 2≤3x+5≤23, 即f(-1)≤f(x)≤f(6),其余同上.
我们已经知道,两点确定一条直线,在平面直角坐标系中,这 一结论当然也成立.一般地,给定平面直角坐标系中的任意两点A (x1,y1),B(x2,y2),当x1≠x2时,称
利用上述结论,我们可以证明一个函数的单调性.
例如,对于函数y=-2x来说,对任意x1,x2∈R且x1≠x2,有
y (2x2) (2x1) 2x2 2x1 2<0
x
x2 x1
x2 x1
因此y=-2x在R上是减函数.
典型例题
例3 求证:函数y=1 在区间(-∞,0)和(0,+∞)上都是减函
y2 y1 x2 x1
为直线AB的斜率;当x1=x2时,称直线AB的斜率不存在.
下面我们用直线的斜率来研究函数的单调性.
由函数的定义可知,任何一个函数图像上的两个点,它们所 确定的直线的斜率一定存在.
如下图所示,观察函数图像上任意两点连线的斜率的符号与函数 单调性之间的关系,并总结出一般规律。
函数的单调性

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

x),所以
x-2<1-x,解得
3 x<2
②.
由①②得 1≤x<32. [答案] 1,32
[类题通法] 1.上题易忽视函数的定义域为[-1,1],直接利用单调性得 到不等式 x-2<1-x,从而得出 x<32的错误答案. 2.解决此类问题的关键是利用单调性“脱去”函数符号 “f”,从而转化为熟悉的不等式.若函数 y=f(x)在区间 D 上是增 函数,则对任意 x1,x2∈D,且 f(x1)<f(x2),有 x1<x2;若函数 y =f(x)在区间 D 上是减函数,则对任意 x1,x2∈D,且 f(x1)<f(x2), 有 x1>x2.需要注意的是,不要忘记函数的定义域.
由图象可知函数在(-∞,a]和[a,+∞ )上分别单调,因此 要使函数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x)在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区 间[1,2]上单调递减),从而 a∈(-∞,1]∪[2,+∞).
[类题通法] “函数的单调区间为 I”与“函数在区间 I 上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是 I,指 的是函数递减的最大范围为区间 I.而函数在某一区间上单调,则 指此区间是相应单调区间的子区间.所以我们在解决函数的单调 性问题时,一定要仔细读题,明确条件含义.
由函数的单调性求参数的取值范围 [例 3] (1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1 -a)<f(2a-1),则 a 的取值范围是________. (2)已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a 的取值范围.
(1)[解析]由题意可知--11<<12-a-a<1<1,1

高中数学1.3函数的基本性质 PPT课件 图文

高中数学1.3函数的基本性质 PPT课件 图文

f (x)
1、单调函数的图象特征; 2、函数单调性的定义; 3、证明函数单调性的步骤;
作业 1:证明函数 f(x)=x+4x在(0,1)上是减函数. 2、 证明函数f(x)=x 3 在(-∞,+∞)上是增函数.
思考:讨论函数 f(x )x22ax 3
在(-2,2)内的单调性.
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的

《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

《函数的单调性》示范公开课教学PPT课件【高中数学人教版】

(2)它在定义域I上的单调性是怎样的?证明你的结论.
答案:图象略.
(1)(-∞,0)∪(0,+∞).
(2)当k>0时,y= k 在区间(-∞,0)和(0,+∞)上单调递减; x
当k<0时,y= k 在区间(-∞,0)和(0,+∞)上单调递增. x
目标检测
44.画出反比例函数y=
k x
的图象.
(1)这个函数的定义域I是什么?
新知探究
追问5 函数f(x)=|x|,f(x)=-x2各有怎样的单调性?
f(x)=|x|在区间(-∞,0]上单调递减, 在区间[0,+∞)上单调递增; f(x)=-x2在区间(-∞,0]上单调递增, 在区间[0,+∞)上是单调递减.
新知探究
问题4 如何用符号语言准确刻画函数值随自变量的增大而增大 (减小)呢?
证明:由x1,x2∈(1,+∞),得x1>1,x2>1,
所以x1x2>1,x1x2-1>0.
由x1<x2,得x1-x2<0,
于是(x1-x2)(
x1x2 1 x1 x2
)<0,即y1<y2.
所以,函数y=x+ 1 在区间(1,+∞)上的单调递增. x
新知探究
追问 你能用单调性定义探究y=x+ 1 在整个定义域内的单调性吗? x
图1
图2
图3
图1的特点是:从左至右始终保持上升;
图2与图3的特点是:从左至右有升也有降.
新知探究
★资源名称: 【数学探究】函数值的变化情况 ★使用说明:本资源通过操作展示动画,使学生观察函数值随着自变量值的变化而变化的情 况.通过交互式动画的方式,运用了本资源,可以吸引学生的学习兴趣,增加教学效果,提高教 学效率. 注:此图片为动画缩略图,如需使用资源,请于资源库调用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)函数的单调性是对某个区间而言的,在某一点上不存在单 调性.
(3)一个函数出现两个或者两个以上的单调区间时,不能用 “∪”连接,而应该用“和”连接.如函数 y=1x在(-∞,0)和(0, +∞)上单调递减,却不能表述为:函数 y=1x在(-∞,0)∪(0, +∞)上单调递减.
由函数图象说明函数的单调性
1.3
函数的基本性质
1.3.1 单调性与最大(小) 1:从图象上看,自变量 x 增大时,函数 f(x)的值如何 变化?
提示:甲图中,函数f(x)的值随x增大而增大. 乙图中,函数f(x)的值随x增大而减小. 丙图中,在y轴左侧,函数f(x)的值随x的增大而减小; 在y轴右侧,函数f(x)的值随x的增大而增大.
问题 2:甲、乙图中,若 x1<x2,则 f(x1)与 f(x2)的大小关系 是什么?
提示:甲图中,若x1<x2,则f(x1)<f(x2); 乙图中,若x1<x2,则f(x1)>f(x2). 问题3:丙图中,若x1<x2,f(x1)<f(x2),则自变量x属于哪个 区间? 提示:(0,+∞).
[导入新知] 1.定义域为I的函数f(x)的增减性
2.单调性与单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么就说函 数y=f(x)在这一区间上具有(严格的) 单调性 ,区间D叫做y=f(x) 的 单调区间 .
[化解疑难] 1.x1,x2的三个特征 (1)任意性,即x1,x2是在某一区间上的任意两个值,不能以 特殊值代换; (2)有大小,即确定的两个值x1,x2必须区分大小,一般令 x1<x2; (3)同属一个单调区间. 2.理解函数的单调性应注意的问题 (1)函数的单调性是函数的局部性质,体现在函数的定义域 或其子区间上,所以函数的单调区间是其定义域的子集.
∴函数y=x-1 1在区间(1,+∞)上为单调减函数.
[随堂即时演练]
1.下列函数中,满足“对任意 x1,x2∈(0,+∞),都有fxx11- -fx2x2>0”
的是
()
A.f(x)=2x
B.f(x)=-3x+1
C.f(x)=x2+4x+3
D.f(x)=x(2-x)
[类题通法] 利用定义证明函数单调性的步骤
活学活用
求证:函数 y=x-1 1在区间(1,+∞)上为单调减函数. 证明:任取x1,x2∈(1,+∞),且x1<x2,则 y1-y2=x1-1 1-x2-1 1=x2x-1-11-x2x-1-11=x1-x12-xx21-1. ∵x2>x1>1,∴x1-1>0,x2-1>0,x2-x1>0, ∴x1-x12-xx21-1>0,∴y1>y2,
[例 1] 如图,定义在[-5,5]上的 f(x),根据图象说出单调区间及 单调性.
解:
[类题通法] 由图象确定函数单调性的方法及注意事项
(1)图象从左向右上升,则函数递增;图象从左向右下降, 则函数递减.
(2)单调区间必须是函数定义域的子集,单调区间之间不能 用“∪”,而应用“,”将它们隔开或用“和”字连接.
[类题通法] “函数的单调区间为I”与“函数在区间I上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是I,指 的是函数递减的最大范围为区间I.而函数在某一区间上单调, 则指此区间是相应单调区间的子区间.所以我们在解决函数的 单调性问题时,一定要仔细读题,明确条件含义.
函数单调性的证明 [例 2] 求证:函数 f(x)=x12在(-∞,0)上是增函数. [解] 证明:对于任意的 x1,x2∈(-∞,0),且 x1<x2, 有 f(x1)-f(x2)=x121-x122 =x22x-21x22x21=x2-xx112xx222+x1. ∵x1<x2<0,∴x2-x1>0,x1+x2<0,x21x22>0. ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴函数 f(x)=x12在(-∞,0)上是增函数.
相关文档
最新文档