高中数学人教版选修2-1课堂练习:2-2-1 椭圆及其标准方程 含解析
人教版 高中数学【选修 2-1】2.2.1椭圆及其标准方程课后习题

人教版高中数学精品资料2.2.1 椭圆及其标准方程课时演练·促提升A组1.若F1,F2是两个定点,且|F1F2|=6,动点M满足|MF1|+|MF2|=8,则点M的轨迹是()A.椭圆B.直线C.圆D.线段解析:由椭圆定义知,点M的轨迹是椭圆.答案:A2.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:方程可化为=1,表示焦点在y轴上的椭圆时,应满足>0,即m>n>0.所以是充要条件.答案:C3.设P是椭圆=1上一点,P到两焦点F1,F2的距离之差为2,则△PF1F2是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形解析:由椭圆定义知|PF1|+|PF2|=2a=8.又|PF1|-|PF2|=2,∴|PF1|=5,|PF2|=3.又|F1F2|=2c=2=4,∴|PF1|2=|PF2|2+|F1F2|2,∴△PF1F2为直角三角形.答案:B4.已知椭圆的焦点坐标为(0,-1),(0,1),且过点,则椭圆方程为()A.=1B.=1C.+y2=1D.+x2=1解析:由已知椭圆焦点在y轴上,设方程为=1(a>b>0).则2a==4,故a=2.又c=1,则b2=a2-c2=3,故椭圆方程为=1.答案:B5.已知椭圆的焦点是F1,F2,P是椭圆上的一动点,如果延长F1P到Q,使得|PQ|=|PF2|,那么动点Q的轨迹是()A.圆B.椭圆C.直线D.抛物线解析:由题意,得|PF1|+|PF2|=2a(a>0是常数).∵|PQ|=|PF2|,∴|PF1|+|PQ|=2a,即|QF1|=2a,∴动点Q的轨迹是以F1为圆心,2a为半径的圆,故选A.答案:A6.若方程=1表示焦点在x轴上的椭圆,则m的取值范围是.解析:将方程化为=1,依题意,得8>2-m>0,解得-6<m<2.答案:-6<m<27.若椭圆=1的焦距为6,则k的值为.解析:由已知,得2c=6,∴c=3,∴c2=9,∴20-k=9或k-20=9,∴k=11或k=29.答案:11或298.若椭圆的焦点在y轴上,其上任意一点到两焦点的距离和为8,焦距为2,则此椭圆的标准方程为.解析:由已知,得2a=8,2c=2,∴a=4,c=,∴b2=a2-c2=16-15=1,故椭圆的标准方程为+x2=1.答案:+x2=19.已知椭圆=1(a>b>0)的焦点分别是F1(0,-1),F2(0,1),且3a2=4b2.(1)求椭圆的方程;(2)设点P在这个椭圆上,且|PF1|-|PF2|=1,求∠F1PF2的余弦值.解:(1)依题意知c=1,又c2=a2-b2,且3a2=4b2,所以a2-a2=1,即a2=1.所以a2=4.因此b2=3.从而椭圆方程为=1.(2)因为点P在椭圆上,所以|PF1|+|PF2|=2a=2×2=4.又|PF1|-|PF2|=1,所以|PF1|=,|PF2|=.又|F1F2|=2c=2,所以由余弦定理,得cos ∠F1PF2==.即∠F1PF2的余弦值等于.10.已知圆A:x2+(y+6)2=400,圆A内有一定点B(0,6),动圆C过点B且与圆A内切,求动圆圆心C的轨迹方程.解:设动圆C的半径为r,则|CB|=r.因为圆C与圆A内切,所以|CA|=20-r,所以|CA|+|CB|=20>12,所以点C的轨迹是以A,B两点为焦点的椭圆.因为2a=20,2c=|AB|=12,所以a=10,c=6,b2=64.因为点A,B在y轴上,所以点C的轨迹方程为=1.B组1.已知F1,F2是椭圆=1的两个焦点,P是椭圆上一点,且|PF1|∶|PF2|=4∶3,则三角形PF1F2的面积等于()A.24B.26C.22D.24解析:因为a2=49,所以|PF1|+|PF2|=2a=14.又|PF1|∶|PF2|=4∶3,所以|PF1|=8,|PF2|=6.又因为|F1F2|=2c=2=10,所以|PF1|2+|PF2|2=|F1F2|2,所以PF1⊥PF2.故△PF1F2的面积S=|PF1|·|PF2|=×8×6=24.答案:A2.设F1,F2是椭圆C:=1的焦点,在曲线C上满足=0的点P的个数为()A.0B.2C.3D.4解析:∵=0,∴PF1⊥PF2.∴点P为以线段F1F2为直径的圆与椭圆的交点,且此圆的半径为c==2.∵b=2,∴点P为该椭圆y轴的两个端点.答案:B3.F1,F2分别为椭圆=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2的值是.解析:∵|OF2|=c,∴由已知得,∴c2=4,c=2.设点P的坐标为(x0,y0),由△POF2为正三角形,∴|x0|=1,|y0|=,代入椭圆方程得=1.∵a2=b2+4,∴b2+3(b2+4)=b2(b2+4),即b4=12,∴b2=2.答案:24.已知圆C:(x+1)2+y2=25及点A(1,0),Q为圆上一点,AQ的垂直平分线交CQ于点M,求点M的轨迹方程.解:如图,M是AQ的垂直平分线与CQ的交点,连接MA,则|MQ|=|MA|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,且|AC|=2,∴动点M的轨迹是椭圆,且其焦点为C,A.易知2a=5,2c=2,∴a=,c=1,∴b2=a2-c2=-1=,故动点M的轨迹方程为=1.5.已知椭圆的焦点在x轴上,且焦距为4,P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若△PF1F2的面积为2,求点P坐标.解:(1)由题意知,2c=4,c=2,|PF1|+|PF2|=2|F1F2|=8,即2a=8,∴a=4.∴b2=a2-c2=16-4=12.∵椭圆的焦点在x轴上,∴椭圆的方程为=1.(2)设点P坐标为(x0,y0),依题意知,|F1F2||y0|=2,∴|y0|=,y0=±.代入椭圆方程=1,得x0=±2,∴点P坐标为(2)或(2,-)或(-2)或(-2,-).6.已知P是椭圆+y2=1上的一点,F1,F2是椭圆上的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.解:(1)由椭圆的定义,得|PF1|+|PF2|=4且F1(-,0),F2(,0).①在△F1PF2中,由余弦定理,得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos 60°.②由①②得|PF1|·|PF2|=.所以|PF1||PF2|·sin ∠F1PF2=.(2)设点P(x,y),由已知∠F1PF2为钝角,得<0,即(x+,y)·(x-,y)<0.又y2=1-,所以x2<2,解得-<x<.所以点P横坐标的范围是。
高中数学 专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1(2021年整理)

高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题2.2.1 椭圆及其方程测试(含解析)新人教A版选修2-1的全部内容。
椭圆及其方程(时间:25分,满分55分)班级姓名得分一、选择题1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( ) A.椭圆B.直线C.圆D.线段[答案] D2.中心在原点,焦点在坐标轴上,且过两点(4,0)、(0,2)的椭圆方程为() A.错误!+错误!=1 B。
错误!+错误!=1C。
错误!+错误!=1 D。
错误!+错误!=1[答案]D[解析]解法一:验证排除:将点(4,0)代入验证可排除A、B、C,故选D.解法二:设椭圆方程为mx2+ny2=1(m〉0,n>0),∴错误!,∴错误!,故选D。
3.椭圆ax2+by2+ab=0(a〈b〈0)的焦点坐标是()A.(±错误!,0)B.(±错误!,0)C.(0,±错误!)D.(0,±错误!)[答案]D[解析] ax2+by2+ab=0可化为错误!+错误!=1,∵a〈b〈0,∴-a>-b>0,∴焦点在y轴上,c=-a+b=错误!,∴焦点坐标为(0,±错误!).4.“1<m〈2”是“方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件[答案]C[解析] 方程错误!+错误!=1表示的曲线是焦点在y轴上的椭圆,∴错误!,∴1<m<2,故选C。
高中数学人教A版选修2-1课件:2-2-1 椭圆及其标准方程

+
������2 ������
2
= 1(������ > ������ > 0).
∵2a= (5 + 4)2 + (5-4)2 = 10, ∴ ������ = 5.
又 c=4,∴b2=a2-c2=9.
2.2 椭圆
-1-
2.2.1 椭圆及其标准方
三角函数
1.了解椭圆的实际背景,体验从具体情境中抽象出椭圆的过程,椭 圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及其几何图形.
栏目 导引
重难聚焦
第一章
三角函数
1.利用待定系数法确定椭圆的标准方程 剖析:求椭圆的标准方程常用待定系数法.首先,要恰当地选择方 程的形式,如果不能确定焦点的位置,可用两种方法来解决问题. (1)如果明确了椭圆的中心在原点,焦点在坐标轴上,那么所求的 椭圆一定是标准形式,就可以利用待定系数法.首先建立方程,然后 依据题设条件,计算出方程中的a,b的值,从而确定方程.有时方程有 两个,即:
= 1.
+
������2 ������
2
= 1(������ > ������ > 0).
栏目 导引
第一章 典例透析三角函数
题型一 题型二 题型三 题型四
∵点( 3, −2)和点(-2 3, 1)都在椭圆上,
而 a>b>0,∴a2=5,b2=15 不合题意. 故焦点在 y 轴上的椭圆不存在.
(-2) ( 3) + = 1, 2 2 ������ ������2 = 5, ������ ∴ ∴ 2 2 2 ������ = 15. 1 (-2 3) + = 1, 2 2 ������ ������
2021-2022学年高中人教A版数学选修2-1作业:2.2.1椭圆及其标准方程含解析

课时分层作业(七) 椭圆及其标准方程(建议用时:60分钟)一、选择题1.设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A .22B .2 3C .2 5D .4 2C [由椭圆的定义可得P 到两焦点距离之和为2a =25.] 2.已知椭圆x 2a 2+y 22=1的一个焦点为(2,0),则椭圆的方程是( ) A .x 24+y 22=1 B .x 23+y 22=1 C .x 2+y 22=1D .x 26+y 22=1D [由题意知a 2-2=4,∴a 2=6. ∴所求椭圆的方程为x 26+y 22=1.]3.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1B [由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,由22+42=(25)2,可知△F 1PF 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×4×2=4,故选B .]4.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线B [|PF 1|+|PO |=12|MF 1|+12|MF 2|=12(|MF 1|+|MF 2|)=a >|F 1O |,因此点P 的轨迹是椭圆.]5.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1 B .x 24+y 25=1C .x 25+y 2=1或x 24+y 25=1 D .以上答案都不对C [直线与坐标轴的交点为(0,1),(-2,0), 由题意知当焦点在x 轴上时,c =2,b =1, ∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1, ∴a 2=5,所求椭圆标准方程为y 25+x 24=1.]二、填空题6.椭圆25x 2+16y 2=1的焦点坐标是________. ⎝⎛⎭⎪⎫0,±320 [由25x 2+16y 2=1知焦点在y 轴上, 且a 2=116,b 2=125,c 2=116-125=916×25,∴c =320.∴焦点坐标为⎝ ⎛⎭⎪⎫0,±320.] 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.3[依题意,有⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|·|PF 2|=18,|PF 1|2+|PF 2|2=4c 2,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3.]8.已知P 是椭圆x 24+y 23=1上的一动点,F 1,F 2是椭圆的左、右焦点,延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹方程是________.(x +1)2+y 2=16 [如图,依题意,|PF 1|+|PF 2|=2a (a 是常数且a >0).又|PQ |=|PF 2|, ∴|PF 1|+|PQ |=2a , 即|QF 1|=2a .由题意知,a =2,b =3,c =a 2-b 2=4-3=1.∴|QF 1|=4,F 1(-1,0),∴动点Q 的轨迹是以F 1为圆心,4为半径的圆, ∴动点Q 的轨迹方程是(x +1)2+y 2=16.] 三、解答题9.分别求适合下列条件的椭圆的标准方程.(1)焦点在坐标轴上,且经过点A (3,-2),B (-23,1); (2)与椭圆x 23+y 2=1有相同焦点且经过点M (2,1).[解] (1)设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0且m ≠n ),根据题意,得⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15,∴所求椭圆的标准方程为x 215+y 25=1. (2)由椭圆x 23+y 2=1,知焦点在x 轴上, 则a 2=3,b 2=1,c 2=a 2-b 2=3-1=2,∴c =2,∴椭圆的两个焦点分别为(-2,0)和(2,0). 设所求椭圆的方程为x 2a 2+y 2a 2-2=1(a 2>2),把(2,1)代入方程,得2a 2+1a 2-2=1,化简,得a 4-5a 2+4=0, ∴a 2=4或a 2=1(舍),∴所求椭圆的标准方程为x 24+y 22=1.10.已知点A (0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM |=|P A |,求动点P 的轨迹方程.[解] 因为|PM |=|P A |,|PM |+|PO 1|=4, 所以|PO 1|+|P A |=4, 又因为|O 1A |=23<4,所以点P 的轨迹是以A ,O 1为焦点的椭圆,所以c =3,a =2,b =1. 所以动点P 的轨迹方程为x 2+y 24=1.1.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2B [因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.]2.如图所示,∠OFB =π6,△ABF 的面积为2-3,则以OA 为长半轴,OB 为短半轴,F 为一个焦点的椭圆方程为__________.x 28+y 22=1 [设所求椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由题意可知,|OF |=c ,|OB |=b ,∴|BF |=a .∵∠OFB =π6,∴b c =33,a =2b .∴S △ABF =12·|AF |·|BO |=12(a -c )·b =12(2b -3b )b =2-3, 解得b 2=2,则a =2b =22. ∴所求椭圆的方程为x 28+y 22=1.]3.若椭圆2kx 2+ky 2=1的一个焦点为(0,-4),则k 的值为________. 132 [易知k >0,方程2kx 2+ky 2=1变形为y 21k +x 212k =1,所以1k -12k =16,解得k=132.]4.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2=________.23 [设正三角形POF 2的边长为c ,则34c 2=3, 解得c =2,从而|OF 2|=|PF 2|=2,连接PF 1(略),由|OF 1|=|OF 2|=|OP |知,PF 1⊥PF 2, 则|PF 1|=|F 1F 2|2-|PF 2|2=42-22=23,所以2a =|PF 1|+|PF 2|=23+2,即a =3+1, 所以b 2=a 2-c 2=(3+1)2-4=23.]5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与椭圆C 相交于A ,B 两点(如图所示),∠F 1F 2B =2π3,△F 1F 2A 的面积是△F 1F 2B 面积的2倍.若|AB |=152,求椭圆C 的方程.[解] 由题意可得S △F 1F 2A =2S △F 1F 2B , ∴|F 2A |=2|F 2B |, 由椭圆的定义得 |F 1B |+|F 2B |=|F 1A |+|F 2A |=2a , 设|F 2A |=2|F 2B |=2m , 在△F 1F 2B 中,由余弦定理得(2a -m )2=4c 2+m 2-2·2c ·m ·cos 2π3, ∴m =2(a 2-c 2)2a +c.在△F 1F 2A 中,同理可得m =a 2-c 22a -c ,所以2(a 2-c 2)2a +c =a 2-c 22a -c ,解得2a =3c ,可得m =5c 8,|AB |=3m =15c 8=152,c =4. 由c a =23,得a =6,b 2=20, 所以椭圆C 的方程为x 236+y 220=1.。
高中数学选修2-1课时作业6:2.2.1 椭圆及其标准方程(二)

2.2.1 椭圆的标准方程(二)1.已知a =13,c =23,则该椭圆的标准方程为( ) A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 [解析]选D.由a 2=b 2+c 2,∴b 2=13-12=1.分焦点在x 轴和y 轴上写标准方程.2.椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( ) A .5 B .6C .7 D .8[解析]选D.∵a =5,|PF 1|=2.∴|PF 2|=2a -|PF 1|=2×5-2=8.3.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1C.y 24+x 23=1 D.y 24+x 2=1 [解析]选A.c =1,a =12()2+12+0+2-12+0=2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1. 4.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1[解析]选B.由椭圆方程,得a =3,b =2,c =5,∵|PF 1|+|PF 2|=2a =6且|PF 1|∶|PF 2|=2∶1,∴|PF 1|=4,|PF 2|=2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴△PF 1F 2是直角三角形,故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4. 5.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]选C.mx 2+ny 2=1可化为x 21m +y 21n =1,因为m >n >0,所以0<1m <1n,因此椭圆焦点在y 轴上,反之亦成立.6.椭圆x 2m +y 215=1的焦距等于2,则m 的值是________. [解析]当焦点在x 轴时,m -15=1,m =16;当焦点在y 轴时,15-m =1,m =14.[答案]16或147.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则k 的取值范围是________.[解析]原方程可化为x 22+y 22k =1,因表示焦点在y 轴上的椭圆.∴⎩⎪⎨⎪⎧k >0,2k >2.解得0<k <1. ∴k 的取值范围是(0,1).[答案](0,1)8.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项,则椭圆的方程为__________.[解析]由题设知|PF 1|+|PF 2|=2|F 1F 2|=4,∴2a =4,2c =2,∴b =3,∴椭圆的方程为x 24+y 23=1.[答案]x 24+y 23=1 9.求适合下列条件的椭圆的标准方程:(1)椭圆上一点P (3,2)到两焦点的距离之和为8;(2)椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15.解:(1)①若焦点在x 轴上,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由题意知2a =8,∴a =4,又点P (3,2)在椭圆上,∴916+4b 2=1,得b 2=647. ∴椭圆的标准方程为x 216+y 2647=1. ②若焦点在y 轴上,设椭圆的标准方程为:y 2a 2+x 2b 2=1(a >b >0),∵2a =8,∴a =4. 又点P (3,2)在椭圆上,∴416+9b 2=1,得b 2=12.∴椭圆的标准方程为y 216+x 212=1. 由①②知椭圆的标准方程为x 216+y 2647=1或y 216+x 212=1. (2)由题意知,2c =16,2a =9+15=24,∴a =12,c =8,∴b 2=80.又焦点可能在x 轴上,也可能在y 轴上,∴所求方程为x 2144+y 280=1或y 2144+x 280=1. 10.已知点P (3,4)是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆左、右焦点,若PF 1⊥PF 2,试求:(1)椭圆方程;(2)△PF 1F 2的面积.解:(1)由PF 1⊥PF 2,可得|OP |=c ,即c =5.设椭圆方程为x 2a 2+y 2a 2-25=1代入P (3,4), 得9a 2+16a 2-25=1,解得a 2=45,a 2=5(舍去).∴椭圆方程为x 245+y 220=1. (2)S △PF 1F 2=12|F 1F 2||y P |=5×4=20. 能力提升1.已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,且|MF 1|-|MF 2|=1,则△MF 1F 2是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形[解析]选B.由椭圆定义知|MF 1|+|MF 2|=2a =4,且已知|MF 1|-|MF 2|=1,所以|MF 1|=52,|MF 2|=32.又|F 1F 2|=2c =2.所以有|MF 1|2=|MF 2|2+|F 1F 2|2.因此∠MF 2F 1=90°,△MF 1F 2为直角三角形.2.椭圆的两焦点为F 1(-4,0)、F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.[解析]当△PF 1F 2面积取最大时,S △PF 1F 2=12×8b =12,∴b =3.又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1. [答案]x 225+y 29=1 3.已知椭圆8x 281+y 236=1上一点M 的纵坐标为2. (1)求M 的横坐标;(2)求过M 且与x 29+y 24=1共焦点的椭圆的方程. 解:(1)把M 的纵坐标代入8x 281+y 236=1,得8x 281+436=1, 即x 2=9.∴x =±3.即M 的横坐标为3或-3.(2)对于椭圆x 29+y 24=1,焦点在x 轴上且c 2=9-4=5, 故设所求椭圆的方程为x 2a 2+y 2a 2-5=1(a 2>5),把M 点坐标代入得9a 2+4a 2-5=1, 解得a 2=15(a 2=3舍去).故所求椭圆的方程为x 215+y 210=1. 4. 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),圆P 过点B 且与圆A 内切,如下图,求圆心P 的轨迹方程.解:设|PB|=r.∵圆P与圆A内切,圆A的半径为10,∴两圆的圆心距|P A|=10-r,即|P A|+|PB|=10,而|AB|=6,∴|P A|+|PB|>|AB|,∴圆心P的轨迹是以A,B为焦点的椭圆.∴2a=10,2c=|AB|=6.∴a=5,c=3.∴b2=a2-c2=25-9=16.∴圆心P的轨迹方程为x225+y216=1.。
人教A版高中数学选修2-1习题课件:2.2.1 椭圆及其标准方程

目标导航
知识梳理
重难聚焦
典例透析
1.利用待定系数法确定椭圆的标准方程
剖析:求椭圆的标准方程常用待定系数法.首先,要恰当地选择方
程的形式,如果不能确定焦点的位置,可用两种方法来解决问题.
(1)如果明确了椭圆的中心在原点,焦点在坐标轴上,那么所求的
椭圆一定是标准形式,就可以利用待定系数法.首先建立方程,然后
-4-
2.2.1 椭圆及其标准方程
目标导航
知知识识梳梳理理
重难聚焦
典例透析
【做一做1】 到两个定点F1(-7,0)和F2(7,0)的距离之和为14的点 P的轨迹是( )
A.椭圆
B.线段
C.圆
D.以上都不对
解析:∵点P到两定点的距离之和为14等于|F1F2|, ∴轨迹是一条线段.
答案:B
-5-
2.2.1 椭圆及其标准方程
=
1(������
>
������ > 0).
(2)如果中心在原点,但焦点的位置不能明确是在x轴上还是在y轴
上,那么方程可以设为mx2+ny2=1(m>0,n>0,m≠n),用待定系数法求
解.
-9-
2.2.1 椭圆及其标准方程
目标导航
知识梳理
重难聚焦
典例透析
2.求与椭圆有关的轨迹方程的常用方法 剖析:(1)定义法 用定义法求轨迹方程的思路是:观察、分析已知条件,看所求动 点的轨迹是否符合椭圆的定义,若符合椭圆的定义,则用待定系数 法求解即可. (2)相关点法 有些问题中的动点轨迹是由另一动点按照某种规律运动而形成 的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的 条件中去,即可解决问题,这种方法称为相关点法.
【三维设计】人教版高中数学选修2-1练习:2.2.1椭圆及其标准方程(含答案解析)

课时跟踪检测(七)椭圆及其标准方程层级一学业水平达标1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5C.8 D.10解析:选D根据椭圆的定义知,|PF1|+|PF2|=2a=2×5=10,故选D.2.已知△ABC的顶点B,C在椭圆x23+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是()A.2 3 B.6C.4 3 D.12解析:选C由于△ABC的周长与焦点有关,设另一焦点为F,利用椭圆的定义,|BA|+|BF|=23,|CA|+|CF|=23,便可求得△ABC的周长为43.3.命题甲:动点P到两定点A,B的距离之和|PA|+|PB|=2a(a>0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分又不必要条件解析:选B利用椭圆定义.若P点轨迹是椭圆,则|PA|+|PB|=2a(a>0,常数),∴甲是乙的必要条件.反过来,若|PA|+|PB|=2a(a>0,常数)是不能推出P点轨迹是椭圆的.这是因为:仅当2a>|AB|时,P点轨迹才是椭圆;而当2a=|AB|时,P点轨迹是线段AB;当2a<|AB|时,P点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.4.如果方程x2a2+y2a+6=1表示焦点在x轴上的椭圆,则实数a的取值范围是()A.a>3 B.a<-2C.a>3或a<-2 D.a>3或-6<a<-2解析:选D由a2>a+6>0得a2-a-6>0,a+6>0,所以a<-2或a>3,a>-6,所以a>3或-6<a<-2.5.已知P为椭圆C上一点,F1,F2为椭圆的焦点,且|F1F2|=23,若|PF1|与|PF2|的等差中项为|F1F2|,则椭圆C的标准方程为()。
2017-2018学年高中数学人教A版选修2-1教师用书:第2章 2-2-1 椭圆及其标准方程 含答案 精品

2.2 椭圆2.2.1 椭圆及其标准方程1.了解椭圆标准方程的推导.2.理解椭圆的定义及椭圆的标准方程.(重点)3.掌握用定义和待定系数法求椭圆的标准方程.(重点、难点)教材整理1 椭圆的定义阅读教材P 38“思考”以上部分,完成下列问题.把平面内与两个定点F 1,F 2的距离的和等于______的点的轨迹叫做椭圆,这________叫做椭圆的焦点,________叫做椭圆的焦距.【答案】 常数(大于|F 1F 2|) 两个定点 两焦点间的距离判断(正确的打“√”,错误的打“×”)(1)到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.( )(2)在椭圆定义中,将“大于|F 1F 2|”改为“等于F 1F 2”的常数,其它条件不变,点的轨迹为线段.( )(3)到两定点F 1(-2,0)和F 2(2,0)的距离之和为3的点M 的轨迹为椭圆.( ) 【答案】 (1)× (2)√ (3)× 教材整理2 椭圆的标准方程阅读教材P 39~P 40“例1”以上部分,完成下列问题.【答案】 a 2+b2=1(a >b >0) (0,-c ) (0,c ) a 2-b 2椭圆x 225+y 29=1的焦点在________轴上,焦距为________,椭圆x 29+y 216=1的焦点在________轴上,焦点坐标为________.【解析】 由25>9可判断椭圆x 225+y 29=1的焦点在x 轴上,由c 2=25-9=16,可得c=4,故其焦距为8.由16>9,可判断椭圆x 29+y 216=1的焦点在y 轴上, c 2=16-9=7,故焦点坐标为(0,7)和(0,-7).【答案】 x 8 y (0,7)和(0,-7)(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);【导学号:37792045】(2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). 【自主解答】 (1)由于椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∴a =5,c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1.(2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0).∴a =2,b =1.故所求椭圆的标准方程为y 24+x 2=1.(3)法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧ 32a2+ -22b2=1, -232a2+1b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1.②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧-22a2+ 32b2=1,1a 2+ -232b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=15,因为a >b >0,所以无解. 所以所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.1.已知椭圆的中心在原点,焦点在坐标轴上,且经过两点A (0,2)和B ⎝ ⎛⎭⎪⎫12,3,求椭圆的标准方程.【解】 设椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),将A ,B 两点坐标代入方程得⎩⎪⎨⎪⎧ 4n =1,14m +3n =1,解得⎩⎪⎨⎪⎧m =1,n =14,∴所求椭圆方程为x 2+y 24=1.设P 是椭圆25+754=1上一点,F 1、F 2是椭圆的焦点,若∠F 1PF 2=60°,求△F 1PF 2的面积.【精彩点拨】 (1)由椭圆方程,你能写出|PF 1|+|PF 2|与|F 1F 2|的大小吗?(2)在△F 1PF 2中,根据余弦定理可以得到|F 1F 2|、|PF 1|、|PF 2|之间的关系式吗?(3)怎样求△F 1PF 2的面积?【自主解答】 由椭圆方程知,a 2=25,b 2=754,∴c 2=254,∴c =52,2c =5.在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即25=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|. ①由椭圆的定义得10=|PF 1|+|PF 2|, 即100=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|. ②②-①得3|PF 1|·|PF 2|=75, 所以|PF 1|·|PF 2|=25,所以S △F 1PF2=12|PF 1|·|PF 2|·sin 60°=2534.1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解.2.在本例中,若把椭圆方程改为“x 24+y 23=1”,把“∠F 1PF 2=60°”改为“∠PF 1F 2=90°”,其余条件不变,试求△PF 1F 2的面积.【解】 由椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在△PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32,因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32.探究1如图221,P 为圆B :(x +2)2+y 2=36上一动点,点A 的坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.图221【提示】 用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a ,b ,c .所求点Q 的轨迹方程为x 29+y 25=1.探究2如图222,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是什么?为什么?图222【提示】 当题目中所求动点和已知动点存在明显关系时,一般利用相关点法求解.用相关点法求轨迹方程的基本步骤为:(1)设点:设所求轨迹上动点坐标为P (x ,y ),已知曲线上动点坐标为Q (x 1,y 1).(2)求关系式:用点P 的坐标表示出点Q 的坐标,即得关系式⎩⎪⎨⎪⎧x 1=g x ,y ,y 1=h x ,y .(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.所求点M 的轨迹方程为x 24+y 2=1.一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.【导学号:37792046】【精彩点拨】 由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹. 【自主解答】 由已知,得两定圆的圆心和半径分别为Q 1(-3,0),R 1=1;Q 2(3,0),R 2=9.设动圆圆心为M (x ,y ),半径为R ,如图. 由题设有 |MQ 1|=1+R , |MQ 2|=9-R ,所以|MQ 1|+|MQ 2|=10>|Q 1Q 2|=6.由椭圆的定义,知点M 在以Q 1,Q 2为焦点的椭圆上, 且a =5,c =3.所以b 2=a 2-c 2=25-9=16, 故动圆圆心的轨迹方程为x 225+y 216=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例所用方法为代入法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P (x ,y )与另一个已知曲线C :F (x ,y )=0上的动点Q (x 1,y 1)存在着某种联系,可以把点Q 的坐标用点P 的坐标表示出来,然后代入已知曲线C 的方程 F (x ,y )=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).3.已知圆C :x 2+y 2=4,过圆C 上一动点M 作平行于x 轴的直线m ,设直线m 与y 轴的交点为N ,若向量OQ →=OM →+ON →,则动点Q 的轨迹方程为____________.【解析】 设点M 的坐标为(x 0,y 0),点Q 的坐标为(x ,y ),点N 的坐标为(0,y 0),∵OQ →=OM →+ON →,∴(x ,y )=(x 0,2y 0),即x 0=x ,y 0=y2,又∵x 20+y 20=4,∴x 2+y 24=4.由已知,直线m 平行于x 轴,得y ≠0,∴Q 点的轨迹方程是y 216+x 24=1(y ≠0). 【答案】y 216+x 24=1(y ≠0)1.若椭圆x 216+y 2b2=1过点(-2, 3),则其焦距为( )A.2 5B.2 3C.4 5D.4 3【解析】 将点(-2, 3)代入椭圆方程求得b 2=4,于是焦距2c =216-4=4 3. 【答案】 D2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 【解析】 由题意知c =1,a =2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1.【答案】 A3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.【解析】 由已知2a =8,2c =215, ∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1. 又椭圆的焦点在y 轴上, ∴椭圆的标准方程为y 216+x 2=1.【答案】y 216+x 2=1 4.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.【导学号:37792047】【解】 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c,0),F 2(c,0)(c >0).∵F 1A ⊥F 2A , ∴F 1A →·F 2A →=0, 而F 1A →=(-4+c,3),F 2A →=(-4-c,3),∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|= -4+5 2+32+ -4-5 2+32=10+90=410.∴a=210,∴b2=a2-c2=(210)2-52=15.∴所求椭圆的标准方程为x240+y215=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
03课堂效果落实
1.若平面内点M 到定点F 1(0,-1)、F 2(0,1)的距离之和为2,则点M 的轨迹为( )
A .椭圆
B .直线F 1F 2
C .线段F 1F 2
D .直线F 1F 2的垂直平分线
解析:|MF 1|+|MF 2|=2=|F 1F 2|,所以点M 的轨迹为线段F 1F 2. 答案:C
2.下列说法中,正确的是( )
A .平面内与两个定点F 1、F 2的距离和等于常数的点的轨迹是椭圆
B .与两个定点F 1、F 2的距离和等于常数(大于|F 1F 2|)的点的轨迹是椭圆
C .方程x 2a 2+y 2
a 2-c 2=1(a>c>0)表示焦点在x 轴上的椭圆 D .方程x 2a 2+y 2
b 2=1(a>0,b>0)表示焦点在y 轴上的椭圆 解析:依据方程的结构特点知选C.A 中没强调常数>|F 1F 2|;B 中没强调平面内.
答案:C
3.椭圆25x 2+16y 2=1的焦点坐标为( )
A .(±3,0)
B .(±13,0)
C .(±320
,0) D .(0,±320) 解析:椭圆方程可化为x 2
125+y 2116
=1.
答案:D
4.椭圆x 29+y 22
=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________,∠F 1PF 2=________.
解析:由椭圆x 29+y 22
=1知a =3, c =a 2-b 2=7,
∵|PF 1|+|PF 2|=2a =6,
∴|PF 2|=6-|PF 1|=2.
在△F 1PF 2中,由余弦定理,得
cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|2
2|PF 1||PF 2|
=42+22-(2
7)22×4×2=-12
. 又0°<∠F 1PF 2<180°,
∴∠F 1PF 2=120°.
答案:2 120°
5.当3<k<9时,指出方程x 2
9-k +y 2k -3=1所表示的曲线.
解:∵3<k<9,∴9-k>0且k-3>0.
(1)若9-k>k-3,即3<k<6时,则方程表示焦点在x轴上的椭圆;
(2)若9-k=k-3,即k=6时,则方程表示圆x2+y2=3;
(3)若9-k<k-3,即6<k<9时,则方程表示焦点在y轴上的椭圆.。