三年级奥数第3讲 配对求和
三年级奥数配对求和演示教学

1+2+3+4+5+6+7+8+9+10+11
此课件下பைடு நூலகம்可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
三年级奥数配对求和
高斯的故事 德国著名数学家高斯年幼的时候
聪明过人,上学时,有一天老师出了 一道题让同学们计算:
1+2+3+4+…+99+100=? 老师出完题后,全班同学都在埋 头计算。只有小高斯不急不慌的思考 着,想了一会儿,小高斯很快给出了 答案:5050。
高斯为什么算得又快又准呢?原来 小高斯通过细心观察发现:
判断下面的数列是不是等差数列 (1)2、4、6、8、10、12 (2)1、2、3、5、8、13、21、34 (3)35、30、25、20、15、10、5 (4)1、4、7、10、7、4、1 (5)3、6、9、12、15、18、21、24 (6)3、3、3、3、3、3、3 (7)2、6、18、54、162
1+2+3+4+5+……+96+97+98+99+100
…… 3+98=101 2+99=101 1+100=101
小高斯使用的这种求和方法,真是 聪明极了,简单快捷。并且被广泛地
适用于“等差数列”的求和问题。
那什么是等 差数列?
首项
末项
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
三年级配对求和

A、400 B、200 C、210
正确答案:C
练习一
2、你能迅速算出结果吗? 1+2+3+4+…+100;
A、5000 B、5050 C、5500
正确答案:B
【例题】2、你能迅速算出下列算式的 结果吗? 1+2+3+4+5+6+7+8+9=( )
思路导航:1、2、3、4、5、6、7、8、9一共9个数,如 果我们还像例1那样两个数组成一组,就有一个数多出 来,那怎样做呢? 我们可以这样想:
思路导航:通过观察,我们可以发现每两个减数相加的 和是100 我们可以把81和19,82和18,83和17,84和16,85和15, 86和14,87和13,88和12,89和11这几组数先加起来
和为9个100即900 最后我们得到:1000-900=100
练习四
1、计算:
1000―71―29―72―28―73―27―74―26―75―25―7 6―24―77―23―78―22―79―21=( )
【例题】1 你有好办法算一算吗?
1+2+3+4+5+6+7+8+9+10=( )
思路导航:1、2、3、4、5、6、7、8 、9、10共10个数,我们可以把10个数 分成5组: 1+10,2+9,3+8,4+7,5+6 每组两个数的和是11,它们的和就有5 个11即11×5=55。
练习一
1、计算: 1+2+3+4+…+20
= 6972
练习三
1、1997+1998+1999=( )
A、5993
B、5994
C、5995
正确答案 B
2、9997+9998+9999=( )
A、19994
B、29994 C、39994
正确答案 B
【例题】4、计算:
配对求和(三年级适合)

配对求和专题简析:被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+…+99+100的结果。
小高斯是用什么办法算得这么快的呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一项叫首项,最后一项叫末项。
如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1配对求和例题1 你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()思路导航:1、2、3、4、5、6、7、8、9、10共10个数,我们可以把10个数分成5组:1+10,2+9,3+8,……,每组两个数的和是11,它们的和就有5个11即11×5=55。
01小试牛刀1,计算:1+2+3+4+ (20)2,你能迅速算出结果吗?1+2+3+4+ (100)3,想一想,该怎样计算方便?21+22+23+24+ (50)例题2 你能迅速算出下列算式的结果吗?1+2+3+4+5+6+7+8+9=()思路导航:1、2、3、4、5、6、7、8、9一共9个数,如果我们还像例1那样两个数组成一组,就有一个数多出来,那怎样做呢?我们可以这样想:9个10是90,90是两组1加到9的和,它的一半是90÷2=45。
当加数个数成单时,我们可以用第一个数与最后一个数相加,乘这组数的个数,再除以2,其实这种方法也适用于加数个数成双的求和。
02小试牛刀用简单方法迅速算出下面的题。
1,1+2+3+4+ (55)2,1+2+3+4+ (99)3,56+57+58+ (76)例题3 计算:(1)32+34+36+38+40+42(2)203+207+211+215+219思路导航:(1)32、34、36、38、40、42共6个数相加,后一个数与前一个数相差都是2,我们可以把它们分为3组,每组的和都是74,那么几个数的和就是3个74即74×3=222;(2)203+207+211+215+219共5个数相加,后一个数与前一个数相差都是4,我们也可以仿照例2的方法进行计算,用第一个数和最后一个数相加203+219=422,乘上数的个数5,即422×5=2110,再除以2得到2110÷2=1055。
三年级奥数:配对求和(5页)

配对求和引入:被人誉为“数学王子”的高斯在年仅10岁时就以一种非常巧妙的方法很快求出1+2+3+4+5+、、、+99+100的结果。
高斯是怎样求出这个和的呢?这就是我们要研究的这种求和的方法。
我们利用高斯的巧算方法得出这样的公式:总和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1末项=首项+(项数-1)×公差第一类题型例题1:计算:1+2+3+4+5+、、、+98+99+100.思路点拨:此数列是一个等差数列,公差是1,我们可以利用“总和=(首项+末项)×项数÷2”的求和公式来解。
解:1+2+3+4+5+、、、+98+99+100=(1+100)+(2+99)+(3+98)+、、、+(50+51)=(100+1)×(100÷2)= 101×50= 5050同步精炼:1、1+2+3+4+5+6+7+8+9+102、2+4+6+8+、、、+30第二类题型例题1:计算:2+5+8+11+14+17+20思路导航:本题是一个等差数列,公差是3. 2、5、8、11、14、17、20,一共有7个数,如果我们仍像例1那样每两个数组成一个组,就多出一个数,那怎么办呢?我们不妨这样想:2 5 8 11 14 17 20+20 17 14 11 8 5 222 22 22 22 22 22 227个22是154,而154是两组2到20的和,一组2到20的和一组2到20的和就是154÷2=77,由此我们得出这样的规律,当加数是单数时,就可用第一个数即前项与最后一个数(末项)相加,乘以这组数的个数(项数),再除以2,就能求出正确结果了。
其实这种方法也适用于加数的个数成双的求和:解:2+5+8+11+14+17+20=(2+20)×7÷2=22×7÷2=77同步精炼:一、计算:1、 18+19+20+21+22+232、100+102+104+106+108+110+112+114二、试用两种方法计算1、73+77+81+85+89+932、995+996+997+998+999三、求出下列题的和。
三年级奥数 配对求和

配对求和【知识要点】数列:像1、2、3、4、5、6、7…这样按一定规律排列的一列数叫数列。
数列里的每一个数都叫做这个数列的项。
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
【例1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()【练习1】速算。
(1) 1+2+3+4+5+……+20(2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例2】计算。
(1) 21+23+25+27+29+31(2) 312+315+318+321+324【练习2】计算。
(1) 48+50+52+54+56+58+60+62(2) 108+128+148+168+188【例3】计算。
10-9+8-7+6-5+4-3+2-1【练习3.1】计算。
100-1-3-5-7-9-11-13-15-17-19【练习3.2】计算。
1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81【例4】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?【练习4.1】体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?【练习4.2】有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分针指向6敲1下,这个钟一昼夜敲多少下?【课后练习】1、计算(1)990+992+994+996+998;(2)756+758+761+764+770(3)1975+1980+1998+1985+1994(4)423—49+17719+299+3999+499992、计算并说说思路。
(1)3675-(11+13+15+17+19)(2)4900-(90+92+95+96)(3)1928-(267-72)-33(4)2000-1348-(323-1663)。
2023年苏教版三年级数学上册奥数—配对求和

新苏教版三年级数学上册奥数——配对求和
例题与方法
例1、计算:1+2+3+4+5+6+7+8+9+10
例2、计算:11+12+13+14+15+16+17+18+19
例3、计算:101+102+103+104+105+106+107+108+109+110
练习与思考
1、计算:1+2+3+4+…+18+19
2、计算:1+2+3+4+…+29+30
3、计算:2+4+6+8+…+98+100
4、计算:40+41+42+…+61
5、计算:13+14+15+…+27
6、一堆圆木共15层,第1层有8根,下面每层比上层多1根。
这堆圆共多少根?
7、省工人体育馆的12区共有20排座位,呈梯形。
第1排有10个座位,第2排有11个座位,第3排有12个座位,……这个体育馆的12区共有多少个座位?
教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
我们发现了儿童有创造力,认识了儿童有创造力,就须进一步把儿童的创造力解放出来。
——好词好句。
【小学三年级奥数】第03讲 配对求和

旗开得胜第4讲配对求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。
小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()旗开得胜练习1:速算。
(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例题2】计算。
(1) 21+23+25+27+29+31 (2) 312+315+318+321+324练习2:计算。
(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?练习3:(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?【例题4】计算992+993+994+995+996+997+998+999。
练习4:计算。
(1) 95+96+97+98+99 (2) 2006+2007+2008+2009(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19 例5:1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81。
三年级数学 奥数讲座 配对求和

奥数讲座配对求和高斯是德国出名的数学家、物理学家和天文学家,从小就聪惠过人。
他8岁时,老师给他和班上的同学出了一道题:1+ 2 + 3 + 4 +…+ 99 + 100 =?8岁的小高斯很快报出了得数:5050。
这个答案完全正确!最让老师惊讶的是,小高斯是计算速度如此快。
小高斯用什么办法算得这么的呢?原来,他用了一种精巧的方法——配对求和。
这种方法正是我们要向读者小朋友介绍的。
例题与方法1.计算:1+2+3+4+5+6+7+8+9+102.计算:11+12+13+14+15+16+17+18+193.计算:101+102+103+104+105+106+107+108+109+1104.有一垛电线杆叠堆在一起,一共有20层。
第1层有12根,第2层有13根……下面每层比上层多一根(如下图)。
这一垛电线杆共有多少根?练习与思考1.计算:1+2+3+4+…+18|+192.计算:1+2+3+4+…+29+303.计算:2+4+6+8+…+98+1004.计算:40+41+42+…+615.计算:13+14+15+…+276.有20个数,第1个数是9,以后每个数都比前一个数大3。
这20个数连加,和是多少?7.有一串数,第1个数是5,以后每个数比前一个数大5,最后一个数是90。
这串数连加,和是多少?8.一堆圆木共15层,第1层有8根,下面每层比上层多1根。
这堆圆共多少根?9.省工人体育馆的12区共有20排座位,呈梯形。
第1排有10个座位,第2排有11个座位,第3排有12个座位,……这个体育馆的12区共有多少个座位?10.有一个挂钟,一个点钟敲2下,三点钟敲3下……十二点敲12下,每逢分种指向6时敲1下。
问这个挂种一昼夜共敲多少下?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲配对求和
一、知识要点
被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。
小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。
数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。
计算等差数列的和,可以用以下关系式:
等差数列的和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】你有好办法算一算吗?
1+2+3+4+5+6+7+8+9+10=()
练习1:速算。
(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100
(3) 21+22+23+24+……+100
【例题2】计算。
(1) 21+23+25+27+29+31 (2) 312+315+318+321+324
练习2:计算。
(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188
【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层
有17根,……下面每层比上层多一根,这堆木材共有多少根?
练习3:
(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?
(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?
(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?
【例题4】计算992+993+994+995+996+997+998+999。
练习4:计算。
(1) 95+96+97+98+99 (2) 2006+2007+2008+2009
(3) 9997+9998+9999 (4) 100-1-3-5-7-9-11-13-15-17-19
【例题5】计算1000-11-89-12-88-13-87-14-86-15-85-16-84-17-83-18-82-19-81
练习5:计算。
(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1
(2) 1000-81-11-82-12-83-13-84-14-85-15-86-16-87-17-88-18-89-19
(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16。