14电磁场习题解答
电磁场理论习题

电磁场理论习题一1、求函数ϕ=xy+z-xyz 在点(1,1,2)处沿方向角πα=3,4πβ=,3πγ=的方向的方向导数.解:由于 M ϕ∂∂x =y -M yz = -1M y ϕ∂∂=2x y -(1,1,2)xz =0 Mzϕ∂∂=2z(1,1,2)xy -=31cos 2α=,cos 2β=,1cos 2γ=所以1cos cos cos =∂∂+∂∂+∂∂=∂∂γϕβϕαϕϕz y x lM2、 求函数ϕ=xyz 在点(5, 1, 2)处沿着点(5, 1, 2)到点(9, 4, 19)的方向的方向导数。
解:指定方向l 的方向矢量为l =(9-5) e x +(4-1)e y +(19-2)e z =4e x +3e y +17e z其单位矢量zy x z y x e e e e e e l 314731433144cos cos cos ++=++=γβα5,10,2)2,1,5(==∂∂==∂∂==∂∂MMMMMxyzxzyyzxϕϕϕ所求方向导数314123cos cos cos =•∇=∂∂+∂∂+∂∂=∂∂ l z y x lMϕγϕβϕαϕϕ3、 已知ϕ=x 2+2y 2+3z 2+xy+3x-2y-6z ,求在点(0,0,0)和点(1,1,1)处的梯度。
解:由于ϕ∇=(2x+y+3) e x +(4y+x-2)e y +(6z-6)e z所以,(0,0,0)ϕ∇=3e x -2e y -6e z(1,1,1)ϕ∇=6e x +3e y4、运用散度定理计算下列积分:2232[()(2)]x y z sxz e x y z e xy y z e ds+-++⎰⎰I=S 是z=0 和 z=(a 2-x 2-y 2)1/2所围成的半球区域的外表面。
解:设:A=xz 2e x +(x 2y-z 3)e y +(2xy+y 2z)e z 则由散度定理Ω∇⎰⎰⎰⎰⎰sA ds=Adv可得2I r dvΩΩΩ=∇==⎰⎰⎰⎰⎰⎰⎰⎰⎰222Adv (z +x +y )dv2244220sin sin aar drd d d d r dr ππππθθϕϕθθ==⎰⎰⎰⎰⎰⎰525a π=5、试求▽·A 和▽×A:(1) A=xy 2z 3e x +x 3ze y +x 2y 2e z(2)22(,,)cos sin z A z e e ρρφρφρφ=+ (3 ) 211(,,)sin sin cos r A r r e e e r r θφθφθθθ=++解:(1)▽·A=y 2z 3+0+0= y 2z 3▽×A=23232(2)(23)x yx y x e xy xy z e ∂∂∂=---∂∂∂x y z23322e e e x y z xy z x z x y(2) ▽·A=()[()]z A A A z φρρρρρφ∂∂∂++∂∂∂1 =33[(cos )(sin )]ρφρφρρφ∂∂+∂∂1=3cos ρφ▽×A=ρφρφρρρφρ∂∂∂∂∂∂z ze e e 1z A A A =221cos 0ρφρρρφρφρφ∂∂∂∂∂∂z e e e z sin=cos 2sin sin ze e e ρφρφρφρφ-+(3) ▽·A=22(sin )()1[sin ]sin r A A r A r r r r φθθθθθφ∂∂∂++∂∂∂ =2322sin cos ()()1(sin )[sin ]sin r r r r r r r θθθθθθφ∂∂∂++∂∂∂ =222212[3sin 2sin cos ]3sin cos sin r r r θθθθθθ+=+▽×A=21sin rr r r rr θφθφθθθφθ∂∂∂∂∂∂e e rsin e A A rsin A =21sin 1sin sin cos rr r r r θφθθθφθθθθ∂∂∂∂∂∂e e rsin e rsin=33cos 2cos cos sin r e e e r r θφθθθθ+-习题二1、总量为q 的电荷均匀分布于球体中,分别求球内,外的电场强度。
电磁场与电磁波课后习题及答案四章习题解答

如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板, 槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①_r FL题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从o到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰S D ds ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4线性且各向同性媒质的本构关系方程是: 4.D E ε=,B H μ=,J E σ= 5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂6电位满足的泊松方程为2ρϕε∇=-; 》在两种完纯介质分界面上电位满足的边界 。
12ϕϕ=1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E 的单位是V/m ,电位移D的单位是C/m2 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯=ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是( 0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
13电磁感应习题解答14电磁场习题解答

第十三章 电磁感应一 选择题3.如图所示,一匀强磁场B 垂直纸面向内,长为L 的导线ab 可以无摩擦地在导轨上滑动,除电阻R 外,其它部分电阻不计,当ab 以匀速v 向右运动时,则外力的大小是: R L B R L B R L B R BL L B 222222222 E. D. 2 C. B. A.v v v vv 解:导线ab 的感应电动势v BL =ε,当ab 以匀速v 向右运动时,导线ab 受到的外力与安培力是一对平衡力,所以RL B L R B F F v 22===ε安外。
所以选(D ) 4.一根长度L 的铜棒在均匀磁场B 中以匀角速度ω旋转着,B 的方向垂直铜棒转动的平面,如图,设t = 0时,铜棒与Ob 成θ角,则在任一时刻t 这根铜棒两端之间的感应电动势是:( ) A. )cos(2θωω+t B L B. t B L ωωcos 212 C. )cos(22θωω+t B L D. B L 2ωE. B L 221ω 解:⎰⎰⎰===⋅⨯=L L BL l l B l B )00221d d d ωωεv l B v ( 所以选(E )6.半径为R 的圆线圈处于均匀磁场B 中,B 垂直于线圈平面向上。
如果磁感应强度为B =3 t 2+2 t +1,则线圈中的感应电场为:( )A . 2π(3 t + 1)R 2 ,顺时针方向; B. 2π(3 t + 1)R 2 ,逆时针方向;C . (3 t + 1)R ,顺时针方向;D . (3 t + 1)R ,逆时针方向; 解:由⎰⎰⎰⋅∂∂-=⋅S B l E d d i t ,则感应电场的大小满足 选择题4图 选择题3图v2i π)26(π2R t R E +=⋅解出 E i = (3 t + 1)R 所以选(C )。
7.在圆柱形空间内有感应强度B 的均匀磁场,如图所示,B 的大小以速率d B/d t 变化,在磁场中有C ,D 两点,其间可放置直导线和弯曲导线,则( )A .电动势只在直导线中产生B .电动势只在弯曲导线中产生C .电动势在直导线和弯曲导线中产生,且两者大小相等D .直导线中的电动势小于弯曲导线中的电动势 解:在圆柱形空间内的感生电场是涡选场,电场线是与圆柱同轴的同心圆,因为⎰⋅=l E d i ε,所以弯曲导线中的电动势比直导线中的电动势大。
《电磁场与电磁波》课后习题解答(全)

(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
电磁场与电磁波课后习题及答案四章习题解答

如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。
解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。
上板和薄片保持电位,下板保持零电位,求板间电位的解。
设在薄片平面上,从到,电位线性变化,。
题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。
并按定出边缘电容。
解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。
解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。
求体积内的电位。
解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。
由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。
求板间的电位函数。
解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。
而在的分界面上,可利用函数将线电荷表示成电荷面密度。
电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。
高等电磁场理论课后习题答案

由于是远场,
e 1 e 2 e 3 e 4 e e 1 e 2 e 3 e 4 e
2
I ka sin jkr jk r1 jk r2 E E 1 E 2 E 3 E 4 e e jk r3 e jk r4 e e 4r 1 H e k E
2.7
解:
H j E E j H E k 2 E 0 H 0 E 0
比如 E e z e 2.11
jkz
(1)
2 E ( E) ( E) k 2 E 2 E k 2 E 0 (2)
代入公式,可得,
I ka sin1 jkr1 H e e x cos 1 cos 1 e y cos 1 sin 1 e z sin 1 4r1
2
I ka sin 2 jkr2 e e x cos 2 cos 2 e y cos 2 sin 2 e z sin 2 4r2
推导1 1 1 R ˆ 4 lim 2 dV lim dS lim 3 4 R 2 R V 0 R 0 R 0 R R R V S 1 1 又知道 2 在R 0处值为零,符合 (r r ')函数的定义。 4 R 推导2 点电荷q (r r ')产生的电场强度为 q 1 4 0 R 4 R q (r r ') 1 E 2 4 (r r ') 0 R E q
所以有
H 2 E1 H1 E2 E1 J 2 E2 J1 H 2 M1 H1 M 2
电磁场习题解答

1—2—2、求下列情况下,真空中带电面之间的电压。
(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。
解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。
对此圆柱体的外表面应用高斯通量定理,得l S D sτ=⋅⎰d考虑到此问题中的电通量均为r e即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是l rD l τπ=2即 r e rD πτ2=, r e r E02πετ= 由此可得 a b r e e r r E U ba r rb aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。
内导体的半径为a ,其值可以自由选定但有一最佳值。
因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。
另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。
试问a 为何值时,该电缆能承受最大电压?并求此最大电压。
(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。
某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。
解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=, aE πετ2max = 而内外导体之间的电压为abr r r E U ba ba ln 2d 2d πετπετ⎰⎰===或 )ln(max ab aE U =0]1)[ln(a d d max =-+=abE U 即 01ln =-a b , cm 736.0e==ba V)(1047.1102736.0ln 55max max ⨯=⨯⨯==ab aE U1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 电磁场
一 选择题
1.对位移电流,有下述四种说法,请指出哪一种说法正确。
( ) (A ) 位移电流是由变化电场产生的。
(B ) 位移电流是由线性变化磁场产生的。
(C ) 位移电流的热效应服从焦尔—楞次定律。
(D ) 位移电流的磁效应不服从安培环路定理。
解:本题选(A )。
2.在感应电场中电磁感应定律可以写成t
L d d d K Φ
-
=⎰⋅l E ,式中E K 为感应电场的电场强度。
此式表明: ( )
(A ) 闭合曲线l 上E K 处处相等。
(B ) 感应电场是保守场。
(C ) 感应电场的电力线不是闭合曲线。
(D ) 在感应电场中不能像对静电场那样引入电势的概念。
解:本题选(D )。
3.在非稳恒情况下,电流连续性方程可以写成: ( )
t q t t t
q
s
s
s
s
d d d ) ( D. 0d ) ( C. d d d B. 0d A.-=⋅+=⋅+
=
⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰S D
J S D J S J S J ∂∂∂∂ 解:本题选(C )。
4.由两个圆形金属板组成的平行板电容器,其极板面积为A ,将该电容器接于交流电源时,极板上的电荷随时间变化,即q =q 0sin ωt ,则电容器内的位移电流密度为:( )
t cos A q t cos A
q
t cos A q t cos q ωωωωωωω0000 D. C. B. A.
解:当电容器极板上的电荷为q 时,电荷面密度A
q
=σ,这时电容器内电位移矢量A q D ==σ。
因为q =q 0sin ωt ,所以A
t q D ωsin 0= A t
q t D J ωωcos 0=
∂∂=∴ 所以选(B )。
二 填空题
1.平行板电容器的电容C 为20.0μF ,两板上的电压变化率d U /d t =1.50×105V·s -1,则该平行板电容器中的位移电流为 。
解:A 3d d d =⋅
=t
U
C I 2.圆形平行板电容器,从q =0开始充电,试画出充电过程中,极板间某点P 处电场强度的
方向和磁场强度的方向。
3.一般电磁场的能量密度表达式为 。
解:2r 02r 021
21H E μμεε+
三 计算题
1.在一对平行圆形极板组成的电容器(电容C =1×10-12
F )上,加上频率为50Hz 的峰值为
1.74×105
V 的余弦交变电压,计算极板间的位移电流的最大值。
解:CU q S DS D ====Φσ
t
U
C
t I D d d d d d =Φ=
∴ 故5m dm 1047.52-⨯==CU I πν A
2.一平行板电容器,极板是半径为R 的两圆形金属板,极间为空气,此电容器与交流电源
相接,极板上带电量时间变化的关系为q = q 0 sin ωt (ω为常量),忽略边缘效应,求: (1)电容器极板间位移电流及位移电流密度;
(2) 两极板间离中心轴线距离为r ( r <R )处的磁场强度H 的大小;
(3) 当ωt = π/ 4时,离中心轴线距离r ( r <R )处的电磁场能量密度(即电场能量密度与磁场能量密度之和)。
解:(1)I d = d q / d t = q 0ωcos ωt
π 20d d )R /(t cos q S /I J ωω==
(2)⎰⎰⎰=⋅L S S J l H d d d
)/(cos 22
20R t r q rH πωωππ=∴
π2π20)R /(t cos r q H ωω= (3)
)
π/(2R q D ==σ,且 002
2
sin q t q q ==ω ) π2/(2= /0200εεR q D E =∴
)14(π421212121022042202
022εωμεμμ+=+=+=r R
q E H DE H w
P
填充题2图 填充题2答案
P
3.一内导体为半径为R 1,外导体半径为R 2的球形电容器,两球间充有相对电容率为r ε的介质,在电容器上加电压,内球对外球的电压为:t U U ωsin 0=。
假设ω不太大,以致电容器电场分布与静态场情形近似相同,求介质中各点的位移电流密度,再计算通过半径为r (21R r R <<)的球面的总位移电流。
解:2
r 0π4)(r t q E εε= 2
1r 01221r 0π41
1π4R R )R R )(t (q )R R ()t (q U εεεε-=-= )
(12221R R r R UR E -=
位移电流密度: 0012221r 0r 0d r E D J t cos U )
R R (r R R t t ωωεεεε-=∂∂=∂∂=
2d d π4d d r J I ⋅=⎰⋅=S J t cos U R R R R ωωεε01
22
1r 0π4-=。