电磁场习题解答

合集下载

高考物理电磁场经典练习题(含答案详解)

高考物理电磁场经典练习题(含答案详解)

高三物理第一轮专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd为一正方形区域,正离子束从a点沿ad方向以=80m/s 的初速度射入,若在该区域中加上一个沿ab方向的匀强电场,电场强度为E,则离子束刚好从c点射出;若撒去电场,在该区域中加上一个垂直于abcd平面的匀强磁砀,磁感应强度为B,则离子束刚好从bc的中点e射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E与B的比值BE/为多少?制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。

已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

高等电磁场理论习题解答

高等电磁场理论习题解答

H 2 H + 2 H J j E
均匀介质中, 0
(2-1-10)
2 E k 2 E jJ
2 H k 2 H J
2 E k 2 E ( E


)
(作 1-9)
证明:非均匀各向同性介质中(无源区)的时谐电磁场满足
H r j E r
E j H
对(1-9-2)式两边取旋度,并利用(1-9-1)得
(1-9-1) (1-9-2)
E j H j H = 2 E

E0 3x y z . 2
附: 的求解过程:
4 2 21 0 0 4 2 2 1 0 0 2 0 2 1 0 1 2 4 2 0 1 0 ~ 0 2 2 0 1 1 ~ 0 2 2 0 1 1 2 2 40 0 1 2 2 4 0 0 1 2 2 4 0 0 1 2 0 2 1 0 1 2 0 2 1 0 1 ~ 0 2 2 0 1 1 ~ 0 2 2 0 1 1 0 2 6 1 0 2 0 0 8 1 1 3 3 2 0 0 4 1 0 2 0 4 0 0 8 1 1 4 3 4 1 1 4 1 4 3 3 1 0 0 8 1 0 1 0 8 0 0 1 1 8 1 8 3 8 1 8 1 8 1 8 3 8
2.D E 3 8 1 1 E 1 D o 8 1 8
即: E
1
1 8 1 4 o E 0 0 4 E 0 0 1 8 8 2 0 1 3 1 8 8

高等电磁场理论课后习题答案

高等电磁场理论课后习题答案

由于是远场,
e 1 e 2 e 3 e 4 e e 1 e 2 e 3 e 4 e
2
I ka sin jkr jk r1 jk r2 E E 1 E 2 E 3 E 4 e e jk r3 e jk r4 e e 4r 1 H e k E
2.7
解:
H j E E j H E k 2 E 0 H 0 E 0
比如 E e z e 2.11
jkz
(1)
2 E ( E) ( E) k 2 E 2 E k 2 E 0 (2)
代入公式,可得,
I ka sin1 jkr1 H e e x cos 1 cos 1 e y cos 1 sin 1 e z sin 1 4r1
2

I ka sin 2 jkr2 e e x cos 2 cos 2 e y cos 2 sin 2 e z sin 2 4r2
推导1 1 1 R ˆ 4 lim 2 dV lim dS lim 3 4 R 2 R V 0 R 0 R 0 R R R V S 1 1 又知道 2 在R 0处值为零,符合 (r r ')函数的定义。 4 R 推导2 点电荷q (r r ')产生的电场强度为 q 1 4 0 R 4 R q (r r ') 1 E 2 4 (r r ') 0 R E q
所以有
H 2 E1 H1 E2 E1 J 2 E2 J1 H 2 M1 H1 M 2

电磁场课后习题答案

电磁场课后习题答案

电磁场课后习题答案电磁场课后习题答案电磁场是物理学中一个重要的概念,涉及到电荷、电流和磁场的相互作用。

在学习电磁场的过程中,我们经常会遇到一些习题,这些习题旨在帮助我们更好地理解电磁场的基本原理和应用。

本文将给出一些电磁场课后习题的答案,希望能够对大家的学习有所帮助。

1. 一个带电粒子在匀强磁场中作圆周运动,其运动半径与速度之间的关系是什么?答:带电粒子在匀强磁场中作圆周运动时,受到的洛伦兹力与向心力相等。

洛伦兹力的大小为F = qvB,向心力的大小为F = mv²/R,其中q为电荷量,v为速度,B为磁感应强度,m为质量,R为运动半径。

将这两个力相等,可以得到qvB = mv²/R,整理得到v = qBR/m。

因此,速度与运动半径之间的关系是v 与R成正比。

2. 一个长直导线中有一电流I,求其所产生的磁场强度B与距离导线距离r之间的关系。

答:根据安培定律,长直导线所产生的磁场强度与电流和距离的关系为B =μ₀I/2πr,其中B为磁场强度,I为电流,r为距离,μ₀为真空中的磁导率。

可以看出,磁场强度与距离的关系是B与1/r成反比。

3. 一个平面电磁波的电场强度和磁场强度的振幅分别为E₀和B₀,求其能量密度u与E₀和B₀之间的关系。

答:平面电磁波的能量密度与电场强度和磁场强度的关系为u = ε₀E₀²/2 +B₀²/2μ₀,其中u为能量密度,ε₀为真空中的介电常数,μ₀为真空中的磁导率。

可以看出,能量密度与电场强度的振幅的平方和磁场强度的振幅的平方之间存在关系。

4. 一个平行板电容器的电容为C,两板间的距离为d,若电容器中充满了介电常数为ε的介质,请问在电容器中存储的电能与电容、电压和介电常数之间的关系是什么?答:平行板电容器存储的电能与电容、电压和介电常数之间的关系为W =1/2CV²,其中W为存储的电能,C为电容,V为电压。

当电容器中充满了介质后,介质的存在会使电容增加为C' = εC,因此存储的电能也会增加为W' =1/2C'V² = 1/2εCV²。

电磁场理论习题及答案

电磁场理论习题及答案

电磁场理论习题及答案电磁场理论是电磁学的基础,它描述了电荷和电流产生的电磁场在空间中的分布和演化规律。

在学习电磁场理论时,习题是巩固和深化理解的重要方式。

本文将介绍一些电磁场理论的习题及其答案,帮助读者更好地掌握这一理论。

一、电场和电势1. 问题:一个均匀带电球体,半径为R,总电荷为Q。

求球心处的电场强度。

答案:根据库仑定律,电场强度E与电荷Q和距离r的关系为E = kQ/r^2,其中k为库仑常数。

对于球体内部的点,距离球心的距离r小于半径R,所以电场强度为E = kQ/r^2。

对于球体外部的点,距离球心的距离r大于半径R,所以电场强度为E = kQ/R^3 * r。

2. 问题:一个无限长的均匀带电线,线密度为λ。

求距离线上一点距离为r处的电势。

答案:根据电势公式V = kλ/r,其中k为库仑常数。

所以距离线上一点距离为r处的电势为V = kλ/r。

二、磁场和磁感应强度1. 问题:一根无限长的直导线,电流为I。

求距离导线距离为r处的磁感应强度。

答案:根据安培环路定理,磁感应强度B与电流I和距离r的关系为B =μ0I/2πr,其中μ0为真空中的磁导率。

所以距离导线距离为r处的磁感应强度为B = μ0I/2πr。

2. 问题:一根长为L的直导线,电流为I。

求距离导线距离为r处的磁场强度。

答案:根据比奥萨伐尔定律,磁场强度H与电流I和距离r的关系为H = I/2πr。

所以距离导线距离为r处的磁场强度为H = I/2πr。

三、电磁场的相互作用1. 问题:一个半径为R的导体球,带电量为Q。

求导体球表面的电荷密度。

答案:导体球表面的电荷密度σ等于导体球上的电荷总量Q除以导体球表面的面积A。

导体球表面的面积A等于球的表面积4πR^2。

所以导体球表面的电荷密度为σ = Q/4πR^2。

2. 问题:一个平行板电容器,两个平行金属板之间的距离为d,电介质的介电常数为ε。

一块电介质板插入到电容器中间,使得电容器的电容增加了n倍。

电磁场与电磁波第二版课后练习题含答案

电磁场与电磁波第二版课后练习题含答案

电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。

大学物理第9章 电磁感应和电磁场 课后习题及答案

大学物理第9章 电磁感应和电磁场 课后习题及答案

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。

电磁场原理习题与解答(第5章)

电磁场原理习题与解答(第5章)

第五章习题答案5-2 如题图所示,一半径为a 的金属圆盘,在垂直方向的均匀磁场B 中以等角速度ω旋转,其轴线与磁场平行。

在轴与圆盘边缘上分别接有一对电刷。

这一装置称为法拉第发电机。

试证明两电刷之间的电压为22ωBa 。

证明:,选圆柱坐标, ρφe vB e B e v B v E z ind=⨯=⨯=其中 φρωe v=22ωρρωρερρa B d B e d e v B l d E aal ind====⎰⎰⎰∙∙∴证毕 5-3解:5-4 一同轴圆柱形电容器,其内、外半径分别为cm r 11=、cm r 42=,长度cm l 5.0=,极板间介质的介电常数为04ε,极板间接交流电源,电压为V t 10026000u πsin =。

求s t 0.1=时极板间任意点的位移电流密度。

解法一:因电源频率较低,为缓变电磁场,可用求静电场方法求解。

忽略边沿效应,电容器中的场为均匀场,选用圆柱坐标,设单位长度上内导体的电荷为τ,外导体电荷为τ-,因题图5-2zvρ此有ρρπετe 2E 0=21r r <<ρ1200222121r r d dl E u r r r r lnπετρρπετ===⎰⎰∙1202r r u ln=∴πετ所以ρρer r u E 12 ln =, ρρεer r u D 12ln=2A/mρρππρερεe t 10010026000r r e tu r r tD J 1212dcos ln ln ⨯=∂∂=∂∂=当s t 1=时2512A/m10816100100260004108584ρρρππρe e J d--⨯=⨯⨯⨯⨯=.cos ln .解法二:用边值问题求解,即⎪⎩⎪⎨⎧=====∇401u 02ρϕρϕϕ 由圆柱坐标系有0)(1=∂∂∂∂ρϕρρρ(1)解式(1)得 21ln c c +=ρϕ由边界条件得: 4u c 1ln -= u c 2=u 4u +-=∴ρϕln ln所以 ρρπϕe 4t10026000Eln sin =-∇=ρρπεεe 4t 100260004E D 0ln sin ==ρπρπεe 1004t 100260004t D J 0D⨯=∂∂=ln cos当s t 1=时)(.25D mAe 10816J ρρ-⨯=5-5由圆形极板构成的平板电容器)(d a >>见题图所示,其中损耗介质的电导率为γ、介电系数为ε、磁导率为μ,外接直流电源并忽略连接线的电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1—2—2、求下列情况下,真空中带电面之间的电压。

(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。

解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。

对此圆柱体的外表面应用高斯通量定理,得考虑到此问题中的电通量均为r e即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是即r e r D πτ2=,r e rE02πετ= 由此可得a b r e e r r E U ba r rb aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。

内导体的半径为a ,其值可以自由选定但有一最佳值。

因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。

另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。

试问a 为何值时,该电缆能承受最大电压?并求此最大电压。

(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。

某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。

解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=,aE πετ2max = 而内外导体之间的电压为或)ln(max abaE U =即01ln =-a b ,cm 736.0e==ba1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。

解:25045sin 10001==t E ,25045cos 10001==n E根据t t E E 21=,n n D D 21=得2502=t E ,220002ε=n D ,21002022==εnn D E 于是:V/m)(1050)2100()250(2222222=+=+=n t E E E 1—8、对于空气中下列各种电位函数分布,分别求电场强度和电荷体密度: (1)、2Ax =ϕ (2)、A xy z =ϕ(3)、B r z Ar +=φϕsin 2 (4)、φθϕc o s s i n2Ar = 解:求解该题目时注意梯度、散度在不同坐标中的表达式不同。

(1)、i Ax i xAx k z j y i x E2)()(2-=∂∂-=∂∂+∂∂+∂∂-=-∇=ϕϕϕϕ(2)、)(k z j y i x E∂∂+∂∂+∂∂-=-∇=ϕϕϕϕ (3)、)1[k z e r e r E r ∂∂+∂∂+∂∂-=-∇=ϕφϕϕϕφ (4)、]s i n 11[φϕθθϕϕϕφθ∂∂+∂∂+∂∂-=-∇=r e r e r e E r1—4—2、两平行导体平板,相距为d ,板的尺寸远大于d ,一板的电位为0,另一板的电位为0V ,两板间充满电荷,电荷体密度与距离成正比,即x x 0)(ρρ=。

试求两极板之间的电位分布(注:0=x 处板的电位为0)。

解:电位满足的微分方程为 其通解为:21306C x C x ++-=ερϕ 定解条件为:00==x ϕ;0V ==d x ϕ 由00==x ϕ得02=C 由0V ==d x ϕ得01300V 6=+-d C d ερ,即200016d V d C ερ+=于是x d d x )6V (6200300ερερϕ++-= 1—4—3、写出下列静电场的边值问题: (1)、电荷体密度为1ρ和2ρ(注:1ρ和2ρ为常数),半径分别为a 与b 的双层同心带电球体(如题1—4—3图(a ));(2)、在两同心导体球壳间,左半部分和右半部分分别填充介电常数为1ε与2ε的均匀介质,内球壳带总电量为Q ,外球壳接地(题1—4—3图b ));(3)、半径分别为a 与b 的两无限长空心同轴圆柱面导体,内圆柱表面上单位长度的电量为τ,外圆柱面导体接地(题1—4—3图(c ))。

解:(1)、设内球中的电位函数为1ϕ,介质的介电常数为1ε,两球表面之间的电位函数为2ϕ,介质的介电常数为2ε,则1ϕ,2ϕ所满足的微分方程分别为1112ερϕ-=∇,2222ερϕ-=∇ 选球坐标系,则由于电荷对称,所以1ϕ和2ϕ均与θ、φ无关,即1ϕ和2ϕ只是r 的函数,所以11122)(1ερϕ-=∂∂∂∂r r rr ,22222)(1ερϕ-=∂∂∂∂r r r r定解条件为: 分界面条件:ar a r ===21ϕϕ;ar ar rr==∂∂=∂∂2211ϕεϕε电位参考点:02==br ϕ;附加条件:01=r ϕ为有限值(2)、设介电常数为1ε的介质中的电位函数为1ϕ,介电常数为2ε的介质中的电位函数为2ϕ,则1ϕ、2ϕ所满足的微分方程分别为1112ερϕ-=∇,2222ερϕ-=∇ 选球坐标系,则由于外球壳为一个等电位面,内球壳也为一个等电位面,所以1ϕ和2ϕ均与θ、φ无关,即1ϕ和2ϕ只是r 的函数,所以0)(1122=∂∂∂∂r r r r ϕ,0)(1222=∂∂∂∂r r rr ϕ 分界面条件:2221πθπθϕϕ===由分解面条件可知21ϕϕ=。

令ϕϕϕ==21,则在两导体球壳之间电位满足的微分方程为电位参考点:0==b r ϕ;边界条件:Q E E a a r r r =+=)(2212εεπ,即(3)、设内外导体之间介质的介电常数为ε,介质中的电位函数为ϕ,则ϕ所满足的微分方程分别为02=∇ϕ,选球柱坐标系,则由于对称并假定同轴圆柱面很长,因此介质中的电位ϕ和φ及z 无关,即ϕ只是r 的函数,所以电位参考点:0==b r ϕ; 边界条件:τεπ==ar rE a 2,即1-7-3、在无限大接地导体平板两侧各有一个点电荷1q 和2q ,与导体平板的距离均为d ,求空间的电位分布。

解:设接地平板及1q 和2q 如图(a )所示。

选一直角坐标系,使得z 轴经过1q 和2q 且正z 轴方向由2q 指向1q ,而x ,y 轴的方向与z 轴的方向符合右手螺旋关系且导体平板的表面在x ,y 平面内。

计算0>z 处的电场时,在(d -,0,0)处放一镜像电荷1q -,如图(b )所示,用其等效1q 在导体平板上的感应电荷,因此计算0<z 处的电场时,在(d ,0,0)处放一镜像电荷2q -如图(c )所示,用其等效2q 在导体平板上的感应电荷,因此1-7-5、空气中平行地放置两根长直导线,半径都是2厘米,轴线间距离为12厘米。

若导线间加1000V 电压,求两圆柱体表面上相距最近的点和最远的点的电荷面密度。

解:由于两根导线为长直平行导线,因此当研究它们附近中部的电场时可将它们看成两根无限长且平行的直导线。

在此假定下,可采用电轴法求解此题,电轴的位置及坐标如图所示。

由于对称cm 6212==h 而cm 24262222=-=-=R h b设负电轴到点),(y x p 的距离矢量为2r ,正电轴到点),(y x p 的距离矢量为1r(p 点应在以R 为半径的两个圆之外),则p 点的电位为两根导体之间的电压为U ,因此右边的圆的电位为U 21,即由此可得于是2222)()(ln )21ln(250),(y b x y b x y x +-+++=ϕ 由于两根导线带的异号电荷相互吸引,因而在两根导线内侧最靠近处电场最强电荷密度最大,而在两导线外侧相距最远处电荷密度最小。

1—9—4、一个由两只同心导电球壳构成的电容器,内球半径为a ,外球壳半径为b ,外球壳很薄,其厚度可略去不计,两球壳上所带电荷分别是Q +和Q -,均匀分布在球面上。

求这个同心球形电容器静电能量。

解:以球形电容器的心为心做一个半径为r 的球面,并使其介于两导体球壳之间。

则此球面上任意一点的电位移矢量为电场强度为re rQ D E24πεε== 而电场能量密度为4223221rQ D E w e επ=⋅= 球形电容器中储存的静电场能量为 )11(82b a Q -=επ=aba b Q -=επ82 1-9-5、板间距离为d 电压为0U 的两平行板电极浸于介电常数为ε的液态介质中,如图所示。

已知液体介质的密度是m ρ,问两极板间的液体将升高多少? 解:两平行板电极构成一平板电容器,取如图所示的坐标,设平板电 容器在垂直于纸面方向的深度为w ,则此电容器的电容为 电容中储存的电场能量为液体表面所受的力为此力应和电容器中高出电容器之外液面的液体所受的重力平衡,由此 可得即2m 202)(gdU h ρε-ε= 2—5、内外导体的半径分别为1R 和2R 的圆柱形电容器,中间的非理想介质的电导率为γ。

若在内外导体间加电压为0U ,求非理想介质中各点的电位和电场强度。

解:设圆柱形电容器介质中的电位为ϕ,则 选择圆柱坐标,使z 轴和电容器的轴线重合,则有假定电容器在z 方向上很长,并考虑到轴对称性,电位函数ϕ只能是r 的函数,因此ϕ所满足的微分方程可以简化为即1C rr =∂∂ϕ,r C r 1=∂∂ϕ 两边再积分得电位的通解21ln C r C +=ϕ 定解条件:01U R r ==ϕ,02==R r ϕ将电位函数的通解带入定解条件,得由上述两式解得2101ln R R U C =,121002ln ln R R R U U C -= 于是0121001210210ln ln ln ln ln ln U R rR R U U R R R U r R R U +=+-=ϕ而]1[ze r e r e E z r∂∂+∂∂+∂∂-=-∇=ϕφϕϕϕφ 2—7、一导电弧片由两块不同电导率的薄片构成,如图所示。

若71105.6⨯=γ西门子/米,72102.1⨯=γ西门子/米,452=R 厘米,301=R 厘米,钢片厚度为2毫米,电极间的电压V 30=U ,且1γ>>γ电极。

求:⑴、弧片内的电位分布(设x 轴上电极的电位为0);⑵、总电流I 和弧片的电阻R ;⑶、在分界面上D ,δ ,E是否突变? ⑷、分界面上的电荷密度σ。

解:(1)、设电导率为1γ的媒质中的电位为1ϕ,电导率为2γ的媒质中的电位为2ϕ,选取柱坐标研究此问题。

由于在柱坐标中电极上的电位和r 及z 无关,因而两部分弧片中的电位也只是α的函数,即由上边两式可得1ϕ、2ϕ的通解分别为 此问题的定解条件是:002=ϕ=α……(a )U =ϕπ=α21……(b )4421ππ=α=αϕ=ϕ……(c )442211ππ=α=αα∂ϕ∂γ=α∂ϕ∂γ……(d )根据上述四式可得04=C ,U C C =+π212432144C C C C +π=+π,3211C C γ=γ 联立以上四式解得)(42121γ+γπγ=U C ,212112)(2γ+γγ-γ=π-=U C U C)(42111213γ+γπγ=γγ=U C C ,04=C 于是V )65.2095.5()()(421212121+α=γ+γγ-γ+αγ+γπγ=ϕU U(2)、根据ϕ-∇=E得 又Eγ=δ,因此而⎰⎰αα-⋅⨯-=⋅δ=218S 1d )002.0()10868.3( d R R r e e rS I(3)、由于电流密度的法向分量在分界面上连续,且在此题目中电流密度只有法向分量,因此4241π=απ=αδ=δ。

相关文档
最新文档